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Mercator projection
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The Mercator projection (1569)
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The Mercator projection (1569)

@ Importance: Navigation.
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The Mercator projection (1569)

@ Importance: Navigation.
o Conformal map, i.e. angles are preserved.
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The Mercator projection (1569)

@ Importance: Navigation.
o Conformal map, i.e. angles are preserved.
@ Here's a fun little puzzle:
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Rhumb lines

Rhumb line = path of constant compass bearing on the sphere, i.e.
have constant angle with the corresponding parallel & meridian.
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Rhumb lines

Rhumb line = path of constant compass bearing on the sphere, i.e.
have constant angle with the corresponding parallel & meridian.

parallels of latitude — horizontal lines
meridians of longitude > vertical lines
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Rhumb lines

Rhumb line = path of constant compass bearing on the sphere, i.e.
have constant angle with the corresponding parallel & meridian.

parallels of latitude — horizontal lines
meridians of longitude > vertical lines

The last one makes the Mercator map useful for navigation.
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Mercator map formula

For a map ‘ V: X=0,Y=g() ‘ we calculated scale factors:

o0y .o
B W(B)
o " ¥4)
o ors @a@)  Grase)
- L(V(As)) - L(V(BY)
= | —_— = )\ — I — = = .
o= I Tigay 9 An=lin gy = le(@)
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Mercator map formula

For a map ‘ V: X=0,Y=g() ‘ we calculated scale factors:

@o+0 (0,8{p+1))
P v wa)
: = PA)
@) 4 ©+sd) ©.5) (©+5,8(9)) .

L Lw(AY) _ o LV(B))
Ap = S"_%W =sec(9), Am= l!'_%m

Conformality means I:'

= 1g'(¢)I-
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Mercator map formula

For a map ‘ V: X=0,Y=g() ‘ we calculated scale factors:

@o+0 (0,8{p+1))
P v wa)
: = PA)
@) 4 ©+sd) ©.5) (©+5,8(9)) .

o L(Y(As) o Lv(By)
Ap = S"_%W =sec(¢), Am= '-!I—%W = |g'(9)I-

Conformality means I:' Requiring g(0) =0, g’(¢) > 0,
g'(¢) = sec(¢)
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Mercator map formula

For a map ‘ V: X=0,Y=g() ‘ we calculated scale factors:

©+0) .oy
B w(B)
] " ¥4
o s @&@)  @res@)
- L(W(AS)) - L(V(BY) _
o= I Tigay 9 An=lin gy = le(@)

Conformality means I:' Requiring g(0) =0, g’(¢) > 0,
g'(¢) =sec(p) = g(¢)=In(seco +tang).
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Mercator map formula

For a map ‘ V: X=0,Y=g() ‘ we calculated scale factors

6,0+1) ©.glo+1)
N Eri=i , )
& v
) (g¢) A (9+5 ) 8,5(9) (0+5,8(9)

L(W(As L(Y(B, ,
o= limg D —sec(0), = i HHED /o).
Conformality means I:' Requiring g(0) =0, g’(¢) > 0,

g'(¢) = sec(¢)

=

g(¢) = In(sec ¢ + tan ¢).

X=0, <0<
\UMZ .
Y =In(seco +tan¢), -5 <<%
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Distortion in the Mercator projection
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Distance along a rhumb line

’Q: How can we find the distance along a rhumb Iine?‘

Rhumb line — line segment ‘X(t) =at+b,Y(t)=ct+d ‘
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Distance along a rhumb line

’Q: How can we find the distance along a rhumb Iine?‘

uy
R 5\0 , }{3\ o
2""‘ % | ’ﬁr“\ﬂf'\.,‘_‘h

L’?ﬁ“ AN |

ot ] ,i £IRa .@ : VA
: \% / (J_“"v = »ﬁ”j’”/

Rhumb line — line segment ‘X(t) =at+b,Y(t)=ct+d ‘

For a path (¢(t),0(t)), 0 < t <1 on S2, we saw in Lecture 2 a

formula for its length
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Distance along a rhumb line

’Q: How can we find the distance along a rhumb Iine?‘

it T%%“ B ke »

02T | | | g

| o GO s [t

= QP e

T8 2 \’- ] ;,at_“ ,

‘7’}F\ ‘:‘ - / ;4 . %a '_, l
\SE: ,/"‘: }‘E%u . /jw/

r \\@”9“ RINDR AP

Pl

Rhumb line — line segment ‘X(t) =at+b,Y(t)=ct+d ‘

For a path (¢(t),0(t)), 0 < t <1 on S2, we saw in Lecture 2 a

formula for its length

Need ¢, 6 as functions of X, Y/, i.e. inverse Mercator map W,T/,l.
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Inverse of the Mercator map

X=6
Y = In(sec(¢) + tan(¢))

Given Wy, : { , what is \Il,\_/,l?
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Inverse of the Mercator map

X=46
Given Wy, : , what is \Il,\_/,l?
Y = In(sec(¢) + tan(¢))
Using some trig. trickery... e¥ = sec(¢) + tan(¢) = 1:;5;&(;)75) =
l1—cos(¢p+%) 2sin?(241) . ¢,
5i"(¢+§)2 o 2sin(%+%)2cos€%+%) o tan(2 * 4)'

Dennis The The Mathematics of Maps — Lecture 4 8/29



Inverse of the Mercator map

X=46
Given Wy, : , what is \Il,\_/,l?

Y = In(sec(¢) + tan(¢))
Using some trig. trickery... e¥ = sec(¢) + tan(¢) = 1:;5;&(;)75) =
1—cos(p+7) 25in2(%+1) . ¢ T

sin(¢+5) 2sin(%+%)cos€%+%) o tan(2 * 4)' Thus,
wol. =X
M ¢ =2arctan(e”) —
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Distance along a rhumb line - 2

Rhumb {X(t) =at+b

line: Y(t)=ct+d
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Distance along a rhumb line - 2

Rhumb {X(t) =at+b

line: Y(t)=ct+d
2eYc 2e”
/ /
= ¢ = {527 0" =a, cos(¢)= {2V
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Distance along a rhumb line - 2

Rhumb {X(t) =at+b

line: Y(t)=ct+d

2e¥c y 2eY

/ _ —
= QZ) = m, 0 = a, COS(¢) = m

L—/ \/¢’ + cos2(¢)(0")%dt = \/32+c2/
2va? + c? c+d)

(arctan(e

Ty

— arctan(e9)) |
c
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Distance along a rhumb line - 2

Rhumb {X(t) =at+b

line: Y(t)=ct+d

2e¥c y 2eY

/ _ —
= QZ) = m, 0 = a, COS(¢) = m

L—/ \/¢’ + cos2(¢)(0")%dt = \/a2+c2/

Ty
24/ 32 2
=..= a7~C(arctan(e“d)farctan(ed)).
c

(When ¢ — 0, we recover L = % = cos(¢).)
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Distance along a rhumb line - 2

Rhumb {X(t) =at+b

line: Y(t)=ct+d

2e¥c , 2eY

!/ _ _
= QZ) = m, 0 = a, COS(¢) = m

L—/ \/¢’ + cos2(¢)(0")%dt = \/a2+c2/

Ty
24/ 32 2
=..= a7~C(arctan(e“d)farctan(ed)).
c

(When ¢ — 0, we recover L = = cos(¢).) This formula is

1+62d
valid on the unit sphere S?. On a sphere of radius R, this length

would be rescaled by R.

Dennis The The Mathematics of Maps — Lecture 4 9/29



Stereographic projection
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Stereographic projection (from north pole)
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Stereographic projection (from north pole)

parallels of latitude — circles centred at 0
meridians of longitude +— rays emanating from 0
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Stereographic projection (from north pole)

parallels of latitude — circles centred at 0
meridians of longitude +— rays emanating from 0

(Note: Viewed from above, East ~~ West is a rotation in the map.)
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Geometric construction

On S2?, put a light source at the , and cast the shadow
of P € S? onto the plane tangent at the south pole.

v (0,0,1)

x,y,2)X
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Geometric construction

On S2?, put a light source at the , and cast the shadow
of P € S? onto the plane tangent at the south pole.

v (0,0,1)

x,y,2)X

0,0,-1) b

Line NP intersects z = —1 plane at Q: (2, 22, —1).

1-z71-2z?
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Geometric construction

On S2?, put a light source at the , and cast the shadow
of P € S? onto the plane tangent at the south pole.

v (0,0,1)

x.y,2X
0,0,-1) a
Line NP intersects z = —1 plane at Q: (12%2, %, —1). Hence,
M X:12:<Z Y:12j/z
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Polar coordinate formula

Use spherical polar coords (x,y, z) = (cos ¢ cos 6, cos ¢ sin 8, sin @)
to write Wy.
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Polar coordinate formula

Use spherical polar coords (x, y, z) = (cos ¢ cos @, cos ¢ sin 8, sin @)

. 2 [4 2 in6
to write Wy. Then X = 29=gcosl -y — 2cos0sind 5

= R:\/W: 2co§¢ :2cosq§(1.+2sm¢)
1—sing 1—sin2¢
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Polar coordinate formula

Use spherical polar coords (x, y, z) = (cos ¢ cos @, cos ¢ sin 8, sin @)

. 2 [4 2 in6
to write Wy. Then X = 29=gcosl -y — 2cos0sind 5

= R:\/W: 2co§¢ :2cosq§(1.+2sm¢)
1—sing 1—sin2¢
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Polar coordinate formula

Use spherical polar coords (x,y,z) = (COquCOSG,_cosquin 9, sin ¢)
to write Wy. Then X = 2€0sdcost =y 2cosesing oy

1-sin¢ 1sing
2 2 1 .

= R = \/W _ co%(b _ 2cos o( -_5_25.” ?)
1—sing 1—sin2¢

Towards north pole, lim R — oo. (High distortion.)
oz

Towards south pole, lim R — 0.
o3+
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Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.
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Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

For a map ‘ V: R=1f(¢), ©=16 ‘ we calculated scale factors

©0.9+1)
length=¢

B gth= v (f ¢),é';.‘§):\/ (f(@+1),6)
length= scos(¢) — wia) w8

ké,¢).‘v A 0+s9) @O

|(Use polar coorﬁinates above.)

_ o LV(AS)) _ o LV(BY)
o=t ) = O30, =i R
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Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

For a map ‘ V: R=1f(¢), ©=16 ‘ we calculated scale factors

ength=¢ v f ¢)’9+s)\/ (f(¢p+1),0)
length= s cos(¢) — W(A,) g ¥(B)
(3“¢)‘ A (9‘+ 5,0) ‘ . (f(¢),g)

|(Use polar coorﬁinates above.)

L(W(A, . L(W(B ,
o= lim S — ro)secto), an = fim S 7o)
Conformality means . For f(¢) = 2(sec ¢ + tan ¢), we

can verify this is true. (Note f'(¢) > 0on (-73,%).)
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Distortion in the stereographic projection
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Circles are mapped to ‘“circles”

Definition

A circle on §? is the intersection of a plane I in R3 with S2.
A in the plane is either an ordinary circle or a line.
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Circles are mapped to ‘“circles”

Definition

A circle on §? is the intersection of a plane I in R3 with S2.
A in the plane is either an ordinary circle or a line.

Any circle on S? is mapped by Wy to a “circle” in the plane.
y
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Circles are mapped to ‘“circles”

Definition

A circle on §? is the intersection of a plane I in R3 with S2.
A in the plane is either an ordinary circle or a line.

Any circle on 52 is mapped by WN to a “circle” in the plane.
y
4:"\
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Stereographic projection is circle preserving

Clnvert Wy o X = 25 y — 2

—z
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Stereographic projection is circle preserving

:Invert Wy - X:f% Y:%toget

z’

P (xy.2) = 4x 4y X2+ Y24\ o
=\X,y,Z)= X2+Y2+4’X2+Y2+4’X2+Y2+4 ’
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Stereographic projection is circle preserving

:Invert Wy - X:f% Y:%toget

z’

P ) 4X 4y X2+Y2-4 X
=\X,y,Z)= X2+Y2+4’X2+Y2+4’X2+Y2+4 ’

If P € NN S?, then ax + by + cz = d.

Dennis The The Mathematics of Maps — Lecture 4 17/29



Stereographic projection is circle preserving

:Invert Wy - X:f% Y:%toget

z’

P ) 4X 4y X2+Y2-4 X
=\X,y,Z)= X2+Y2+4’X2+Y2+4’X2+Y2+4 ’

If P € M N S?, then ax + by + cz = d. Plug above in to get

4aX +bY) + (X2 + Y2 —4)=d(X? + Y2 +4)
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Stereographic projection is circle preserving

:Invert Wy - X:f% Y:%toget

z’

P ) 4X 4y X2+Y2-4 X
=\X,y,Z)= X2+Y2+4’X2+Y2+4’X2+Y2+4 ’

If P € M N S?, then ax + by + cz = d. Plug above in to get
4(aX +bY)+ (X2 + Y2 —4)=d(X>+ Y? +4)

This is the eqn of a circle if ¢ # d and a line if ¢ = d.
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Circles images
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From Mercator to stereographic projection
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A simple complex relationship

Identify the plane with C, i.e. Z = X +iY = Re’® and similarly
for tilded variables.
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A simple complex relationship
Identify the plane with C, i.e. Z =X 4 iY = Re’® and similarly

for tilded variables.

X=6
¥y, :{ Y=1n(sec¢+tanV Y{

C——F——C

=2(sec¢+tang)
=6

@ =
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A simple complex relationship
Identify the plane with C, i.e. Z =X 4 iY = Re’® and similarly

for tilded variables.

Y] y- 1n(scc¢+tanV \

F

2(sec¢ +tang)

@l Nt
||

The function F is described in real coordinates as

R=2e"Y 6=X
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A simple complex relationship
Identify the plane with C, i.e. Z =X 4 iY = Re’® and similarly

for tilded variables.

Y] y- 1n(scc¢+tanV \

2(sec¢ +tang)

@l Nt
||

F
The function F is described in real coordinates as
R=2¢Y, 6=X
Using the exponential, we have
7 — Re i® _ 2eY X — 9gi(X=iY) _ 0giZ
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Complex differentiable functions

Given F : C — C, define C-differentiability via the usual formula
F(a+ h) — F(a)
- .

Fa) = fm,
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Complex differentiable functions

Given F : C — C, define C-differentiability via the usual formula
F(a+ h) — F(a)
h
R-differentiability of F considered as a map R? — R?.

F'(a) = lim . BUT, this is much stronger than
h—0
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Complex differentiable functions

Given F : C — C, define C-differentiability via the usual formula
F(a+ h) — F(a)
h
R-differentiability of F considered as a map R? — R?.

F'(a) = lim . BUT, this is much stronger than
h—0
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Complex differentiable functions

Given F : C — C, define C-differentiability via the usual formula
F(a+ h) — F(a)
h
R-differentiability of F considered as a map R? — R?.

. BUT, this is much stronger than

Fa) = Jm,

The Mercator-to-stereographic map is conformal and decomposes:

/) /a =Tt T

-

z iz 2¢°
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New conformal maps from old

Given a conformal map W from the sphere to the plane, we can use
a C-differentiable F (with F’ # 0) to produce a new map W:
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https://www.youtube.com/watch?v=JX3VmDgiFnY

New conformal maps from old

Given a conformal map W from the sphere to the plane, we can use
a C-differentiable F (with F’ # 0) to produce a new map W:

(CV VC

F

Mobius transformations F(z) = Z’zz—ig form a wonderful class of

C-differentiable (hence conformal) maps.
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A family of conformal maps

Here's another way from Mercator to stereographic projection:
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http://www.maths.usyd.edu.au/u/daners/publ/abstracts/mercator/

Conic conformal projections

: Gave a family of conic conformal map projections
with Mercator and stereographic projections as limiting cases.
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Conic conformal projections

: Gave a family of conic conformal map projections
with Mercator and stereographic projections as limiting cases.

vertex at oo A
T / X
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Conic conformal projections

: Gave a family of conic conformal map projections
with Mercator and stereographic projections as limiting cases.

vertex at oo A
+

/

/
RN
/ / L@LB\COt ¢0

e e

Also allow ¢g € [~7,0), i.e. cone vertex appears below the sphere.

¢o = —7 ~ stereographic projection from the north pole.
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Conic conformal projections

: Gave a family of conic conformal map projections
with Mercator and stereographic projections as limiting cases.

vertex at oo A
+

/

/
RN
/ / L@LB\COt ¢0

e e

Also allow ¢g € [~7,0), i.e. cone vertex appears below the sphere.

¢o = —7 ~ stereographic projection from the north pole.

Let's cut open the cone and flatten it. ’ How to specify the map?‘
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General conic projections

Y,

©.p,)

Cone angle

f =277
or 7e(0,1] X = in(76
d o Ve p(¢)sin(70)

Y = po — p(¢) cos(70)

PO =p,

/ 0.0 X
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General conic projections

Y,

©.p,)

Cone angle
=277
for re(,1]

) Ve {X = p(¢)sin(70)
Y = po — p(¢) cos(70)

PO =p,

/ 0.0 X

e Meridians: uniformly spaced rays emanating from (0, po).
Thus, 8 = 0 meridian is along the Y-axis.
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General conic projections

Y,

©.p,)

Cone angle
f =2rT
or 7e(0,1] X = i
’ @) Ve p(@)sin(79)

Y = po — p(¢) cos(70)

P@)=p,

/ (O X

e Meridians: uniformly spaced rays emanating from (0, po).
Thus, 8 = 0 meridian is along the Y-axis.

e Parallels: Circular arc centred at (0, pg) of radius p(¢) (for
latitude ¢). Pick ¢g such that p(¢o) = po.
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General conic projections

Y,

©.p,)

Cone angle
f =2rT
or 7e(0,1] X = i
’ @) Ve p(@)sin(79)

Y = po — p(¢) cos(70)

P@)=p,

/ (O X

e Meridians: uniformly spaced rays emanating from (0, po).
Thus, 8 = 0 meridian is along the Y-axis.

e Parallels: Circular arc centred at (0, pg) of radius p(¢) (for
latitude ¢). Pick ¢g such that p(¢o) = po.

@ Require p(3) =0 and p'(¢) < 0.
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General conic conformal projections

Under W, meridians and parallels are orthogonal.
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General conic conformal projections

Under V¢, meridians and parallels are orthogonal. Scale factors:

P(0)3z(277)

o= lim POECI ) e
= i [AEEDZ 2O ) — (o)
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General conic conformal projections

Under V¢, meridians and parallels are orthogonal. Scale factors:

P(0)3z(277)

o= i POZED) e
= i [AEEDZ 2O ) — (o)

Conformality |:| yields the DE:

p'(¢) = —p(p)Tsec(d),  p(¢o) = po-
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General conic conformal projections

Under V¢, meridians and parallels are orthogonal. Scale factors:

P(0)3z(277)

o= i POZED) e
= i [AEEDZ 2O ) — (o)

Conformality |:| yields the DE:
p'(¢) = —p(¢)Tsec(d),  p(bo) = po.

Solving yields

o(6) = po <seC(/)0 + tan (/>0>T .

sec ¢ + tan ¢
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General conic conformal projections

Under V¢, meridians and parallels are orthogonal. Scale factors:

Ap = lim % = p(¢)7 sec(¢)

p(¢ +t) — p()

t

Conformality |:| yields the DE:
p'(¢) = —p(¢)Tsec(d),  p(bo) = po.

Solving yields

Am = lim
m t—0

\ — 10(6)] = —p(9)

p(¢) = po <

Still have several parameters to play with: .

Dennis The The Mathematics of Maps — Lecture 4 26/29

sec g + tan ¢\ "
seco + tan¢ '




Conical maps

Cone angle
=27
for re(,1)

Additional requirements:
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Conical maps

Cone angle
=27
for re(,1)

Additional requirements:
@ Parallel at latitude ¢q is a standard parallel, i.e. length is

preserved.
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Conical maps

Cone angle
=27
for re(,1)

Additional requirements:
@ Parallel at latitude ¢q is a standard parallel, i.e. length is

cos g
PO

preserved. 27 cos ¢g = 2mTpg, SO | T =
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Conical maps

Cone angle
=27
for re(,1)

Additional requirements:
@ Parallel at latitude ¢q is a standard parallel, i.e. length is

cos g
PO

preserved. 27 cos ¢g = 2mTpg, SO | T =

o Cone tangential to sphere: | pg = cot ¢ |.

Dennis The The Mathematics of Maps — Lecture 4 27/29



Conical maps

Cone angle
=27
for re(,1)

Additional requirements:
@ Parallel at latitude ¢q is a standard parallel, i.e. length is

cos g
PO

preserved. 27 cos ¢g = 2mTpg, SO | T =

o Cone tangential to sphere: | pg = cot ¢ |.

=
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The conic maps V¢ have the following limiting cases:
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The conic maps V¢ have the following limiting cases:
@ ¢g — 0: Mercator projection V.
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The conic maps V¢ have the following limiting cases:
@ ¢g — 0: Mercator projection V.
° ¢o— 5 : p(o) — m Get W, rotated 5 clockwise.
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The conic maps V¢ have the following limiting cases:
@ ¢g — 0: Mercator projection V.
° ¢o— 5 : p(o) — m Get W, rotated 5 clockwise.
® ¢o— —37: p(¢) > —2(sec ¢ + tan @). Get Wy, rotated 3
clockwise, but then reflected in the X-axis.
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The conic maps V¢ have the following limiting cases:
@ ¢g — 0: Mercator projection V.
° ¢o— 5 : p(o) — m Get W, rotated 5 clockwise.
® ¢o— —37: p(¢) > —2(sec ¢ + tan @). Get Wy, rotated 3
clockwise, but then reflected in the X-axis. (Recall: complex

conjugation and direction was earlier.)
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Broader perspective on these lectures

’Q: Given two spaces with some structure, are they equivalent?‘
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The sphere and the plane are

° equivalent;
e symplectically equivalent (This refers to “area” in dim 2);
° equivalent.

They are not metrically equivalent.
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’Q: Given two spaces with some structure, are they equivalent?‘

The sphere and the plane are

° equivalent;
e symplectically equivalent (This refers to “area” in dim 2);
° equivalent.

They are not metrically equivalent. Have Gaussian curvature x that
is intrinsic and invariant under isometries ( ).
= )

J{ | A/

Positive Curvature

Zero Curvature

Negative Curvature
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Broader perspective on these lectures

’Q: Given two spaces with some structure, are they equivalent?‘

The sphere and the plane are

° equivalent;

e symplectically equivalent (This refers to “area” in dim 2);

° equivalent.
They are not metrically equivalent. Have Gaussian curvature x that
is intrinsic and invariant under isometries ( ).

Triangle angles add up to Triangle angles add up to Triangle angles add up to
less than 180 exactly 180° more than 180

T )
AN/

Negative Curvature Zero Curvature Positive Curvature

A cylinder is metrically equivalent to the plane (also geodesically,
symplectically, conformally), i.e.
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Broader perspective on these lectures

’Q: Given two spaces with some structure, are they equivalent?‘

The sphere and the plane are

° equivalent;
e symplectically equivalent (This refers to “area” in dim 2);
° equivalent.

They are not metrically equivalent. Have Gaussian curvature x that
is intrinsic and invariant under isometries ( ).

Triangle angles add up to Triangle angles add up to Triangle angles add up to
less than 180 exactly 180° more than 180

. N

~—
/

AN/

— XJ |

Negative Curvature Zero Curvature Positive Curvature

A cylinder is metrically equivalent to the plane (also geodesically,
symplectically, conformally), i.e.

Higher dim? Different structures? ~- | Differential geometry!
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