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https://www.explainxkcd.com/wiki/index.php/977:_Map_Projections

All maps must lie
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Great circles

A is the intersection of the sphere with a plane passing
through the sphere’s center. These are geodesics on the sphere.
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Ideal maps

An map (from the sphere to the plane) satisfies all of:
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Ideal maps

An map (from the sphere to the plane) satisfies all of:

(D) Distances are rescaled by the same constant factor (so the
map is just a scale model of the earth);
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(G) All arcs of are mapped to straight line segments
(so distances can be measured with a ruler on the map);
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Ideal maps
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(D) Distances are rescaled by the same constant factor (so the
map is just a scale model of the earth);

(G) All arcs of are mapped to straight line segments
(so distances can be measured with a ruler on the map);

(C) Angles are preserved, i.e. conformal map.

Ideal maps do not exist, i.e. “all maps must lie".

Even stronger:

Maps satisfying both (G) and (C) do not exist.
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Ideal maps

An map (from the sphere to the plane) satisfies all of:

(D) Distances are rescaled by the same constant factor (so the
map is just a scale model of the earth);

(G) All arcs of are mapped to straight line segments
(so distances can be measured with a ruler on the map);

C) Angles are preserved, i.e. conformal map.
g

Ideal maps do not exist, i.e. “all maps must lie".

Even stronger:

Maps satisfying both (G) and (C) do not exist.
Maps satisfying (D) do not exist.
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Spherical triangles
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.

Assume a map satisfies (G) and (C).
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.

Assume a map satisfies (G) and (C). It must map a spherical
triangle AABC to a planar triangle Aabc with angle sum ¥ > 7.
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.

Assume a map satisfies (G) and (C). It must map a spherical
triangle AABC to a planar triangle Aabc with angle sum ¥ > 7.

Contradiction!
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.

Assume a map satisfies (G) and (C). It must map a spherical
triangle AABC to a planar triangle Aabc with angle sum ¥ > 7.

Contradiction! (X%, <, =<, £).
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Spherical triangles

Theorem (Area of a spherical triangle)

Let AABC be a triangle (i.e. edges are great circle arcs)
on a sphere of radius r. If ¥ is its internal angle sum, then

0 < Area(AABC) = (X — m)r°.

Assume a map satisfies (G) and (C). It must map a spherical
triangle AABC to a planar triangle Aabc with angle sum ¥ > 7.

Contradiction! (X%, <, =<, £).

Q: Where does the above AST theorem come from?
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ES

Lune = portion between two intersecting great circles and the
antipodal points where they cross.
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A

8
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.

A
Have lunes
with areas:
a+t=2ar?
b+t=2pr?
c+t=2yr
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A behind r]ere, area C

Have lunes
with areas:
a+t=2ar?
b+t=2pr?
c+t=2yr
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A behind r]ere, area C

Have lunes
with areas:
a+t=2ar?
b+t=2pr?
c+t=2yr
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Adding yields: a+b+c+3t=2%r
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A behind r]ere, area C

Have lunes
with areas:
a+t=2ar?
b+t=2pr?
c+t=2yr
Al
Adding yields: a+b+c+3t=2%r

Have hemisphere: a+ b+ c+ t=2nr?
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Understanding the AST theorem

Given a spherical AABC, rotate so that arc AB looks as below.
A behind r]ere, area C

Have lunes
with areas:
a+t=2ar?
b+t=2pr?
c+t=2yr
Al
Adding yields: a+b+c+3t=2%r
Have hemisphere: a+ b+ c+ t=2nr?
Subtract & +2: t= (X —m)r?|
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N. Pick d > 0 small.
Consider all points at a distance d away from N.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N. Pick d > 0 small.
Consider all points at a distance d away from N.

N
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Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N. Pick d > 0 small.
Consider all points at a distance d away from N.
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N. Pick d > 0 small.
Consider all points at a distance d away from N.

N
d
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Euler's proof

Recall (D): Distances are rescaled by the same constant factor A.

Theorem (Euler, 1775)
No map satisfying (D) exists.

Assume such a map W exists. Pick a point in its domain. Using a
rotation, take this to be the north pole N. Pick d > 0 small.
Consider all points at a distance d away from N.

N

length=2zrcos(@)
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Euler's proof - 2

length=27zrcos(¢) 7

length(C) = 27r cos ¢
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Euler's proof - 2

length=27zrcos(¢) 7

length(C) = 27tr cos ¢ = 27rsin (g — qﬁ)
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Euler's proof - 2

length=27zrcos(¢) 7

¢

r

d
length(C) = 27tr cos ¢ = 27rsin (g — qﬁ) = 27rsin <>
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Euler's proof - 2

length=27zrcos(¢) 7

¢

d
length(C) = 27tr cos ¢ = 27rsin (g - qﬁ = 2mrsin <> < 27d,

r

using the fact that sin(x) < x for any x > 0. (Exercise.)
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Euler's proof - 2

length=27zrcos(¢) 7

¢

d
length(C) = 27tr cos ¢ = 27rsin (g - qﬁ = 2mrsin <> < 27d,

r

using the fact that sin(x) < x for any x > 0. (Exercise.)
By (D), W(C) is a planar circle with center W(N),
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Euler's proof - 2

length=27zrcos(¢) 7

¢

r

d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—

By (D), W(C) is a planar circle with center W(N), radius \d,
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Euler's proof - 2

length=27zrcos(¢) 7

¢

d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—

By (D), W(C) is a planar circle with center W(N), radius A\d, so
circumf. 2w Ad.
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Euler's proof - 2

length=27zrcos(¢) 7

¢

d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—

By (D), W(C) is a planar circle with center W(N), radius A\d, so
circumf. 27w A\d. But length(C) < 2wd = length(V(C)) < 2w Ad.
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length=27zrcos(¢) 7

¢

d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—

By (D), W(C) is a planar circle with center W(N), radius A\d, so
circumf. 27w A\d. But length(C) < 2wd = length(V(C)) < 2w Ad.

Contradiction!
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Euler's proof - 2
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d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)
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By (D), W(C) is a planar circle with center W(N), radius A\d, so
circumf. 27w A\d. But length(C) < 2wd = length(V(C)) < 2w Ad.
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length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—
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Euler's proof - 2

length=27zrcos(¢) 7

¢

d
length(C) = 27r cos ¢ = 2rsin (g . qﬁ) — 27rsin <r> < 2nd,

using the fact that sin(x) < x for any x > 0. (Exercise.)

—

By (D), W(C) is a planar circle with center W(N), radius A\d, so
circumf. 27w A\d. But length(C) < 2wd = length(V(C)) < 2w Ad.

Contradiction! (X%, <, =<, #).
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The gnomonic projection
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Gnomonic projection

(project southern hemisphere only)
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Gnomonic projection

(project southern hemisphere only)

This sends (arcs of) great circles to (segments of) lines.
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Great circle arcs map to line segments

unit sphere

z=-1plane

e Fix a great circle C (not equator).
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Great circle arcs map to line segments

V=(v,v,,v;)

unit sphere

z=-1plane

e Fix a great circle C (not equator). It lies on a plane E = v*.
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Great circle arcs map to line segments

V= (V1 A =v3)

unit sphere

a=(X,Y,-1) z=-1plane

e Fix a great circle C (not equator). It lies on a plane E = v*.

e Pick any P on C (in southern hemisphere).
o Line OP lies on E intersects {z = —1} at 3= (X, Y,—1).
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Great circle arcs map to line segments

V= (VI,VZ =v3) .
unit sphere

a=(X,Y,-1) z=-1plane

Fix a great circle C (not equator). It lies on a plane E = v,

Pick any P on C (in southern hemisphere).

Line OP lies on E intersects {z = —1} at = (X, Y, —1).
Have 0 =v-3= v X + wY — v3. Since V is fixed and
(vi,v2) # (0,0) (E is not equatorial), then this is the eqn of a
line in the XY-plane, i.e. {z =—1}.

Dennis The The Mathematics of Maps — Lecture 2 12/20



Great circle arcs map to line segments

V= (V1 A =v3)

unit sphere

z=-1plane

Fix a great circle C (not equator). It lies on a plane E = v,

Pick any P on C (in southern hemisphere).

Line OP lies on E intersects {z = —1} at = (X, Y, —1).
Have 0 =v-3= v X + wY — v3. Since V is fixed and
(vi,v2) # (0,0) (E is not equatorial), then this is the eqn of a
line in the XY-plane, i.e. {z =—1}.
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The gnomonic projection

x = cos(¢) cos(0) -

B . Line OP intersects

P: <y = cos(¢)sin(0) plane at (X, Y, —1) = (=%, ¥ )
z

= sin(¢) 22
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The gnomonic projection

x = cos(¢) cos(0) -

B . Line OP intersects

P: <y =cos(¢)sin(0) . olane at (X, Y, —1) = (=%, —¥, _1).
z = sin(¢) o2

= X = —cot(¢) cos(d), Y = —cot(¢)sin(#). Or, in polar coords:

’lli: R = — cot(¢), @:9‘
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The gnomonic projection

x = cos(¢) cos(0) -

B . Line OP intersects

P: <y =cos(¢)sin(0) . olane at (X, Y, —1) = (=%, —¥, _1).
z = sin(¢) o2

= X = —cot(¢) cos(d), Y = —cot(¢)sin(#). Or, in polar coords:

’lli: R = — cot(¢), @:9‘

Can check that f(¢) = — cot(¢) does NOT satisfy the:
e conformal condition: f/(¢) = f(¢) sec(¢);
@ equi-areal condition: f'(¢)f(¢) = cos(¢).
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Geodesics in the nic m
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Geodesics in the gnomonic map

Angles aren’t preserved, so this is not a good map for navigation!
(Compass bearing changes along a geodesic.)
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Measuring distances on the sphere
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Length of curves on the sphere

Recall P = (x, y, z) = (cos(¢) cos(8), cos(¢) sin(6), sin()).
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Length of curves on the sphere

Recall P = (x, y, z) = (cos(¢) cos(8), cos(¢) sin(6), sin()).
Curve C: P(7), 0 <7 <1 = velocity P'(7), speed |P'(7)|.
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Length of curves on the sphere

Recall P = (x,y, z) = (cos(¢) cos(), cos(¢) sin(8), sin(e)).
Curve C: P(7), 0 <7 <1 = velocity P'(7), speed |P'(7)|.

1 1
length = /0 P(r)\dr = /0 ()2 + co2(6(r))8 (r)2dr
- / \ 462 + cos2(¢)d6?
C
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Length of curves on the sphere

Recall P = (x,y, z) = (cos(¢) cos(), cos(¢) sin(8), sin(e)).
Curve C: P(7), 0 <7 <1 = velocity P'(7), speed |P'(7)|.

1 1
length = /0 P(r)\dr = /0 ()2 + co2(6(r))8 (r)2dr
- / \ 462 + cos2(¢)d6?
C

This d¢? 4 cos?(¢)d6? is the analogue of the arclength element
squared dx? + dy? (from Pythagoras) in the plane.
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Length of curves on the sphere

Recall P = (x, y, z) = (cos(¢) cos(8), cos(¢) sin(6), sin()).
Curve C: P(7), 0 <7 <1 = velocity P'(7), speed |P'(7)|.

1 1
length = /0 P(r)\dr = /0 ()2 + co2(6(r))8 (r)2dr
- / \ 462 + cos2(¢)d6?
C

This d¢? 4 cos?(¢)d6? is the analogue of the arclength element
squared dx? + dy? (from Pythagoras) in the plane.

<£‘«7’(‘a> =1
(e,,¢5)=0

(ey,e,) =cos” (@)

©.9+1);

@9 A4 ©+s9)

Tangent space

at (6,9)
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Geodesic distance

Take two points P, Qona sphere of radius R.

’Q: How to measure the distance d along a geodesic joining them?‘
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Geodesic distance

Take two points P, Qona sphere of radius R.

’Q: How to measure the distance d along a geodesic joining them?‘

Let @ = angle formed by ,5, 5, Q, where 0 = sphere center. Then
P-Q P-Q
cosa = chz ZQ = d = Ra.
PIQI R
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’Q: How to measure the distance d along a geodesic joining them?‘

Let @ = angle formed by ,5, 5, Q, where 0 = sphere center. Then
P-Q P-Q
cosa = chz ZQ = d = Ra.
PIQI R

Given the latitude / longitude of any two points, convert into
radians, get P, Q using the spherical polar coordinate formula.
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P-Q P-Q
cosa = chz ZQ = d = Ra.
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Given the latitude / longitude of any two points, convert into
radians, get P, Q using the spherical polar coordinate formula. On
the Earth, we need the radius R for this calculation.
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Geodesic distance

Take two points P, Qona sphere of radius R.

’Q: How to measure the distance d along a geodesic joining them?‘

Let @ = angle formed by ,5, 5, Q, where 0 = sphere center. Then
P-Q P-Q
cosa = chz ZQ = d = Ra.
PIQI R

Given the latitude / longitude of any two points, convert into
radians, get P, Q using the spherical polar coordinate formula. On
the Earth, we need the radius R for this calculation.

Remarkably, the circumference of the Earth (hence R) was
accurately estimated over 2000 years ago!
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Eratosthenes

Eratosthenes (276-194 B.C.):
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Eratosthenes

Eratosthenes (276-194 B.C.): Need the following ingredients:

1 vertical stick (“gnomon™) 1 camel caravan

Here's the story:
@ He heard of a well in Syene, Egypt that on the summer
solstice (June 21) would reflect the overhead sun at local solar
noon, i.e. when the sun is highest in the sky.
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Eratosthenes

Eratosthenes (276-194 B.C.): Need the following ingredients:

1 vertical stick (“gnomon™) 1 camel caravan

Here's the story:

@ He heard of a well in Syene, Egypt that on the summer
solstice (June 21) would reflect the overhead sun at local solar
noon, i.e. when the sun is highest in the sky.

@ Translation: .

@ He lived in Alexandria, Egypt. There, on June 21 at noon, he
looked down a well and could not see the sun.
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Eratosthenes

Eratosthenes (276-194 B.C.): Need the following ingredients:

1 vertical stick (“gnomon™) 1 camel caravan

Here's the story:

@ He heard of a well in Syene, Egypt that on the summer
solstice (June 21) would reflect the overhead sun at local solar
noon, i.e. when the sun is highest in the sky.

° : .

@ He lived in Alexandria, Egypt. There, on June 21 at noon, he
looked down a well and could not see the sun. Using a
gnomon, he measured the shadow and found the angle of
deviation from the vertical = 7.2° = 5—10(360").
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Circumference of the Earth
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Circumference of the Earth
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@ From camel caravans travelling up and down the Nile, it was
known that d = 5000 stadia. Thus, C = 250,000 stadia.
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@ From camel caravans travelling up and down the Nile, it was
known that d = 5000 stadia. Thus, C = 250,000 stadia.

@ 1 stadion = between 157 m & 185 m. Thus, C is between
39,250 km & 46,250 km. (Pretty good! Actual = 40,075 km.)
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MoMS will continue...

MoMS (Mathematics of Maps Seminar) next week:
@ Thursday, 18 May, 11-12, REALF B302

e Equi-areal maps
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