On C-class equations

$\mathsf{Dennis}\ \mathsf{The}^*$

Department of Mathematics & Statistics University of Tromsø

(joint work with Andreas Čap & Boris Doubrov)

October 4, 2017

*partially supported by project M1884-N35 of the Austrian Science Fund

In a short paper in 1938, Cartan gave the following definition:

"A given class of ODE $u^{(n+1)} = f(t, u, u', ..., u^{(n)})$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

In a short paper in 1938, Cartan gave the following definition:

"A given class of ODE $u^{(n+1)} = f(t, u, u', ..., u^{(n)})$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{P} .

In a short paper in 1938, Cartan gave the following definition:

"A given class of ODE $u^{(n+1)} = f(t, u, u', ..., u^{(n)})$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{P} . Moreover, Cartan gave two examples of C-classes amongst:

- scalar 3rd order ODE up to €;
- 2 scalar 2nd order ODE up to \mathfrak{P} .

In a short paper in 1938, Cartan gave the following definition:

"A given class of ODE $u^{(n+1)} = f(t, u, u', ..., u^{(n)})$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{P} . Moreover, Cartan gave two examples of C-classes amongst:

- scalar 3rd order ODE up to €;
- 2 scalar 2nd order ODE up to \mathfrak{P} .

Other studies: Bryant (1991), Grossman (2000).

In a short paper in 1938, Cartan gave the following definition:

"A given class of ODE $u^{(n+1)} = f(t, u, u', ..., u^{(n)})$ will be said to be a C-class if there exists an infinite group (in the sense of Lie) \mathfrak{G} transforming eqns of the class into eqns of the class and such that the differential invariants with respect to \mathfrak{G} of an eqn of the class be first integrals of the eqn."

Here, \mathfrak{G} is a prescribed Lie transformation (pseudo-)group, e.g. contact transformations \mathfrak{C} or point transformations \mathfrak{P} . Moreover, Cartan gave two examples of C-classes amongst:

- scalar 3rd order ODE up to €;
- 2 scalar 2nd order ODE up to \mathfrak{P} .

Other studies: Bryant (1991), Grossman (2000).

GOAL: Identify C-classes for higher-order ODE (up to \mathfrak{C}).

Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).

Why study C-class ODE?

- Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.

Why study C-class ODE?

- Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

- Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE,

- Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.

- Various classes of ODE *E* (up to 𝔅) admit an equiv. descrip.
 via a canonical Cartan geometry (*G* → *E*, ω) of type (*G*, *P*).
- Canonical Cartan connections ω are obtained using only linear algebra and differentiation.
- Diff. inv. arise from the components of the curvature κ of ω (and its covariant derivatives).

If all differential invariants are first integrals, and there are sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.

N.B. Existence of Cartan connections is not guaranteed for arb. \mathfrak{G} .

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} . • m = 1, n = 1: no invariants

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

•
$$m = 1$$
, $n = 1$: no invariants

• m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

- m = 1, n = 1: no invariants
- m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \ge 2$, n = 1: systems of 2nd order \rightsquigarrow "parabolic geometry"

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

- m = 1, n = 1: no invariants
- m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \ge 2$, n = 1: systems of 2nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \ge 1$ except (n, m) = (1, 1). If an ODE is Wilczynski-flat, then it is of C-class.

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

- m = 1, n = 1: no invariants
- m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \ge 2$, n = 1: systems of 2nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \ge 1$ except (n, m) = (1, 1). If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Consider (n + 1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

- m = 1, n = 1: no invariants
- m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \ge 2$, n = 1: systems of 2nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \ge 1$ except (n, m) = (1, 1). If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Corollary

An ODE with trivializable linearization is of C-class.

Consider (n+1)-st order ODE on $m \ge 1$ dep. vars, up to \mathfrak{C} .

- m = 1, n = 1: no invariants
- m = 1, n = 2: scalar 3rd order \rightsquigarrow "parabolic geometry"
- $m \ge 2$, n = 1: systems of 2nd order \rightsquigarrow "parabolic geometry"

Theorem

Let $n, m \ge 1$ except (n, m) = (1, 1). If an ODE is Wilczynski-flat, then it is of C-class.

The generalized Wilczynski invariants are defined via the linearization of a given ODE.

Corollary

An ODE with trivializable linearization is of C-class.

Rmk: Wilczynski-flat ODE inherit a natural geometric structure on their soln space, e.g. conformal structure when (m, n) = (1, 2).

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$\ell_u[v] := v^{(n+1)} - \frac{2(n+1)}{n} a v^{(n)} - \frac{n+1}{n} a^2 v^{(n-1)} = 0.$$

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$\ell_u[v] := v^{(n+1)} - \frac{2(n+1)}{n} a v^{(n)} - \frac{n+1}{n} a^2 v^{(n-1)} = 0.$$

We have
$$a' = \frac{a^2}{n}$$
, so $(\frac{1}{a})' = -\frac{1}{n}$, $(\frac{1}{a^2})' = -\frac{2}{na}$, and $(\frac{1}{a^2})'' = \frac{2}{n^2}$.

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$\ell_u[v] := v^{(n+1)} - \frac{2(n+1)}{n} a v^{(n)} - \frac{n+1}{n} a^2 v^{(n-1)} = 0.$$

We have $a' = \frac{a^2}{n}$, so $(\frac{1}{a})' = -\frac{1}{n}$, $(\frac{1}{a^2})' = -\frac{2}{na}$, and $(\frac{1}{a^2})'' = \frac{2}{n^2}$. Let $\tilde{v} := \frac{v}{a^2}$, so $\tilde{v}^{(n+1)} = \frac{1}{a^2} \ell_u[v] = 0$,

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$\ell_u[v] := v^{(n+1)} - \frac{2(n+1)}{n} a v^{(n)} - \frac{n+1}{n} a^2 v^{(n-1)} = 0.$$

We have $a' = \frac{a^2}{n}$, so $(\frac{1}{a})' = -\frac{1}{n}$, $(\frac{1}{a^2})' = -\frac{2}{na}$, and $(\frac{1}{a^2})'' = \frac{2}{n^2}$. Let $\tilde{v} := \frac{v}{a^2}$, so $\tilde{v}^{(n+1)} = \frac{1}{a^2} \ell_u[v] = 0$, i.e. trivializable linearization.

$$u^{(n+1)} - \frac{n+1}{n} \frac{(u^{(n)})^2}{u^{(n-1)}} = 0, \quad n \ge 3.$$

$$\ell_u[v] := v^{(n+1)} - \frac{2(n+1)}{n} a v^{(n)} - \frac{n+1}{n} a^2 v^{(n-1)} = 0.$$

We have $a' = \frac{a^2}{n}$, so $(\frac{1}{a})' = -\frac{1}{n}$, $(\frac{1}{a^2})' = -\frac{2}{na}$, and $(\frac{1}{a^2})'' = \frac{2}{n^2}$. Let $\tilde{v} := \frac{v}{a^2}$, so $\tilde{v}^{(n+1)} = \frac{1}{a^2} \ell_u[v] = 0$, i.e. trivializable linearization.

: Given ODE is of C-class.

Some non-flat C-class systems examples

Let **u** have *m* components. The following are C-class examples:

The equation for circles in Euclidean space

$$\mathbf{u}^{\prime\prime\prime} = 3\mathbf{u}^{\prime\prime} \frac{\langle \mathbf{u}^{\prime}, \mathbf{u}^{\prime\prime} \rangle}{1 + \langle \mathbf{u}^{\prime}, \mathbf{u}^{\prime} \rangle}$$

is Wilczynski-flat (Medvedev 2011).

$$\mathbf{u}^{(n+1)} = \mathbf{f}, \quad \text{where} \quad f_i = \begin{cases} 0, & i \neq m; \\ (u_1^{(n)})^2, & i = m \end{cases}$$
 has trivializable linearization.

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

 $\langle du_0 - u_1 dt, \ldots, du_n - u_{n+1} dt \rangle.$

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \quad ..., \quad du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \quad ..., \quad du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

• *E* is spanned by $\frac{d}{dt} := \partial_t + u_1 \partial_{u_0} + u_2 \partial_{u_1} + \dots + f \partial_{u_n}$

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \quad ..., \quad du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

- E is spanned by $\frac{d}{dt} := \partial_t + u_1 \partial_{u_0} + u_2 \partial_{u_1} + \dots + f \partial_{u_n}$
- *F* is spanned by ∂_{u_n} .

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \quad ..., \quad du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

- *E* is spanned by $\frac{d}{dt} := \partial_t + u_1 \partial_{u_0} + u_2 \partial_{u_1} + \dots + f \partial_{u_n}$
- *F* is spanned by ∂_{u_n} .

Weak der. flag: $D =: T^{-1}\mathcal{E} \subset T^{-2}\mathcal{E} \subset ... \subset T\mathcal{E}$.

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \ldots, du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

- *E* is spanned by $\frac{d}{dt} := \partial_t + u_1 \partial_{u_0} + u_2 \partial_{u_1} + ... + f \partial_{u_n}$
- *F* is spanned by ∂_{u_n} .

Weak der. flag: $D =: T^{-1}\mathcal{E} \subset T^{-2}\mathcal{E} \subset ... \subset T\mathcal{E}$. Symbol alg. \mathfrak{m} :

$$\left[\frac{d}{dt},\partial_{u_{i+1}}\right]=\partial_{u_i} \mod T^{-(n-i)}\mathcal{E}.$$

 $J^{n+1}(\mathbb{R},\mathbb{R})$: $(t, u_0, u_1, u_2, ..., u_{n+1})$, contact system:

$$\langle du_0 - u_1 dt, \ldots, du_n - u_{n+1} dt \rangle.$$

ODE $\mathcal{E} \subset J^{n+1}(\mathbb{R}, \mathbb{R})$, $u_{n+1} = f(t, u_0, ..., u_n)$. Get rank 2 distribution D on \mathcal{E} with a splitting $D = E \oplus F$ into line fields:

- *E* is spanned by $\frac{d}{dt} := \partial_t + u_1 \partial_{u_0} + u_2 \partial_{u_1} + ... + f \partial_{u_n}$
- *F* is spanned by ∂_{u_n} . Weak der. flag: $D =: T^{-1}\mathcal{E} \subset T^{-2}\mathcal{E} \subset ... \subset T\mathcal{E}$. Symbol alg. \mathfrak{m} :

$$\left[rac{d}{dt},\partial_{u_{i+1}}
ight]=\partial_{u_i} \quad \mathrm{mod} \quad T^{-(n-i)}\mathcal{E}.$$

Splitting $\rightsquigarrow G_0 \subset Aut_{gr}(\mathfrak{m})$. Get "filtered G_0 -structure of type \mathfrak{m} ":

Homogeneous models

The contact sym alg of $u^{(n+1)} = 0$ (order ≥ 4) leads to $G = GL_2 \ltimes \mathbb{V}_n$, where $\mathbb{V}_n \cong S^n \mathbb{R}^2$, and $P = LT_2$ in red below.

Homogeneous models

The contact sym alg of $u^{(n+1)} = 0$ (order ≥ 4) leads to $G = GL_2 \ltimes \mathbb{V}_n$, where $\mathbb{V}_n \cong S^n \mathbb{R}^2$, and $P = LT_2$ in red below.

Special (parabolic) cases:

order = 3 x order = 2 (point transf.) x $g = \mathfrak{sp}_4$ $g = \mathfrak{sl}_3$
- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal P-bundle $\mathcal{G} o M$
 - Cartan connection $\omega : T\mathcal{G} \to \mathfrak{g}$, i.e.
 - ω_u : $T_u \mathcal{G} \to \mathfrak{g}$ is a linear isomorphism, $\forall u \in \mathcal{G}$;

•
$$(r^{p})^{*}\omega = \operatorname{Ad}_{p^{-1}} \circ \omega, \ \forall p \in P;$$

• $\omega(\widetilde{A}) = A$, $\forall A \in \mathfrak{p}$, where $\widetilde{A}_u = \left. \frac{d}{d\epsilon} \right|_{\epsilon=0} u \exp(\epsilon A)$.

- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal *P*-bundle $\mathcal{G} o M$
 - Cartan connection $\omega : T\mathcal{G} \to \mathfrak{g}$, i.e.
 - ω_u: T_uG → g is a linear isomorphism, ∀u ∈ G;
 (r^p)*ω = Ad_{p⁻¹} ∘ ω, ∀p ∈ P;
 ω(Ã) = A, ∀A ∈ p, where Ã_u = d/dε|_{ε=0} u exp(εA).

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $(\mathcal{G} \to \mathcal{G}/P, \omega_{\mathcal{G}})$.

- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal P-bundle $\mathcal{G} o M$
 - Cartan connection $\omega : T\mathcal{G} \to \mathfrak{g}$, i.e.

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $(\mathcal{G} \to \mathcal{G}/\mathcal{P}, \omega_{\mathcal{G}})$.

Curv. fcn:
$$\kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}, \ \kappa(x, y) = K(\omega^{-1}(x), \omega^{-1}(y)).$$

- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal *P*-bundle $\mathcal{G} o M$
 - Cartan connection $\omega : T\mathcal{G} \to \mathfrak{g}$, i.e.

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $(G \to G/P, \omega_G)$. Curv. fcn: $\kappa : \mathcal{G} \to \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}, \ \kappa(x, y) = \mathcal{K}(\omega^{-1}(x), \omega^{-1}(y))$.

• $TM = \mathcal{G} \times_P (\mathfrak{g}/\mathfrak{p})$. *P*-inv. data on $\mathfrak{g}/\mathfrak{p} \rightsquigarrow$ geo. str. on *TM*.

- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal *P*-bundle $\mathcal{G} o M$
 - Cartan connection $\omega : T\mathcal{G} \to \mathfrak{g}$, i.e.

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $(G \to G/P, \omega_G)$. Curv. fcn: $\kappa : \mathcal{G} \to \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}, \ \kappa(x, y) = \mathcal{K}(\omega^{-1}(x), \omega^{-1}(y))$.

- $TM = \mathcal{G} \times_P (\mathfrak{g}/\mathfrak{p})$. *P*-inv. data on $\mathfrak{g}/\mathfrak{p} \rightsquigarrow$ geo. str. on *TM*.
- Need normalization conditions on K to get an equivalence of categories with underlying structures on M,

- A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ consists of:
 - (right) principal P-bundle $\mathcal{G} o M$
 - Cartan connection ω : $T\mathcal{G} \to \mathfrak{g}$, i.e.

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. This is horizontal and completely obstructs flatness, i.e. local equiv to $(\mathcal{G} \to \mathcal{G}/\mathcal{P}, \omega_\mathcal{G})$. Curv. fcn: $\kappa : \mathcal{G} \to \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}, \ \kappa(x, y) = \mathcal{K}(\omega^{-1}(x), \omega^{-1}(y))$.

- $TM = \mathcal{G} \times_P (\mathfrak{g}/\mathfrak{p})$. *P*-inv. data on $\mathfrak{g}/\mathfrak{p} \rightsquigarrow$ geo. str. on *TM*.
- Need normalization conditions on K to get an equivalence of categories with underlying structures on M,

e.g. Riem. geom. \leftrightarrow Cartan geom. of type ($\mathbb{E}(n), O(n)$) with $\operatorname{im}(\kappa) \subset \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{p}$ (torsion-free).

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ exist for:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

The solution space S of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $S \cong \mathcal{E}/E$.

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type $(\mathcal{G}, \mathcal{P})$ exist for:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

The solution space S of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $S \cong \mathcal{E}/E$.

Does $(\mathcal{G} \to \mathcal{E}, \omega)$ of type (\mathcal{G}, P) descend to a Cartan geometry $(\mathcal{G} \to \mathcal{S}, \omega)$ of type (\mathcal{G}, Q) ? (Yes, provided $i_{\mathbf{X}}\kappa = 0$.)

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

The solution space S of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $S \cong \mathcal{E}/E$.

Does $(\mathcal{G} \to \mathcal{E}, \omega)$ of type (\mathcal{G}, P) descend to a Cartan geometry $(\mathcal{G} \to \mathcal{S}, \omega)$ of type (\mathcal{G}, Q) ? (Yes, provided $i_{\mathbf{X}}\kappa = 0$.)

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies $i_{\chi\kappa} = 0$.

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of type (G, P) exist for:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

The solution space S of the ODE \mathcal{E} corresponds to the space of integral curves in \mathcal{E} of the line field E, i.e. $S \cong \mathcal{E}/E$.

Does $(\mathcal{G} \to \mathcal{E}, \omega)$ of type (\mathcal{G}, P) descend to a Cartan geometry $(\mathcal{G} \to \mathcal{S}, \omega)$ of type (\mathcal{G}, Q) ? (Yes, provided $i_{\mathbf{X}}\kappa = 0$.)

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies $i_{\chi\kappa} = 0$.

Parabolic analogy: Correspondence and twistor spaces (Čap, 2005). Here, it is sufficient to test harmonic curvature κ_H .

Example 1: scalar 3rd order ODE

For y''' = f(x, y, y', y''), have the relative \mathfrak{C} -invariants:

 $I_1 = \text{Wünschmann invariant}, \quad I_2 = f_{y''y''y''y''}$

These comprise κ_H .

Example 1: scalar 3rd order ODE

For y''' = f(x, y, y', y''), have the relative \mathfrak{C} -invariants:

 $I_1 = \text{Wünschmann invariant}, \quad I_2 = f_{y''y''y''y''}$

These comprise κ_H . Geometric interpretation:

- $l_2 = 0$: Get a 3-dim contact projective structure on \mathcal{E}/F ;
- $I_1 = 0$: Get a 3-dim conf. str. on $S \cong \mathcal{E}/E$ (C-class).

Example 2: scalar 2nd order ODE

For y'' = f(x, y, y'), have relative \mathfrak{P} -invariants (Tresse 1896):

$$I_1 =$$
complicated, $I_2 = f_{y'y'y'y'}$.

These comprise κ_H .

Example 2: scalar 2nd order ODE

For y'' = f(x, y, y'), have relative \mathfrak{P} -invariants (Tresse 1896):

$$I_1 = ext{complicated}, \quad I_2 = f_{y'y'y'y'}.$$

These comprise κ_H . Geometric interpretation:

- $I_2 = 0$: geodesic eqn for a 2-dim projective connection.
- $I_1 = 0$: dual 2nd order ODE is a geodesic eqn (C-class).

Model fibration for higher-order ODE

ODE ${\mathcal E}$ up to ${\mathfrak C}$

Solution space S is equipped with a GL_2 -structure (ODE systems: Segré structure modelled on $Seg(\nu_n(\mathbb{P}^1) \times \mathbb{P}^{m-1}) \hookrightarrow \mathbb{P}(\mathbb{V}_n \otimes \mathbb{R}^m))$

Let
$$(\mathcal{G} \to M, \omega)$$
 be of type $(\mathcal{G}, \mathcal{P})$, where $\mathfrak{g} = \mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}^{\mathfrak{p}}$.

Let
$$(\mathcal{G} \to M, \omega)$$
 be of type $(\mathcal{G}, \mathcal{P})$, where $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^{2} (\mathfrak{g}/\mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.

Let
$$(\mathcal{G} \to M, \omega)$$
 be of type $(\mathcal{G}, \mathcal{P})$, where $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^{2} (\mathfrak{g}/\mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.

Have a homology differential ∂^* on $\bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$.

Let
$$(\mathcal{G} \to M, \omega)$$
 be of type (G, P) , where $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_+$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$.

Let
$$(\mathcal{G} \to M, \omega)$$
 be of type (\mathcal{G}, P) , where $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_+$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$.

'n

Harmonic curvature $\kappa_H = \kappa \mod \operatorname{im}(\partial^*)$

Let
$$(\mathcal{G} \to \mathcal{M}, \omega)$$
 be of type $(\mathcal{G}, \mathcal{P})$, where $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_+$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$.

b

Harmonic curvature
$$\kappa_{H} = \kappa \mod \operatorname{im}(\partial^{*})$$

Kostant: As \mathfrak{g}_{0} -modules, $\bigwedge^{2} \mathfrak{g}_{-}^{*} \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^{*}) \oplus \ker(\Box) \oplus \operatorname{im}(\partial)}_{\ker(\partial)}$

Let
$$(\mathcal{G} \to \mathcal{M}, \omega)$$
 be of type $(\mathcal{G}, \mathcal{P})$, where $\mathfrak{g} = \mathfrak{g}_- \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_+$.
Via Killing form, $\kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$.

b

Harmonic curvature $\boxed{\kappa_H = \kappa \mod \operatorname{im}(\partial^*)}_{\operatorname{ker}(\partial^*)}$ Kostant: As \mathfrak{g}_0 -modules, $\bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^*) \oplus \operatorname{ker}(\Box) \oplus \operatorname{im}(\partial)}_{\operatorname{ker}(\partial)}$

$$\rightsquigarrow \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} \cong \ker(\Box) \cong \frac{\ker(\partial)}{\operatorname{im}(\partial)} =: H^2(\mathfrak{g}_-, \mathfrak{g}).$$

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$.

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A, B \rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au, v \rangle = \langle u, A^{\top}v \rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Check: Get a *P*-equivariant map $\partial^* : \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \to (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$.

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Check: Get a *P*-equivariant map $\partial^* : \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \to (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N} = \ker(\partial^*)$.

 \exists ! regular / normal ($\partial^* \kappa = 0$) Cartan connection assoc. to ODE

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Check: Get a *P*-equivariant map $\partial^* : \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \to (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N} = \ker(\partial^*)$.

 \exists ! regular / normal ($\partial^* \kappa = 0$) Cartan connection assoc. to ODE

Define essential curvature $\kappa_E = \kappa \mod \operatorname{im}(\partial^*) \in \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$. (Can check that $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ completely reducible.)

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Check: Get a *P*-equivariant map $\partial^* : \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \to (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N} = \ker(\partial^*)$.

 \exists ! regular / normal ($\partial^* \kappa = 0$) Cartan connection assoc. to ODE

Define essential curvature $\kappa_E = \kappa \mod \operatorname{im}(\partial^*) \in \frac{\operatorname{ker}(\partial^*)}{\operatorname{im}(\partial^*)}$.

(Can check that $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ completely reducible.) If $i_X \kappa_E = 0$, we say the ODE is Wilczynski-flat.

Recall $\mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_n$. Can introduce a natural $\langle \cdot, \cdot \rangle$ on \mathfrak{g} s.t. $\forall A, B \in \mathfrak{gl}_2$ and $\forall u, v \in \mathbb{V}_n$,

$$\langle A,B\rangle = \operatorname{tr}(A^{\top}B), \quad \langle Au,v\rangle = \langle u,A^{\top}v\rangle.$$

Extend to $C^*(\mathfrak{g},\mathfrak{g})$. Have Lie alg cohom diff $\partial_{\mathfrak{g}}$ on $C^*(\mathfrak{g},\mathfrak{g})$. Define ∂^* by

$$\langle \partial_{\mathfrak{g}} \varphi, \psi \rangle = \langle \varphi, \partial^* \psi \rangle.$$

Check: Get a *P*-equivariant map $\partial^* : \Lambda^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \to (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$. Normalization condition: $\mathcal{N} = \ker(\partial^*)$.

 \exists ! regular / normal ($\partial^* \kappa = 0$) Cartan connection assoc. to ODE

Define essential curvature $\kappa_E = \kappa \mod \operatorname{im}(\partial^*) \in \frac{\operatorname{ker}(\partial^*)}{\operatorname{im}(\partial^*)}$.

(Can check that $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ completely reducible.) If $i_X \kappa_E = 0$, we say the ODE is Wilczynski-flat.

Does $i_X \kappa_E = 0$ imply $i_X \kappa = 0$?

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Proof sketch.

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Proof sketch.

Let
$$\mathbb{E} = \{ \phi \in \ker(\partial^*) \subset \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} : i_{\mathsf{X}} \phi = \mathsf{0} \}.$$

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Proof sketch.

Let
$$\mathbb{E} = \{ \phi \in \ker(\partial^*) \subset \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} : i_X \phi = 0 \}.$$

Let $d^{\omega} = \text{covariant exterior derivative.}$ (Bianchi: $d^{\omega} K = 0.$)

• Prop: If $i_X \kappa_E = 0$ and $\varphi \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$ is in \mathbb{E} , then $\partial^* d^\omega \varphi \in \mathbb{E}$.

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order ≥ 2 wrt \mathfrak{P} .

Proof sketch.

Let
$$\mathbb{E} = \{ \phi \in \ker(\partial^*) \subset \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} : i_X \phi = 0 \}.$$

Let $d^{\omega} = \text{covariant exterior derivative.}$ (Bianchi: $d^{\omega}K = 0.$)

- Prop: If $i_X \kappa_E = 0$ and $\varphi \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$ is in \mathbb{E} , then $\partial^* d^\omega \varphi \in \mathbb{E}$.
- Write $K = K_1 + K_2$, with $K_i \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$, $K_1 \in \mathbb{E}$, $K_2 = \partial^* \psi$, hom. of ψ is $\geq \ell > 0$. (\exists for $\ell = 1$ by Wilczynski-flatness.)
C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order ≥ 2 wrt \mathfrak{P} .

Proof sketch.

Let
$$\mathbb{E} = \{ \phi \in \ker(\partial^*) \subset \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} : i_X \phi = 0 \}.$$

Let $d^{\omega} = \text{covariant exterior derivative.}$ (Bianchi: $d^{\omega} K = 0$.)

- Prop: If $i_X \kappa_E = 0$ and $\varphi \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$ is in \mathbb{E} , then $\partial^* d^\omega \varphi \in \mathbb{E}$.
- Write $K = K_1 + K_2$, with $K_i \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$, $K_1 \in \mathbb{E}$, $K_2 = \partial^* \psi$, hom. of ψ is $\geq \ell > 0$. (\exists for $\ell = 1$ by Wilczynski-flatness.)

• Bianchi
$$\Rightarrow \partial^* d^\omega K_2 = -\partial^* d^\omega K_1 \in \mathbb{E}.$$

C-classes for higher order ODE

Theorem (Čap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:

- scalar ODE of order \geq 3 wrt \mathfrak{C} ; order 2 wrt \mathfrak{P} ;
- 2 systems of ODE of order \geq 2 wrt \mathfrak{P} .

Proof sketch.

Let
$$\mathbb{E} = \{ \phi \in \ker(\partial^*) \subset \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} : i_X \phi = 0 \}.$$

Let $d^{\omega} = \text{covariant exterior derivative.}$ (Bianchi: $d^{\omega} K = 0$.)

- Prop: If $i_X \kappa_E = 0$ and $\varphi \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$ is in \mathbb{E} , then $\partial^* d^\omega \varphi \in \mathbb{E}$.
- Write $K = K_1 + K_2$, with $K_i \in \Omega^2_{hor}(\mathcal{G}, \mathfrak{g})^P$, $K_1 \in \mathbb{E}$, $K_2 = \partial^* \psi$, hom. of ψ is $\geq \ell > 0$. (\exists for $\ell = 1$ by Wilczynski-flatness.)

• Bianchi
$$\Rightarrow \partial^* d^\omega K_2 = -\partial^* d^\omega K_1 \in \mathbb{E}.$$

• Focus on hom. ℓ -component to correct K_1 and K_2 . Get new $K_2 = \partial^* \psi$ with ψ of hom. $\geq \ell + 1$. Iterate until $K_2 = 0$.

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less).

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$9(u'')^2 u^{(5)} - 45u'' u''' u'''' + 40(u''')^3 = 0;$$

 $10(u^{\prime\prime\prime})^{3}u^{(7)} - 70(u^{\prime\prime\prime})^{2}u^{(4)}u^{(6)} - 49(u^{\prime\prime\prime})^{2}(u^{(5)})^{2} + 280u^{\prime\prime\prime}(u^{(4)})^{2}u^{(5)} - 175(u^{(4)})^{4} = 0.$

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$9(u'')^2 u^{(5)} - 45u'' u''' u'''' + 40(u''')^3 = 0;$$

$$10(u''')^{3}u^{(7)} - 70(u''')^{2}u^{(4)}u^{(6)} - 49(u''')^{2}(u^{(5)})^{2} + 280u'''(u^{(4)})^{2}u^{(5)} - 175(u^{(4)})^{4} = 0.$$

These models are homogeneous and have contact sym alg $A_2 \cong \mathfrak{sl}_3$ and $C_2 \cong \mathfrak{sp}_4$.

Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$9(u'')^2 u^{(5)} - 45u'' u''' u'''' + 40(u''')^3 = 0;$$

$$10(u''')^{3}u^{(7)} - 70(u''')^{2}u^{(4)}u^{(6)} - 49(u''')^{2}(u^{(5)})^{2} + 280u'''(u^{(4)})^{2}u^{(5)} - 175(u^{(4)})^{4} = 0.$$

These models are homogeneous and have contact sym alg $A_2 \cong \mathfrak{sl}_3$ and $C_2 \cong \mathfrak{sp}_4$. For both, isotropy is a "principal \mathfrak{sl}_2 ". Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$9(u'')^2 u^{(5)} - 45u'' u''' u'''' + 40(u''')^3 = 0;$$

$$10(u''')^{3}u^{(7)} - 70(u''')^{2}u^{(4)}u^{(6)} - 49(u''')^{2}(u^{(5)})^{2} + 280u'''(u^{(4)})^{2}u^{(5)} - 175(u^{(4)})^{4} = 0.$$

These models are homogeneous and have contact sym alg $A_2 \cong \mathfrak{sl}_3$ and $C_2 \cong \mathfrak{sp}_4$. For both, isotropy is a "principal \mathfrak{sl}_2 ". Decompose as \mathfrak{sl}_2 -modules and define \mathfrak{sl}_2 -equiv. "extension functor": e.g.

$$\mathfrak{s} := \mathfrak{sl}_3 = \mathfrak{sl}_2 \oplus \mathbb{V}_4 \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_4.$$

Classical fact: The submax sym dim for scalar ODE is usually 2 less than the max, except for 5th and 7th order (where it is 1 less). For the exceptions, the unique submax sym models are:

$$9(u'')^2 u^{(5)} - 45u'' u''' u'''' + 40(u''')^3 = 0;$$

$$10(u''')^{3}u^{(7)} - 70(u''')^{2}u^{(4)}u^{(6)} - 49(u''')^{2}(u^{(5)})^{2} + 280u'''(u^{(4)})^{2}u^{(5)} - 175(u^{(4)})^{4} = 0.$$

These models are homogeneous and have contact sym alg $A_2 \cong \mathfrak{sl}_3$ and $C_2 \cong \mathfrak{sp}_4$. For both, isotropy is a "principal \mathfrak{sl}_2 ". Decompose as \mathfrak{sl}_2 -modules and define \mathfrak{sl}_2 -equiv. "extension functor": e.g.

$$\mathfrak{s} := \mathfrak{sl}_3 = \mathfrak{sl}_2 \oplus \mathbb{V}_4 \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_4.$$

Curvature $\kappa(x, y) = \iota([x, y]) - [\iota(x), \iota(y)]$ is normal and $i_X \kappa = 0$.

A G_2 non-example

$$\mathfrak{s} := Lie(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10}$$

A G_2 non-example

$$\mathfrak{s} := Lie(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10} \quad \rightsquigarrow \quad \boxed{11 \text{th order ODE?}}$$

A G_2 non-example

$$\mathfrak{s} := Lie(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10} \quad \rightsquigarrow \quad \boxed{11 \text{th order ODE?}}$$

ODE \rightsquigarrow "filtered G_0 -structures of type \mathfrak{m} ", but the latter category is larger.

$$\mathfrak{s} := \text{Lie}(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10} \quad \rightsquigarrow \quad \boxed{11 \text{th order ODE?}}$$

ODE \rightsquigarrow "filtered G_0 -structures of type \mathfrak{m} ", but the latter category is larger. For scalar ODE, "strong = weak" (derived flags) is nec./suff., i.e. $[T^{-i}\mathcal{E}, T^{-j}\mathcal{E}] = T^{-\min(i,j)-1}\mathcal{E}$.

$$\mathfrak{s} := \text{Lie}(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10} \quad \rightsquigarrow \quad \boxed{11 \text{th order ODE?}}$$

ODE \rightsquigarrow "filtered G_0 -structures of type \mathfrak{m} ", but the latter category is larger. For scalar ODE, "strong = weak" (derived flags) is nec./suff., i.e. $[T^{-i}\mathcal{E}, T^{-j}\mathcal{E}] = T^{-\min(i,j)-1}\mathcal{E}$.

$$\mathfrak{s} := Lie(G_2) = \mathfrak{sl}_2 \oplus \mathbb{V}_{10} \quad \stackrel{\iota}{\hookrightarrow} \quad \mathfrak{g} = \mathfrak{gl}_2 \ltimes \mathbb{V}_{10} \quad \rightsquigarrow \quad \boxed{11 \text{th order ODE?}}$$

ODE \rightsquigarrow "filtered G_0 -structures of type \mathfrak{m} ", but the latter category is larger. For scalar ODE, "strong = weak" (derived flags) is nec./suff., i.e. $[T^{-i}\mathcal{E}, T^{-j}\mathcal{E}] = T^{-\min(i,j)-1}\mathcal{E}$.

Since $[\mathfrak{s}_{\alpha_1+\alpha_2},\mathfrak{s}_{2\alpha_1+\alpha_2}] = \mathfrak{s}_{3\alpha_1+2\alpha_2}$, i.e. $(-8,-9) \rightarrow -11$, this does not come from an (11th order) ODE.