On C-class equations

Dennis The*

Department of Mathematics \& Statistics
University of Troms \varnothing
(joint work with Andreas Čap \& Boris Doubrov)
October 4, 2017
*partially supported by project M1884-N35 of the Austrian Science Fund

C-class ODE

In a short paper in 1938, Cartan gave the following definition:
"A given class of $O D E u^{(n+1)}=f\left(t, u, u^{\prime}, \ldots, u^{(n)}\right)$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

C-class ODE

In a short paper in 1938, Cartan gave the following definition:
"A given class of ODE $u^{(n+1)}=f\left(t, u, u^{\prime}, \ldots, u^{(n)}\right)$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{Z}.

C-class ODE

In a short paper in 1938, Cartan gave the following definition:
"A given class of ODE $u^{(n+1)}=f\left(t, u, u^{\prime}, \ldots, u^{(n)}\right)$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{Z}. Moreover, Cartan gave two examples of C-classes amongst:
(1) scalar 3 rd order ODE up to \mathfrak{C};
(2) scalar 2nd order ODE up to \mathfrak{P}.

C-class ODE

In a short paper in 1938, Cartan gave the following definition:
"A given class of ODE $u^{(n+1)}=f\left(t, u, u^{\prime}, \ldots, u^{(n)}\right)$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{Z}. Moreover, Cartan gave two examples of C-classes amongst:
(1) scalar 3rd order ODE up to \mathfrak{C};
(2) scalar 2nd order ODE up to \mathfrak{P}.

Other studies: Bryant (1991), Grossman (2000).

C-class ODE

In a short paper in 1938, Cartan gave the following definition:
"A given class of ODE $u^{(n+1)}=f\left(t, u, u^{\prime}, \ldots, u^{(n)}\right)$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{Z}. Moreover, Cartan gave two examples of C-classes amongst:
(1) scalar 3 rd order ODE up to \mathfrak{C};
(2) scalar 2nd order ODE up to \mathfrak{P}.

Other studies: Bryant (1991), Grossman (2000).
GOAL: Identify C-classes for higher-order ODE (up to \mathfrak{C}).

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE,

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.

Why study C-class ODE?

- Various classes of ODE \mathcal{E} (up to \mathfrak{G}) admit an equiv. descrip. via a canonical Cartan geometry $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.
N.B. Existence of Cartan connections is not guaranteed for arb. \mathfrak{G}.

Some results

Consider $(n+1)$-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

Some results

Consider ($n+1$)-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants

Some results

Consider $(n+1)$-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"

Some results

Consider $(n+1)$-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \geq 2, n=1$: systems of 2 nd order \rightsquigarrow "parabolic geometry"

Some results

Consider ($n+1$)-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \geq 2, n=1$: systems of 2 nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \geq 1$ except $(n, m)=(1,1)$. If an ODE is Wilczynski-flat, then it is of C-class.

Some results

Consider $(n+1)$-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \geq 2, n=1$: systems of 2 nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \geq 1$ except $(n, m)=(1,1)$. If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Some results

Consider ($n+1$)-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \geq 2, n=1$: systems of 2 nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \geq 1$ except $(n, m)=(1,1)$. If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Corollary
An ODE with trivializable linearization is of C-class.

Some results

Consider $(n+1)$-st order ODE on $m \geq 1$ dep. vars, up to \mathfrak{C}.

- $m=1, n=1$: no invariants
- $m=1, n=2$: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \geq 2, n=1$: systems of 2 nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \geq 1$ except $(n, m)=(1,1)$. If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Corollary

An ODE with trivializable linearization is of C-class.
Rmk: Wilczynski-flat ODE inherit a natural geometric structure on their soln space, e.g. conformal structure when $(m, n)=(1,2)$.

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

Given a soln u, let $a:=\frac{u^{(n)}}{u^{(n-1)}}$. The linearization at u is:

$$
\ell_{u}[v]:=v^{(n+1)}-\frac{2(n+1)}{n} a v^{(n)}-\frac{n+1}{n} a^{2} v^{(n-1)}=0 .
$$

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

Given a soln u, let $a:=\frac{u^{(n)}}{u^{(n-1)}}$. The linearization at u is:

$$
\ell_{u}[v]:=v^{(n+1)}-\frac{2(n+1)}{n} a v^{(n)}-\frac{n+1}{n} a^{2} v^{(n-1)}=0 .
$$

We have $a^{\prime}=\frac{a^{2}}{n}$, so $\left(\frac{1}{a}\right)^{\prime}=-\frac{1}{n},\left(\frac{1}{a^{2}}\right)^{\prime}=-\frac{2}{n a}$, and $\left(\frac{1}{a^{2}}\right)^{\prime \prime}=\frac{2}{n^{2}}$.

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

Given a soln u, let $a:=\frac{u^{(n)}}{u^{(n-1)}}$. The linearization at u is:

$$
\ell_{u}[v]:=v^{(n+1)}-\frac{2(n+1)}{n} a v^{(n)}-\frac{n+1}{n} a^{2} v^{(n-1)}=0 .
$$

We have $a^{\prime}=\frac{a^{2}}{n}$, so $\left(\frac{1}{a}\right)^{\prime}=-\frac{1}{n},\left(\frac{1}{a^{2}}\right)^{\prime}=-\frac{2}{n a}$, and $\left(\frac{1}{a^{2}}\right)^{\prime \prime}=\frac{2}{n^{2}}$. Let $\widetilde{v}:=\frac{v}{a^{2}}$, so $\widetilde{v}^{(n+1)}=\frac{1}{a^{2}} \ell_{u}[v]=0$,

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

Given a soln u, let $a:=\frac{u^{(n)}}{u^{(n-1)}}$. The linearization at u is:

$$
\ell_{u}[v]:=v^{(n+1)}-\frac{2(n+1)}{n} a v^{(n)}-\frac{n+1}{n} a^{2} v^{(n-1)}=0 .
$$

We have $a^{\prime}=\frac{a^{2}}{n}$, so $\left(\frac{1}{a}\right)^{\prime}=-\frac{1}{n},\left(\frac{1}{a^{2}}\right)^{\prime}=-\frac{2}{n a}$, and $\left(\frac{1}{a^{2}}\right)^{\prime \prime}=\frac{2}{n^{2}}$. Let $\widetilde{v}:=\frac{v}{a^{2}}$, so $\widetilde{v}^{(n+1)}=\frac{1}{a^{2}} \ell_{u}[v]=0$, i.e. trivializable linearization.

A non-flat C-class example

$$
u^{(n+1)}-\frac{n+1}{n} \frac{\left(u^{(n)}\right)^{2}}{u^{(n-1)}}=0, \quad n \geq 3
$$

Given a soln u, let $a:=\frac{u^{(n)}}{u^{(n-1)}}$. The linearization at u is:

$$
\ell_{u}[v]:=v^{(n+1)}-\frac{2(n+1)}{n} a v^{(n)}-\frac{n+1}{n} a^{2} v^{(n-1)}=0 .
$$

We have $a^{\prime}=\frac{a^{2}}{n}$, so $\left(\frac{1}{a}\right)^{\prime}=-\frac{1}{n},\left(\frac{1}{a^{2}}\right)^{\prime}=-\frac{2}{n a}$, and $\left(\frac{1}{a^{2}}\right)^{\prime \prime}=\frac{2}{n^{2}}$. Let $\widetilde{v}:=\frac{v}{a^{2}}$, so $\widetilde{v}^{(n+1)}=\frac{1}{a^{2}} \ell_{u}[v]=0$, i.e. trivializable linearization.
\therefore Given ODE is of C-class.

Some non-flat C-class systems examples

Let \mathbf{u} have m components. The following are C-class examples:

The equation for circles in Euclidean space

$$
\mathbf{u}^{\prime \prime \prime}=3 \mathbf{u}^{\prime \prime} \frac{\left\langle\mathbf{u}^{\prime}, \mathbf{u}^{\prime \prime}\right\rangle}{1+\left\langle\mathbf{u}^{\prime}, \mathbf{u}^{\prime}\right\rangle}
$$

is Wilczynski-flat (Medvedev 2011).

$$
\mathbf{u}^{(n+1)}=\mathbf{f}, \quad \text { where } \quad f_{i}= \begin{cases}0, & i \neq m \\ \left(u_{1}^{(n)}\right)^{2}, & i=m\end{cases}
$$

has trivializable linearization.

From ODE to filtered manifolds

$$
\begin{array}{r}
J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right), \text { contact system: } \\
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
\end{array}
$$

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

- E is spanned by $\frac{d}{d t}:=\partial_{t}+u_{1} \partial_{u_{0}}+u_{2} \partial_{u_{1}}+\ldots+f \partial_{u_{n}}$

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

- E is spanned by $\frac{d}{d t}:=\partial_{t}+u_{1} \partial_{u_{0}}+u_{2} \partial_{u_{1}}+\ldots+f \partial_{u_{n}}$
- F is spanned by $\partial_{u_{n}}$.

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

- E is spanned by $\frac{d}{d t}:=\partial_{t}+u_{1} \partial_{u_{0}}+u_{2} \partial_{u_{1}}+\ldots+f \partial_{u_{n}}$
- F is spanned by $\partial_{u_{n}}$.

Weak der. flag: $D=: T^{-1} \mathcal{E} \subset T^{-2} \mathcal{E} \subset \ldots \subset T \mathcal{E}$.

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

- E is spanned by $\frac{d}{d t}:=\partial_{t}+u_{1} \partial_{u_{0}}+u_{2} \partial_{u_{1}}+\ldots+f \partial_{u_{n}}$
- F is spanned by $\partial_{u_{n}}$.

Weak der. flag: $D=: T^{-1} \mathcal{E} \subset T^{-2} \mathcal{E} \subset \ldots \subset T \mathcal{E}$. Symbol alg. \mathfrak{m} :

$$
\left[\frac{d}{d t}, \partial_{u_{i+1}}\right]=\partial_{u_{i}} \quad \bmod \quad T^{-(n-i)} \mathcal{E}
$$

From ODE to filtered manifolds

$J^{n+1}(\mathbb{R}, \mathbb{R}):\left(t, u_{0}, u_{1}, u_{2}, \ldots, u_{n+1}\right)$, contact system:

$$
\left\langle d u_{0}-u_{1} d t, \quad \ldots, \quad d u_{n}-u_{n+1} d t\right\rangle
$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R}), u_{n+1}=f\left(t, u_{0}, \ldots, u_{n}\right)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D=E \oplus F$ into line fields:

- E is spanned by $\frac{d}{d t}:=\partial_{t}+u_{1} \partial_{u_{0}}+u_{2} \partial_{u_{1}}+\ldots+f \partial_{u_{n}}$
- F is spanned by $\partial_{u_{n}}$.

Weak der. flag: $D=: T^{-1} \mathcal{E} \subset T^{-2} \mathcal{E} \subset \ldots \subset T \mathcal{E}$. Symbol alg. \mathfrak{m} :

$$
\left[\frac{d}{d t}, \partial_{u_{i+1}}\right]=\partial_{u_{i}} \quad \bmod \quad T^{-(n-i)} \mathcal{E}
$$

Splitting $\rightsquigarrow G_{0} \subset A u t_{g r}(\mathfrak{m})$. Get "filtered G_{0}-structure of type \mathfrak{m} ":

Homogeneous models

The contact sym alg of $u^{(n+1)}=0$ (order ≥ 4) leads to $G=G L_{2} \ltimes \mathbb{V}_{n}$, where $\mathbb{V}_{n} \cong S^{n} \mathbb{R}^{2}$, and $P=L T_{2}$ in red below.

Homogeneous models

The contact sym alg of $u^{(n+1)}=0$ (order ≥ 4) leads to $G=G L_{2} \ltimes \mathbb{V}_{n}$, where $\mathbb{V}_{n} \cong S^{n} \mathbb{R}^{2}$, and $P=L T_{2}$ in red below.

Special (parabolic) cases:

$$
\text { order }=3
$$

$$
\text { order }=2 \text { (point transf.) }
$$

$$
\mathfrak{g}=\mathfrak{s p}_{4}
$$

$\mathfrak{g}=\mathfrak{s l}_{3}$

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{p}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{p}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $\left(G \rightarrow G / P, \omega_{G}\right)$.

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{P}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $\left(G \rightarrow G / P, \omega_{G}\right)$.
Curv. fcn: $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}, \kappa(x, y)=K\left(\omega^{-1}(x), \omega^{-1}(y)\right)$.

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{P}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $\left(G \rightarrow G / P, \omega_{G}\right)$.
Curv. fcn: $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}, \kappa(x, y)=K\left(\omega^{-1}(x), \omega^{-1}(y)\right)$.

- $T M=\mathcal{G} \times_{p}(\mathfrak{g} / \mathfrak{p})$. P-inv. data on $\mathfrak{g} / \mathfrak{p} \rightsquigarrow$ geo. str. on $T M$.

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{p}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $\left(G \rightarrow G / P, \omega_{G}\right)$.
Curv. fcn: $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}, \kappa(x, y)=K\left(\omega^{-1}(x), \omega^{-1}(y)\right)$.

- $T M=\mathcal{G} \times{ }_{P}(\mathfrak{g} / \mathfrak{p})$. P-inv. data on $\mathfrak{g} / \mathfrak{p} \rightsquigarrow$ geo. str. on $T M$.
- Need normalization conditions on K to get an equivalence of categories with underlying structures on M,

Cartan connections

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of:

- (right) principal P-bundle $\mathcal{G} \rightarrow M$
- Cartan connection $\omega: T \mathcal{G} \rightarrow \mathfrak{g}$, i.e.
- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;
- $\left(r^{P}\right)^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{A})=A, \forall A \in \mathfrak{p}$, where $\widetilde{A}_{u}=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} u \exp (\epsilon A)$.

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $\left(G \rightarrow G / P, \omega_{G}\right)$.
Curv. fcn: $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}, \kappa(x, y)=K\left(\omega^{-1}(x), \omega^{-1}(y)\right)$.

- $T M=\mathcal{G} \times{ }_{p}(\mathfrak{g} / \mathfrak{p})$. P-inv. data on $\mathfrak{g} / \mathfrak{p} \rightsquigarrow$ geo. str. on $T M$.
- Need normalization conditions on K to get an equivalence of categories with underlying structures on M,
e.g. Riem. geom. \leftrightarrow Cartan geom. of type $(\mathbb{E}(n), O(n))$ with $\operatorname{im}(\kappa) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{p}$ (torsion-free).

Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)
Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of ODE of order ≥ 2 wrt \mathfrak{P}.

Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)
Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(3) systems of ODE of order ≥ 2 wrt \mathfrak{P}.

The solution space \mathcal{S} of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $\mathcal{S} \cong \mathcal{E} / E$.

Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(3) systems of ODE of order ≥ 2 wrt \mathfrak{P}.

The solution space \mathcal{S} of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $\mathcal{S} \cong \mathcal{E} / E$.

> Does $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P) descend to a Cartan geometry $(\mathcal{G} \rightarrow \mathcal{S}, \omega)$ of type (G, Q) ? $($ Yes, provided ix $\kappa=0$.

Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P) exist for:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

The solution space \mathcal{S} of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $\mathcal{S} \cong \mathcal{E} / E$.

> Does $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P) descend to a Cartan geometry $(\mathcal{G} \rightarrow \mathcal{S}, \omega)$ of type (G, Q) ? $($ Yes, provided ix $\kappa=0$.

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies $i \chi \kappa=0$.

Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P) exist for:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

The solution space \mathcal{S} of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $\mathcal{S} \cong \mathcal{E} / E$.

> Does $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P) descend to a Cartan geometry $(\mathcal{G} \rightarrow \mathcal{S}, \omega)$ of type (G, Q) ? $($ Yes, provided ix $\kappa=0$.

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies $i \chi \kappa=0$.
Parabolic analogy: Correspondence and twistor spaces (Čap, 2005). Here, it is sufficient to test harmonic curvature κ_{H}.

Example 1: scalar 3rd order ODE

For $y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$, have the relative \mathfrak{C}-invariants:

$$
I_{1}=\text { Wünschmann invariant, } \quad I_{2}=f_{y^{\prime \prime} y^{\prime \prime} y^{\prime \prime} y^{\prime \prime}}
$$

These comprise κ_{H}.

Example 1: scalar 3rd order ODE

For $y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$, have the relative $\mathfrak{C}^{〔}$-invariants:

$$
I_{1}=\text { Wünschmann invariant, } \quad I_{2}=f_{y^{\prime \prime}} y^{\prime \prime} y^{\prime \prime} y^{\prime \prime}
$$

These comprise κ_{H}. Geometric interpretation:

- $I_{2}=0$: Get a 3-dim contact projective structure on \mathcal{E} / F;
- $I_{1}=0$: Get a 3 -dim conf. str. on $\mathcal{S} \cong \mathcal{E} / E$ (C-class).

Example 2: scalar 2nd order ODE

For $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, have relative \mathfrak{P}-invariants (Tresse 1896): $l_{1}=$ complicated,$\quad I_{2}=f_{y^{\prime} y^{\prime} y^{\prime} y^{\prime}}$.

These comprise κ_{H}.

Example 2: scalar 2nd order ODE

For $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, have relative \mathfrak{P}-invariants (Tresse 1896):

$$
I_{1}=\text { complicated }, \quad I_{2}=f_{y^{\prime} y^{\prime} y^{\prime} y^{\prime} y^{\prime} .}
$$

These comprise κ_{H}. Geometric interpretation:

- $I_{2}=0$: geodesic eqn for a 2-dim projective connection.
- $I_{1}=0$: dual 2nd order ODE is a geodesic eqn (C-class).

$$
I_{2}=0
$$

Model fibration for higher-order ODE

ODE \mathcal{E} up to \mathfrak{C}

Solution space \mathcal{S} is equipped with a $G L_{2}$-structure (ODE systems: Segré structure modelled on $\left.\operatorname{Seg}\left(\nu_{n}\left(\mathbb{P}^{1}\right) \times \mathbb{P}^{m-1}\right) \hookrightarrow \mathbb{P}\left(\mathbb{V}_{n} \otimes \mathbb{R}^{m}\right)\right)$

$$
\text { Let }(\mathcal{G} \rightarrow M, \omega) \text { be of type }(G, P) \text {, where } \mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}} \text {. }
$$

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$.
Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$.
Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.
Have a homology differential ∂^{*} on $\bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$.
Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.
Have a homology differential ∂^{*} on $\bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$. Say ω is regular if $\operatorname{im}(\kappa)$ lies in positive hom.; it is normal if $\partial^{*} \kappa=0$.

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$.
Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.
Have a homology differential ∂^{*} on $\bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$. Say ω is regular if $\operatorname{im}(\kappa)$ lies in positive hom.; it is normal if $\partial^{*} \kappa=0$.

Harmonic curvature $\kappa_{H}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right)$

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$.
Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.
Have a homology differential ∂^{*} on $\bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$. Say ω is regular if $\operatorname{im}(\kappa)$ lies in positive hom.; it is normal if $\partial^{*} \kappa=0$.

Harmonic curvature $\kappa_{H}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right)$
Kostant: As \mathfrak{g}_{0}-modules, $\bigwedge^{2} \mathfrak{g}_{-}^{*} \otimes \mathfrak{g}=\overbrace{\operatorname{im}\left(\partial^{*}\right) \oplus \underbrace{\operatorname{ker}\left(\partial^{*}\right)}_{\operatorname{ker}(\partial)} \operatorname{ker}(\square) \oplus \operatorname{im}(\partial)}$

Let $(\mathcal{G} \rightarrow M, \omega)$ be of type (G, P), where $\mathfrak{g}=\mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$. Via Killing form, $\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.

Have a homology differential ∂^{*} on $\bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$. Say ω is regular if $\operatorname{im}(\kappa)$ lies in positive hom.; it is normal if $\partial^{*} \kappa=0$.

Harmonic curvature $\kappa_{H}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right)$
Kostant: As \mathfrak{g}_{0}-modules, $\bigwedge^{2} \mathfrak{g}_{-}^{*} \otimes \mathfrak{g}=\overbrace{\operatorname{im}\left(\partial^{*}\right)}^{\operatorname{ker}\left(\partial^{*}\right)} \oplus \underbrace{\operatorname{ker}(\square)}_{\operatorname{ker}(\partial)} \oplus \operatorname{im}(\partial))$
$\rightsquigarrow \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \cong \operatorname{ker}(\square) \cong \frac{\operatorname{ker}(\partial)}{\operatorname{im}(\partial)}=: H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$.

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle .
$$

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle .
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$. Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle .
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$.
Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Check: Get a P-equivariant map $\partial^{*}: \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \rightarrow(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$.

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$. Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Check: Get a P-equivariant map $\partial^{*}: \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \rightarrow(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N}=\operatorname{ker}\left(\partial^{*}\right)$.
\exists ! regular / normal $\left(\partial^{*} \kappa=0\right)$ Cartan connection assoc. to ODE

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$. Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Check: Get a P-equivariant map $\partial^{*}: \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \rightarrow(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$.
Normalization condition: $\mathcal{N}=\operatorname{ker}\left(\partial^{*}\right)$.
\exists ! regular / normal $\left(\partial^{*} \kappa=0\right)$ Cartan connection assoc. to ODE
Define essential curvature $\kappa_{E}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$.
(Can check that $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ completely reducible.)

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle .
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$. Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Check: Get a P-equivariant map $\partial^{*}: \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \rightarrow(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N}=\operatorname{ker}\left(\partial^{*}\right)$.
\exists ! regular / normal $\left(\partial^{*} \kappa=0\right)$ Cartan connection assoc. to ODE
Define essential curvature $\kappa_{E}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$.
(Can check that $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ completely reducible.) If $i_{X} \kappa_{E}=0$, we say the ODE is Wilczynski-flat.

Higher-order ODE (non-parabolic)

Recall $\mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{n}$. Can introduce a natural $\langle\cdot, \cdot\rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{g l}_{2}$ and $\forall u, v \in \mathbb{V}_{n}$,

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right), \quad\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle .
$$

Extend to $C^{*}(\mathfrak{g}, \mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^{*}(\mathfrak{g}, \mathfrak{g})$. Define ∂^{*} by

$$
\left\langle\partial_{\mathfrak{g}} \varphi, \psi\right\rangle=\left\langle\varphi, \partial^{*} \psi\right\rangle .
$$

Check: Get a P-equivariant map $\partial^{*}: \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \rightarrow(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N}=\operatorname{ker}\left(\partial^{*}\right)$.
\exists ! regular / normal $\left(\partial^{*} \kappa=0\right)$ Cartan connection assoc. to ODE Define essential curvature $\kappa_{E}=\kappa \bmod \operatorname{im}\left(\partial^{*}\right) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$. (Can check that $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ completely reducible.) If $i_{X} \kappa_{E}=0$, we say the ODE is Wilczynski-flat.

Does $i_{\chi} \kappa_{E}=0$ imply $i_{\mathrm{X}} \kappa=0$?

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.
Let $\mathbb{E}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}: i_{\chi} \phi=0\right\}$.

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.

Let $\mathbb{E}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}: i_{x} \phi=0\right\}$.
Let $d^{\omega}=$ covariant exterior derivative. (Bianchi: $d^{\omega} K=0$.)

- Prop: If $i_{x} \kappa_{E}=0$ and $\varphi \in \Omega_{h o r}^{2}(\mathcal{G}, \mathfrak{g})^{P}$ is in \mathbb{E}, then $\partial^{*} d^{\omega} \varphi \in \mathbb{E}$.

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.

Let $\mathbb{E}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}: i_{X} \phi=0\right\}$.
Let $d^{\omega}=$ covariant exterior derivative. (Bianchi: $d^{\omega} K=0$.)

- Prop: If $i_{x} \kappa_{E}=0$ and $\varphi \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}$ is in \mathbb{E}, then $\partial^{*} d^{\omega} \varphi \in \mathbb{E}$.
- Write $K=K_{1}+K_{2}$, with $K_{i} \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}, K_{1} \in \mathbb{E}, K_{2}=\partial^{*} \psi$, hom. of ψ is $\geq \ell>0$. (\exists for $\ell=1$ by Wilczynski-flatness.)

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.

Let $\mathbb{E}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}: i_{X} \phi=0\right\}$.
Let $d^{\omega}=$ covariant exterior derivative. (Bianchi: $d^{\omega} K=0$.)

- Prop: If $i_{x} \kappa_{E}=0$ and $\varphi \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}$ is in \mathbb{E}, then $\partial^{*} d^{\omega} \varphi \in \mathbb{E}$.
- Write $K=K_{1}+K_{2}$, with $K_{i} \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}, K_{1} \in \mathbb{E}, K_{2}=\partial^{*} \psi$, hom. of ψ is $\geq \ell>0$. (\exists for $\ell=1$ by Wilczynski-flatness.)
- Bianchi $\Rightarrow \partial^{*} d^{\omega} K_{2}=-\partial^{*} d^{\omega} K_{1} \in \mathbb{E}$.

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
(1) scalar ODE of order ≥ 3 wrt \mathfrak{C}; order 2 wrt \mathfrak{P};
(2) systems of $O D E$ of order ≥ 2 wrt \mathfrak{P}.

Proof sketch.

Let $\mathbb{E}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right) \subset \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}: i_{X} \phi=0\right\}$.
Let $d^{\omega}=$ covariant exterior derivative. (Bianchi: $d^{\omega} K=0$.)

- Prop: If $i_{x} \kappa_{E}=0$ and $\varphi \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}$ is in \mathbb{E}, then $\partial^{*} d^{\omega} \varphi \in \mathbb{E}$.
- Write $K=K_{1}+K_{2}$, with $K_{i} \in \Omega_{\text {hor }}^{2}(\mathcal{G}, \mathfrak{g})^{P}, K_{1} \in \mathbb{E}, K_{2}=\partial^{*} \psi$, hom. of ψ is $\geq \ell>0$. (\exists for $\ell=1$ by Wilczynski-flatness.)
- Bianchi $\Rightarrow \partial^{*} d^{\omega} K_{2}=-\partial^{*} d^{\omega} K_{1} \in \mathbb{E}$.
- Focus on hom. ℓ-component to correct K_{1} and K_{2}. Get new $K_{2}=\partial^{*} \psi$ with ψ of hom. $\geq \ell+1$. Iterate until $K_{2}=0$.

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less).

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$
\begin{gathered}
9\left(u^{\prime \prime}\right)^{2} u^{(5)}-45 u^{\prime \prime} u^{\prime \prime \prime} u^{\prime \prime \prime \prime}+40\left(u^{\prime \prime \prime}\right)^{3}=0 \\
10\left(u^{\prime \prime \prime}\right)^{3} u^{(7)}-70\left(u^{\prime \prime \prime}\right)^{2} u^{(4)} u^{(6)}-49\left(u^{\prime \prime \prime}\right)^{2}\left(u^{(5)}\right)^{2}+280 u^{\prime \prime \prime}\left(u^{(4)}\right)^{2} u^{(5)}-175\left(u^{(4)}\right)^{4}=0 .
\end{gathered}
$$

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$
\begin{gathered}
9\left(u^{\prime \prime}\right)^{2} u^{(5)}-45 u^{\prime \prime} u^{\prime \prime \prime} u^{\prime \prime \prime \prime}+40\left(u^{\prime \prime \prime}\right)^{3}=0 \\
10\left(u^{\prime \prime \prime}\right)^{3} u^{(7)}-70\left(u^{\prime \prime \prime}\right)^{2} u^{(4)} u^{(6)}-49\left(u^{\prime \prime \prime}\right)^{2}\left(u^{(5)}\right)^{2}+280 u^{\prime \prime \prime}\left(u^{(4)}\right)^{2} u^{(5)}-175\left(u^{(4)}\right)^{4}=0 .
\end{gathered}
$$

These models are homogeneous and have contact sym alg $A_{2} \cong \mathfrak{s l}_{3}$ and $C_{2} \cong \mathfrak{s p}_{4}$.

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$
\begin{gathered}
9\left(u^{\prime \prime}\right)^{2} u^{(5)}-45 u^{\prime \prime} u^{\prime \prime \prime} u^{\prime \prime \prime \prime}+40\left(u^{\prime \prime \prime}\right)^{3}=0 \\
10\left(u^{\prime \prime \prime}\right)^{3} u^{(7)}-70\left(u^{\prime \prime \prime}\right)^{2} u^{(4)} u^{(6)}-49\left(u^{\prime \prime \prime}\right)^{2}\left(u^{(5)}\right)^{2}+280 u^{\prime \prime \prime}\left(u^{(4)}\right)^{2} u^{(5)}-175\left(u^{(4)}\right)^{4}=0 .
\end{gathered}
$$

These models are homogeneous and have contact sym alg $A_{2} \cong \mathfrak{s l}_{3}$ and $C_{2} \cong \mathfrak{s p}_{4}$. For both, isotropy is a "principal $\mathfrak{s l}_{2}$ ".

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$
\begin{gathered}
9\left(u^{\prime \prime}\right)^{2} u^{(5)}-45 u^{\prime \prime} u^{\prime \prime \prime} u^{\prime \prime \prime \prime}+40\left(u^{\prime \prime \prime}\right)^{3}=0 \\
10\left(u^{\prime \prime \prime}\right)^{3} u^{(7)}-70\left(u^{\prime \prime \prime}\right)^{2} u^{(4)} u^{(6)}-49\left(u^{\prime \prime \prime}\right)^{2}\left(u^{(5)}\right)^{2}+280 u^{\prime \prime \prime}\left(u^{(4)}\right)^{2} u^{(5)}-175\left(u^{(4)}\right)^{4}=0 .
\end{gathered}
$$

These models are homogeneous and have contact sym alg $A_{2} \cong \mathfrak{s l}_{3}$ and $C_{2} \cong \mathfrak{s p}_{4}$. For both, isotropy is a "principal $\mathfrak{s l}_{2}$ ". Decompose as $\mathfrak{s l}_{2}$-modules and define $\mathfrak{s l}_{2}$-equiv. "extension functor": e.g.

$$
\mathfrak{s}:=\mathfrak{s l}_{3}=\mathfrak{s l}_{2} \oplus \mathbb{V}_{4} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{4} .
$$

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5 th and 7 th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$
\begin{gathered}
9\left(u^{\prime \prime}\right)^{2} u^{(5)}-45 u^{\prime \prime} u^{\prime \prime \prime} u^{\prime \prime \prime \prime}+40\left(u^{\prime \prime \prime}\right)^{3}=0 \\
10\left(u^{\prime \prime \prime}\right)^{3} u^{(7)}-70\left(u^{\prime \prime \prime}\right)^{2} u^{(4)} u^{(6)}-49\left(u^{\prime \prime \prime}\right)^{2}\left(u^{(5)}\right)^{2}+280 u^{\prime \prime \prime}\left(u^{(4)}\right)^{2} u^{(5)}-175\left(u^{(4)}\right)^{4}=0 .
\end{gathered}
$$

These models are homogeneous and have contact sym alg $A_{2} \cong \mathfrak{s l}_{3}$ and $C_{2} \cong \mathfrak{s p}_{4}$. For both, isotropy is a "principal $\mathfrak{s l}_{2}$ ". Decompose as $\mathfrak{s l}_{2}$-modules and define $\mathfrak{s l}_{2}$-equiv. "extension functor": e.g.

$$
\mathfrak{s}:=\mathfrak{s l}_{3}=\mathfrak{s l}_{2} \oplus \mathbb{V}_{4} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{4} .
$$

Curvature $\kappa(x, y)=\iota([x, y])-[\iota(x), \iota(y)]$ is normal and $i_{x} \kappa=0$.

A G_{2} non-example

$$
\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10}
$$

A G_{2} non-example

$$
\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10} \rightsquigarrow \text { 11th order ODE? }
$$

A G_{2} non-example

$$
\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10} \rightsquigarrow \quad \text { 11th order ODE? }
$$

ODE \rightsquigarrow "filtered G_{0}-structures of type \mathfrak{m} ", but the latter category is larger.

A G_{2} non-example

$\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10} \rightsquigarrow 11$ th order ODE?

ODE \rightsquigarrow "filtered G_{0}-structures of type \mathfrak{m} ", but the latter category
is larger. For scalar ODE, "strong = weak" (derived flags) is nec. $/$ suff., i.e. $\left[T^{-i} \mathcal{E}, T^{-j} \mathcal{E}\right]=T^{-\min (i, j)-1} \mathcal{E}$.

A G_{2} non-example

$\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10} \rightsquigarrow 11$ th order ODE?

ODE \rightsquigarrow "filtered G_{0}-structures of type \mathfrak{m} ", but the latter category is larger. For scalar ODE, "strong = weak" (derived flags) is nec./suff., i.e. $\left[T^{-i} \mathcal{E}, T^{-j} \mathcal{E}\right]=T^{-\min (i, j)-1} \mathcal{E}$.

A G_{2} non-example

$\mathfrak{s}:=\operatorname{Lie}\left(G_{2}\right)=\mathfrak{s l}_{2} \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g}=\mathfrak{g l}_{2} \ltimes \mathbb{V}_{10} \rightsquigarrow$ 11th order ODE?

ODE \rightsquigarrow "filtered G_{0}-structures of type \mathfrak{m} ", but the latter category is larger. For scalar ODE, "strong = weak" (derived flags) is nec./suff., i.e. $\left[T^{-i} \mathcal{E}, T^{-j} \mathcal{E}\right]=T^{-\min (i, j)-1} \mathcal{E}$.

Since $\left[\mathfrak{s}_{\alpha_{1}+\alpha_{2}}, \mathfrak{s}_{2 \alpha_{1}+\alpha_{2}}\right]=\mathfrak{s}_{3 \alpha_{1}+2 \alpha_{2}}$, i.e. $(-8,-9) \rightarrow-11$, this does not come from an (11th order) ODE.

