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C-class ODE

In a short paper in 1938, Cartan gave the following definition:

“A given class of ODE u(n+1) = f (t, u, u′, ..., u(n)) will be said
to be a C-class if there exists an infinite group (in the sense of
Lie) G transforming eqns of the class into eqns of the class
and such that the differential invariants with respect to G of
an eqn of the class be first integrals of the eqn.”

Here, G is a prescribed Lie transformation (pseudo-)group, e.g.
contact transformations C or point transformations P. Moreover,
Cartan gave two examples of C-classes amongst:

1 scalar 3rd order ODE up to C;
2 scalar 2nd order ODE up to P.

Other studies: Bryant (1991), Grossman (2000).

GOAL: Identify C-classes for higher-order ODE (up to C).
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Why study C-class ODE?

Various classes of ODE E (up to G) admit an equiv. descrip.
via a canonical Cartan geometry (G → E , ω) of type (G ,P).

Canonical Cartan connections ω are obtained using only linear
algebra and differentiation.

Diff. inv. arise from the components of the curvature κ of ω
(and its covariant derivatives).

If all differential invariants are first integrals, and there are
sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.

N.B. Existence of Cartan connections is not guaranteed for arb. G.
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Some results

Consider (n + 1)-st order ODE on m ≥ 1 dep. vars, up to C.

m = 1, n = 1: no invariants

m = 1, n = 2: scalar 3rd order  “parabolic geometry”

m ≥ 2, n = 1: systems of 2nd order  “parabolic geometry”

Theorem

Let n,m ≥ 1 except (n,m) = (1, 1). If an ODE is Wilczynski-flat,
then it is of C-class.

The generalized Wilczynski invariants are defined via the
linearization of a given ODE.

Corollary

An ODE with trivializable linearization is of C-class.

Rmk: Wilczynski-flat ODE inherit a natural geometric structure on
their soln space, e.g. conformal structure when (m, n) = (1, 2).
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A non-flat C-class example

u(n+1) − n + 1

n

(u(n))2

u(n−1)
= 0, n ≥ 3.

Given a soln u, let a := u(n)

u(n−1) . The linearization at u is:

`u[v ] := v (n+1) − 2(n + 1)

n
av (n) − n + 1

n
a2v (n−1) = 0.

We have a′ = a2

n , so ( 1
a )′ = − 1

n , ( 1
a2 )′ = − 2

na , and ( 1
a2 )′′ = 2

n2 . Let

ṽ := v
a2 , so ṽ (n+1) = 1

a2 `u[v ] = 0, i.e. trivializable linearization.

∴ Given ODE is of C-class.
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Some non-flat C-class systems examples

Let u have m components. The following are C-class examples:

The equation for circles in Euclidean space

u′′′ = 3u′′
〈u′,u′′〉

1 + 〈u′,u′〉

is Wilczynski-flat (Medvedev 2011).

u(n+1) = f, where fi =

{
0, i 6= m;

(u
(n)
1 )2, i = m

has trivializable linearization.
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From ODE to filtered manifolds

Jn+1(R,R): (t, u0, u1, u2, ..., un+1), contact system:

〈du0 − u1dt, ..., dun − un+1dt〉.

ODE E ⊂ Jn+1(R,R), un+1 = f (t, u0, ..., un). Get rank 2
distribution D on E with a splitting D = E ⊕ F into line fields:

E is spanned by d
dt := ∂t + u1∂u0 + u2∂u1 + ...+ f ∂un

F is spanned by ∂un .

Weak der. flag: D =: T−1E ⊂ T−2E ⊂ ... ⊂ TE . Symbol alg. m:[
d

dt
, ∂ui+1

]
= ∂ui mod T−(n−i)E .

Splitting  G0 ⊂ Autgr (m). Get “filtered G0-structure of type m”:

d
dt

∂un∂un−1∂u1∂u0

· · ·
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Homogeneous models

The contact sym alg of u(n+1) = 0 (order ≥ 4) leads to
G = GL2 nVn, where Vn

∼= SnR2, and P = LT2 in red below.

· · ·

X H, I Y

Special (parabolic) cases:

order = 3 order = 2 (point transf.)

X X

g = sp4 g = sl3
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Cartan connections

A Cartan geometry (G → M, ω) of type (G ,P) consists of:

(right) principal P-bundle G → M

Cartan connection ω : TG → g, i.e.

ωu : TuG → g is a linear isomorphism, ∀u ∈ G;
(rp)∗ω = Adp−1 ◦ ω, ∀p ∈ P;

ω(Ã) = A, ∀A ∈ p, where Ãu = d
dε

∣∣
ε=0

u exp(εA).

Curvature: K = dω + 1
2 [ω, ω] ∈ Ω2(G; g). This is horizontal and

completely obstructs flatness, i.e. local equiv to (G → G/P, ωG ).

Curv. fcn: κ : G →
∧2(g/p)∗ ⊗ g, κ(x , y) = K (ω−1(x), ω−1(y)).

TM = G ×P (g/p). P-inv. data on g/p  geo. str. on TM.

Need normalization conditions on K to get an equivalence of
categories with underlying structures on M,

e.g. Riem. geom. ↔ Cartan geom. of type (E(n),O(n))
with im(κ) ⊂

∧2(g/p)∗ ⊗ p (torsion-free).
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Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections (G → E , ω) of type (G ,P) exist for:

1 scalar ODE of order ≥ 3 wrt C; order 2 wrt P;

2 systems of ODE of order ≥ 2 wrt P.

The solution space S of the ODE E corresponds to the space of
integral curves in E of the line field E , i.e. S ∼= E/E .

Does (G → E , ω) of type (G ,P) descend to a Cartan geometry
(G → S, ω) of type (G ,Q)? (Yes, provided iXκ = 0.)

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies iXκ = 0.

Parabolic analogy: Correspondence and twistor spaces (Čap, 2005).
Here, it is sufficient to test harmonic curvature κH .
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Example 1: scalar 3rd order ODE

For y ′′′ = f (x , y , y ′, y ′′), have the relative C-invariants:

I1 = Wünschmann invariant, I2 = fy ′′y ′′y ′′y ′′

These comprise κH .

Geometric interpretation:

I2 = 0: Get a 3-dim contact projective structure on E/F ;

I1 = 0: Get a 3-dim conf. str. on S ∼= E/E (C-class).

I2 = 0 I1 = 0
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Example 2: scalar 2nd order ODE

For y ′′ = f (x , y , y ′), have relative P-invariants (Tresse 1896):

I1 = complicated, I2 = fy ′y ′y ′y ′ .

These comprise κH .

Geometric interpretation:

I2 = 0: geodesic eqn for a 2-dim projective connection.

I1 = 0: dual 2nd order ODE is a geodesic eqn (C-class).

I2 = 0 I1 = 0
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Model fibration for higher-order ODE

· · ·

X

ODE E up to C

↓

· · ·

Solution space S is equipped
with a GL2-structure

(ODE systems: Segré structure modelled
on Seg(νn(P1)× Pm−1) ↪→ P(Vn ⊗ Rm))
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Facts from parabolic geometry theory

Let (G → M, ω) be of type (G ,P), where g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+.

Via Killing form, κ : G →
∧2(g/p)∗ ⊗ g ∼=

∧2 p+ ⊗ g.

Have a homology differential ∂∗ on
∧2 p+ ⊗ g. Say ω is regular if

im(κ) lies in positive hom.; it is normal if ∂∗κ = 0.

Harmonic curvature κH = κ mod im(∂∗)

Kostant: As g0-modules,
∧2 g∗− ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

 ker(∂∗)
im(∂∗)

∼= ker(�) ∼= ker(∂)
im(∂) =: H2(g−, g).
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Higher-order ODE (non-parabolic)

Recall g = gl2 nVn.

Can introduce a natural 〈·, ·〉 on g s.t.
∀A,B ∈ gl2 and ∀u, v ∈ Vn,

〈A,B〉 = tr(A>B), 〈Au, v〉 = 〈u,A>v〉.
Extend to C ∗(g, g). Have Lie alg cohom diff ∂g on C ∗(g, g).
Define ∂∗ by

〈∂gϕ,ψ〉 = 〈ϕ, ∂∗ψ〉.
Check: Get a P-equivariant map ∂∗ : Λ2(g/p)∗ ⊗ g→ (g/p)∗ ⊗ g.

Normalization condition: N = ker(∂∗) .

∃! regular / normal (∂∗κ = 0) Cartan connection assoc. to ODE .

Define essential curvature κE = κ mod im(∂∗) ∈ ker(∂∗)
im(∂∗) .

(Can check that ker(∂∗)
im(∂∗) completely reducible.) If iXκE = 0, we say

the ODE is Wilczynski-flat.

Does iXκE = 0 imply iXκ = 0?
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Higher-order ODE (non-parabolic)

Recall g = gl2 nVn. Can introduce a natural 〈·, ·〉 on g s.t.
∀A,B ∈ gl2 and ∀u, v ∈ Vn,

〈A,B〉 = tr(A>B), 〈Au, v〉 = 〈u,A>v〉.
Extend to C ∗(g, g). Have Lie alg cohom diff ∂g on C ∗(g, g).
Define ∂∗ by

〈∂gϕ,ψ〉 = 〈ϕ, ∂∗ψ〉.
Check: Get a P-equivariant map ∂∗ : Λ2(g/p)∗ ⊗ g→ (g/p)∗ ⊗ g.
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C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

1 scalar ODE of order ≥ 3 wrt C; order 2 wrt P;

2 systems of ODE of order ≥ 2 wrt P.

Proof sketch.

Let E = {φ ∈ ker(∂∗) ⊂
∧2(g/p)∗ ⊗ g : iXφ = 0}.

Let dω = covariant exterior derivative. (Bianchi: dωK = 0.)

Prop: If iXκE = 0 and ϕ ∈ Ω2
hor (G, g)P is in E, then ∂∗dωϕ ∈ E.

Write K = K1 + K2, with Ki ∈ Ω2
hor (G, g)P , K1 ∈ E, K2 = ∂∗ψ,

hom. of ψ is ≥ ` > 0. (∃ for ` = 1 by Wilczynski-flatness.)

Bianchi ⇒ ∂∗dωK2 = −∂∗dωK1 ∈ E.

Focus on hom. `-component to correct K1 and K2. Get new
K2 = ∂∗ψ with ψ of hom. ≥ `+ 1. Iterate until K2 = 0.
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Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

1 scalar ODE of order ≥ 3 wrt C; order 2 wrt P;

2 systems of ODE of order ≥ 2 wrt P.

Proof sketch.

Let E = {φ ∈ ker(∂∗) ⊂
∧2(g/p)∗ ⊗ g : iXφ = 0}.

Let dω = covariant exterior derivative. (Bianchi: dωK = 0.)

Prop: If iXκE = 0 and ϕ ∈ Ω2
hor (G, g)P is in E, then ∂∗dωϕ ∈ E.

Write K = K1 + K2, with Ki ∈ Ω2
hor (G, g)P , K1 ∈ E, K2 = ∂∗ψ,

hom. of ψ is ≥ ` > 0. (∃ for ` = 1 by Wilczynski-flatness.)

Bianchi ⇒ ∂∗dωK2 = −∂∗dωK1 ∈ E.

Focus on hom. `-component to correct K1 and K2. Get new
K2 = ∂∗ψ with ψ of hom. ≥ `+ 1. Iterate until K2 = 0.

Dennis The On C-class equations 16/18



C-classes for higher order ODE
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Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2
less than the max, except for 5th and 7th order (where it is 1 less).

For the exceptions, the unique submax sym models are:

9(u′′)2u(5) − 45u′′u′′′u′′′′ + 40(u′′′)3 = 0;

10(u′′′)3u(7)−70(u′′′)2u(4)u(6)−49(u′′′)2(u(5))2+280u′′′(u(4))2u(5)−175(u(4))4 = 0.

These models are homogeneous and have contact sym alg A2
∼= sl3

and C2
∼= sp4. For both, isotropy is a “principal sl2”. Decompose

as sl2-modules and define sl2-equiv. “extension functor”: e.g.

s := sl3 = sl2 ⊕ V4
ι
↪→ g = gl2 nV4.

Curvature κ(x , y) = ι([x , y ])− [ι(x), ι(y)] is normal and iXκ = 0.
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A G2 non-example

s := Lie(G2) = sl2⊕V10
ι
↪→ g = gl2nV10

 11th order ODE?

ODE  “filtered G0-structures of type m”, but the latter category
is larger. For scalar ODE, “strong = weak” (derived flags) is
nec./suff., i.e. [T−iE ,T−jE ] = T−min(i ,j)−1E .

Since [sα1+α2 , s2α1+α2 ] = s3α1+2α2 , i.e. (−8,−9)→ −11, this does
not come from an (11th order) ODE.
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