Exceptionally simple PDE

Dennis The

Department of Mathematics \& Statistics The Arctic University of Norway UiT

Pure Mathematics Colloquium University of Waterloo

January 5, 2018

Outline

(1) Symmetry \& various geometric realizations of G_{2}
(2) New models: Exceptionally simple PDE
(3) Geometry underlying the new models

Symmetry and G_{2}

Dennis The

Symmetry

Continuous symmetry

- 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.

Continuous symmetry

- 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.
- \rightsquigarrow Lie group: group + manifold

Continuous symmetry

- 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.
- \rightsquigarrow Lie group: group + manifold
- \rightsquigarrow Lie algebra: vector space \mathfrak{g} with a skew, bilinear $[\cdot, \cdot]$ s.t.

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0, \quad \forall a, b, c \in \mathfrak{g}
$$

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical:

$$
\begin{array}{ll}
A_{\ell}=\mathfrak{s l}_{\ell+1}(\mathbb{C}), & B_{\ell}=\mathfrak{s o}_{2 \ell+1}(\mathbb{C}) \\
C_{\ell}=\mathfrak{s p}_{2 \ell}(\mathbb{C}), & D_{\ell}=\mathfrak{s o}_{2 \ell}(\mathbb{C}) .
\end{array}
$$

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical: $\quad A_{\ell}=\mathfrak{s l}_{\ell+1}(\mathbb{C}), \quad B_{\ell}=\mathfrak{s o}_{2 \ell+1}(\mathbb{C})$,

$$
C_{\ell}=\mathfrak{s p}_{2 \ell}(\mathbb{C}), \quad D_{\ell}=\mathfrak{s o}_{2 \ell}(\mathbb{C})
$$

- Exceptional: | \mathfrak{g} | G_{2} | F_{4} | E_{6} | E_{7} | E_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | 14 | 52 | 78 | 133 | 248 |

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical: $\quad A_{\ell}=\mathfrak{s l}_{\ell+1}(\mathbb{C}), \quad B_{\ell}=\mathfrak{s o}_{2 \ell+1}(\mathbb{C})$,

$$
C_{\ell}=\mathfrak{s p}_{2 \ell}(\mathbb{C}), \quad D_{\ell}=\mathfrak{s o}_{2 \ell}(\mathbb{C})
$$

- Exceptional: | \mathfrak{g} | G_{2} | F_{4} | E_{6} | E_{7} | E_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | 14 | 52 | 78 | 133 | 248 |

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical:

$$
A_{\ell}=\mathfrak{s l}_{\ell+1}(\mathbb{C}), \quad B_{\ell}=\mathfrak{s o}_{2 \ell+1}(\mathbb{C})
$$

$$
C_{\ell}=\mathfrak{s p}_{2 \ell}(\mathbb{C}), \quad D_{\ell}=\mathfrak{s o}_{2 \ell}(\mathbb{C})
$$

- Exceptional: | \mathfrak{g} | G_{2} | F_{4} | E_{6} | E_{7} | E_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | 14 | 52 | 78 | 133 | 248 |

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

This is an abstract classification result. What about geometric realizations of \mathfrak{g}, i.e. as symmetries of some structure?

Complex simple Lie algebras

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical:

$$
A_{\ell}=\mathfrak{s l}_{\ell+1}(\mathbb{C}), \quad B_{\ell}=\mathfrak{s o}_{2 \ell+1}(\mathbb{C})
$$

$$
C_{\ell}=\mathfrak{s p}_{2 \ell}(\mathbb{C}), \quad D_{\ell}=\mathfrak{s o}_{2 \ell}(\mathbb{C})
$$

- Exceptional: | \mathfrak{g} | G_{2} | F_{4} | E_{6} | E_{7} | E_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dim | 14 | 52 | 78 | 133 | 248 |

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

This is an abstract classification result. What about geometric realizations of \mathfrak{g}, i.e. as symmetries of some structure?

Classical cases: Easy. What about the exceptionals?

Generic 3-forms and G_{2}

$G L_{7}(\mathbb{C})$ acts with an open orbit on 3 -forms on \mathbb{C}^{7}.

Generic 3-forms and G_{2}

$G L_{7}(\mathbb{C})$ acts with an open orbit on 3 -forms on \mathbb{C}^{7}.
Note: $\operatorname{dim}\left(G L_{7}(\mathbb{C})\right)=49$ and $\operatorname{dim}\left(\bigwedge^{3} \mathbb{C}^{7}\right)=35$.

Generic 3-forms and G_{2}

$G L_{7}(\mathbb{C})$ acts with an open orbit on 3 -forms on \mathbb{C}^{7}.
Note: $\operatorname{dim}\left(G L_{7}(\mathbb{C})\right)=49$ and $\operatorname{dim}\left(\bigwedge^{3} \mathbb{C}^{7}\right)=35$.
Engel (1900): $G_{2}=$ stabilizer in $G L_{7}$ of a generic 3-form ϕ.

Generic 3-forms and G_{2}

$G L_{7}(\mathbb{C})$ acts with an open orbit on 3 -forms on \mathbb{C}^{7}.
Note: $\operatorname{dim}\left(G L_{7}(\mathbb{C})\right)=49$ and $\operatorname{dim}\left(\bigwedge^{3} \mathbb{C}^{7}\right)=35$.
Engel (1900): $G_{2}=$ stabilizer in $G L_{7}$ of a generic 3-form ϕ.
Given a basis $\left\{e_{i}\right\}_{i=1}^{7}$ and dual basis $\left\{e^{i}\right\}_{i=1}^{7}$, can take:

$$
\phi=e^{147}+e^{257}+e^{367}+e^{123}-e^{156}+e^{246}-e^{345},
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$.

Generic 3-forms and G_{2}

$G L_{7}(\mathbb{C})$ acts with an open orbit on 3 -forms on \mathbb{C}^{7}.
Note: $\operatorname{dim}\left(G L_{7}(\mathbb{C})\right)=49$ and $\operatorname{dim}\left(\bigwedge^{3} \mathbb{C}^{7}\right)=35$.
Engel (1900): $G_{2}=$ stabilizer in $G L_{7}$ of a generic 3-form ϕ.
Given a basis $\left\{e_{i}\right\}_{i=1}^{7}$ and dual basis $\left\{e^{i}\right\}_{i=1}^{7}$, can take:

$$
\phi=e^{147}+e^{257}+e^{367}+e^{123}-e^{156}+e^{246}-e^{345}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$.
(Over $\mathbb{R}, \exists 2$ open orbits. Get the cpt and split real forms of G_{2}.)

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
$\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
$\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

$\mathbb{O}=\operatorname{span}_{\mathbb{R}}\left\{1, i_{1}, \ldots, i_{7}\right\}$ is a non-associative / non-comm. algebra.

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
$\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

$\mathbb{O}=\operatorname{span}_{\mathbb{R}}\left\{1, i_{1}, \ldots, i_{7}\right\}$ is a non-associative / non-comm. algebra.
Cartan (1914): $G_{2}=\operatorname{Aut}(\mathbb{O})$. (Compact form here.)

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
$\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

$\mathbb{O}=\operatorname{span}_{\mathbb{R}}\left\{1, i_{1}, \ldots, i_{7}\right\}$ is a non-associative / non-comm. algebra.
Cartan (1914): $G_{2}=\operatorname{Aut}(\mathbb{O})$. (Compact form here.)
On $\mathbb{V}=\mathfrak{I m}(\mathbb{O})$, have a 7-dim cross-product

$$
x \times y=x y+\langle x, y\rangle 1
$$

We have the generic 3-form $\phi(x, y, z)=\langle x \times y, z\rangle$.

Division algebras and G_{2}

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.
$\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

$\mathbb{O}=\operatorname{span}_{\mathbb{R}}\left\{1, i_{1}, \ldots, i_{7}\right\}$ is a non-associative / non-comm. algebra.
Cartan (1914): $G_{2}=\operatorname{Aut}(\mathbb{O})$. (Compact form here.)
On $\mathbb{V}=\mathfrak{I m}(\mathbb{O})$, have a 7-dim cross-product

$$
x \times y=x y+\langle x, y\rangle 1
$$

We have the generic 3-form $\phi(x, y, z)=\langle x \times y, z\rangle$.
(Split form of G_{2} arises from automorphisms of split-octonions.)

Rolling distributions and G_{2}

Consider one ball rolling on another without twisting or slipping.

- Configuration space M is 5 -dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset T M$ of allowable directions.

Rolling distributions and G_{2}

Consider one ball rolling on another without twisting or slipping.

- Configuration space M is 5 -dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset T M$ of allowable directions.

Let $\rho \geqslant 1$ be the ratio of the radii.
If $\rho \neq 1$, get $(2,3,5)$-geometry.

Rolling distributions and G_{2}

Consider one ball rolling on another without twisting or slipping.

- Configuration space M is 5 -dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset T M$ of allowable directions.

Let $\rho \geqslant 1$ be the ratio of the radii.
If $\rho \neq 1$, get $(2,3,5)$-geometry.

- $\rho \neq 3: \mathrm{SO}(3) \times \mathrm{SO}(3)$ symmetry

Rolling distributions and G_{2}

Consider one ball rolling on another without twisting or slipping.

- Configuration space M is 5 -dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset T M$ of allowable directions.

Let $\rho \geqslant 1$ be the ratio of the radii.
If $\rho \neq 1$, get $(2,3,5)$-geometry.

- $\rho \neq 3: \mathrm{SO}(3) \times \mathrm{SO}(3)$ symmetry
- $\rho=3$: (split) \mathfrak{g}_{2} symmetry (Bryant, Zelenko, Bor-Montgomery, Baez-Huerta)

The hunt for a G_{2}-snake

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\overrightarrow{r_{1}}, \vec{r}_{4}$, and on middle bar at $\vec{r}:=(1-s) \overrightarrow{r_{2}}+s \overrightarrow{r_{3}}$.

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\overrightarrow{r_{1}}, \overrightarrow{r_{4}}$, and on middle bar at $\vec{r}:=(1-s) \overrightarrow{r_{2}}+s \overrightarrow{r_{3}}$.
- 5-dim configuration space M.

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends \vec{r}_{1}, \vec{r}_{4}, and on middle bar at $\vec{r}:=(1-s) \overrightarrow{r_{2}}+s \vec{r}_{3}$.
- 5-dim configuration space M.
- Have $(2,3,5)$ "snake distribution" coming from non-holonomic constraints:

$$
d \vec{r}_{1}\left\|\left(\vec{r}_{1}-\vec{r}_{2}\right), \quad d \vec{r}\right\|\left(\vec{r}_{2}-\vec{r}_{3}\right), \quad d \vec{r}_{4} \|\left(\vec{r}_{3}-\vec{r}_{4}\right)
$$

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends \vec{r}_{1}, \vec{r}_{4}, and on middle bar at $\vec{r}:=(1-s) \overrightarrow{r_{2}}+s \overrightarrow{r_{3}}$.
- 5-dim configuration space M.
- Have $(2,3,5)$ "snake distribution" coming from non-holonomic constraints:

$$
d \vec{r}_{1}\left\|\left(\vec{r}_{1}-\vec{r}_{2}\right), \quad d \vec{r}\right\|\left(\vec{r}_{2}-\vec{r}_{3}\right), \quad d \overrightarrow{r_{4}} \|\left(\overrightarrow{r_{3}}-\overrightarrow{r_{4}}\right) .
$$

Q: \exists ? (a, b, c, s) s.t. the snake distribution has \mathfrak{g}_{2}-symmetry?

The hunt for a G_{2}-snake

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\overrightarrow{r_{1}}, \overrightarrow{r_{4}}$, and on middle bar at $\vec{r}:=(1-s) \vec{r}_{2}+s \vec{r}_{3}$.
- 5-dim configuration space M.
- Have $(2,3,5)$ "snake distribution" coming from non-holonomic constraints:

$$
d \vec{r}_{1}\left\|\left(\vec{r}_{1}-\vec{r}_{2}\right), \quad d \vec{r}\right\|\left(\vec{r}_{2}-\vec{r}_{3}\right), \quad d \vec{r}_{4} \|\left(\vec{r}_{3}-\vec{r}_{4}\right)
$$

$\mathrm{Q}: \exists$? (a, b, c, s) s.t. the snake distribution has \mathfrak{g}_{2}-symmetry?
(He doubts it: "A G_{2}-snake may be as mythical as a unicorn or yeti.")

$(2,3,5)$ from the G_{2} root diagram

$$
G_{2} / P_{1}
$$

Cartan \& Engel (1893): Structures with G_{2} symmetry

Dim	Geometric structure	Model		
7	Parabolic Goursat	$9\left(u_{x x}\right)^{2}+12\left(u_{y y}\right)^{2}\left(u_{x x} u_{y y}-\left(u_{x y}\right)^{2}\right)$ $+32\left(u_{x y}\right)^{3}-36 u_{x x} u_{x y} u_{y y}=0$		
6	PDE \mathcal{F}		Involutive pair $_{\text {of PDE } \mathcal{E}} \quad$	$u_{x x}=\frac{1}{3}\left(u_{y y}\right)^{3}, \quad u_{x y}=\frac{1}{2}\left(u_{y y}\right)^{2}$
:---:				
5				
5				

Exceptionally simple PDE

Other geometric realizations?

Q: Explicitly generalize the Cartan-Engel models to other \mathfrak{g}.

Other geometric realizations?

Q: Explicitly generalize the Cartan-Engel models to other \mathfrak{g}.

This seems like an absolutely ridiculous question, e.g. for E_{8} ?!

Other geometric realizations?

Q: Explicitly generalize the Cartan-Engel models to other \mathfrak{g}.

This seems like an absolutely ridiculous question, e.g. for E_{8} ?!
Cartan (1893): In a single sentence, he refers to E_{8} acting on a 57-dim space, i.e. adjoint variety $E_{8} / P_{8} \hookrightarrow \mathbb{P}\left(E_{8}\right)$ (Non-explicit).

Other geometric realizations?

Q: Explicitly generalize the Cartan-Engel models to other \mathfrak{g}.

This seems like an absolutely ridiculous question, e.g. for E_{8} ?!
Cartan (1893): In a single sentence, he refers to E_{8} acting on a 57-dim space, i.e. adjoint variety $E_{8} / P_{8} \hookrightarrow \mathbb{P}\left(E_{8}\right)$ (Non-explicit). Yamaguchi (1999): Generalized Cartan's reduction thms (1910, 1911). (PDE are non-explicit).

Jordan algebras

W : complex Jordan algebra with a distinguished $\mathfrak{C} \in S^{3} W^{*}$.

Jordan algebras

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^{3} W^{*}$.

- Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0 , and

$$
W=\mathcal{J}_{3}(\mathbb{A}):=\left\{\left(\begin{array}{lll}
\lambda_{1} & v_{1} & v_{2} \\
\overline{v_{1}} & \lambda_{2} & v_{3} \\
\overline{v_{2}} & \frac{v_{3}}{v_{3}} & \lambda_{3}
\end{array}\right): v_{i} \in \mathbb{A}, \quad \lambda_{i} \in \mathbb{C}\right\}
$$

Here, $\mathfrak{C}\left(t^{3}\right)=\mathfrak{C}(t, t, t):=\operatorname{det}(t)$.

Jordan algebras

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^{3} W^{*}$.

- Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0 , and

$$
W=\mathcal{J}_{3}(\mathbb{A}):=\left\{\left(\begin{array}{lll}
\lambda_{1} & v_{1} & v_{2} \\
\overline{v_{1}} & \lambda_{2} & v_{3} \\
\overline{v_{2}} & \frac{v_{3}}{} & \lambda_{3}
\end{array}\right): v_{i} \in \mathbb{A}, \quad \lambda_{i} \in \mathbb{C}\right\} .
$$

Here, $\mathfrak{C}\left(t^{3}\right)=\mathfrak{C}(t, t, t):=\operatorname{det}(t)$.

- $W=\mathbb{C}$ with $\mathfrak{C}\left(t^{3}\right):=\frac{t^{3}}{3}$.

Jordan algebras

W : complex Jordan algebra with a distinguished $\mathfrak{C} \in S^{3} W^{*}$.

- Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0 , and

$$
W=\mathcal{J}_{3}(\mathbb{A}):=\left\{\left(\begin{array}{lll}
\lambda_{1} & v_{1} & v_{2} \\
\overline{v_{1}} & \lambda_{2} & v_{3} \\
\overline{v_{2}} & \frac{v_{3}}{} & \lambda_{3}
\end{array}\right): v_{i} \in \mathbb{A}, \quad \lambda_{i} \in \mathbb{C}\right\} .
$$

Here, $\mathfrak{C}\left(t^{3}\right)=\mathfrak{C}(t, t, t):=\operatorname{det}(t)$.

- $W=\mathbb{C}$ with $\mathfrak{C}\left(t^{3}\right):=\frac{t^{3}}{3}$.
- Given $\left(\mathbb{C}^{m},\langle\cdot, \cdot\rangle\right)$, let $W=\mathcal{J S}_{m}=\mathbb{C}^{m} \oplus \mathbb{C}$ ("spin factor"). Given $t=(v, \lambda)$, we have $\mathfrak{C}\left(t^{3}\right):=\langle v, v\rangle \lambda$.

Jordan algebras

W : complex Jordan algebra with a distinguished $\mathfrak{C} \in S^{3} W^{*}$.

- Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0 , and

$$
W=\mathcal{J}_{3}(\mathbb{A}):=\left\{\left(\begin{array}{lll}
\lambda_{1} & v_{1} & v_{2} \\
\overline{v_{1}} & \lambda_{2} & v_{3} \\
\overline{v_{2}} & \frac{v_{3}}{v_{3}} & \lambda_{3}
\end{array}\right): v_{i} \in \mathbb{A}, \quad \lambda_{i} \in \mathbb{C}\right\} .
$$

Here, $\mathfrak{C}\left(t^{3}\right)=\mathfrak{C}(t, t, t):=\operatorname{det}(t)$.

- $W=\mathbb{C}$ with $\mathfrak{C}\left(t^{3}\right):=\frac{t^{3}}{3}$.
- Given $\left(\mathbb{C}^{m},\langle\cdot, \cdot\rangle\right)$, let $W=\mathcal{J} \mathcal{S}_{m}=\mathbb{C}^{m} \oplus \mathbb{C}$ ("spin factor").

Given $t=(v, \lambda)$, we have $\mathfrak{C}\left(t^{3}\right):=\langle v, v\rangle \lambda$.

NOTE: The Jordan algebra structure plays no role in this talk.

Exceptionally simple (complex) PDE

Let $n-1:=\operatorname{dim}(W)$. Basis $\left\{w_{a}\right\}$ on W, dual basis $\left\{w^{a}\right\}$ on W^{*}. Let $\left\{x^{i}\right\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C} \oplus W$.

Exceptionally simple (complex) PDE

Let $n-1:=\operatorname{dim}(W)$. Basis $\left\{w_{a}\right\}$ on W, dual basis $\left\{w^{a}\right\}$ on W^{*}. Let $\left\{x^{i}\right\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C} \oplus W$. Param. submfld of $J^{2}\left(\mathbb{C}^{n}, \mathbb{C}\right)$:

$$
\mathcal{E}: \quad\left(u_{i j}\right)=\left(\begin{array}{cc}
u_{00} & u_{0 b} \\
u_{a 0} & u_{a b}
\end{array}\right)=\left(\begin{array}{cc}
\mathfrak{C}\left(t^{3}\right) & \frac{3}{2} \mathfrak{C}_{b}\left(t^{2}\right) \\
\frac{3}{2} \mathfrak{C}_{a}\left(t^{2}\right) & 3 \mathfrak{C}_{a b}(t)
\end{array}\right), \quad t \in W .
$$

Exceptionally simple (complex) PDE

Let $n-1:=\operatorname{dim}(W)$. Basis $\left\{w_{a}\right\}$ on W, dual basis $\left\{w^{a}\right\}$ on W^{*}. Let $\left\{x^{i}\right\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C} \oplus W$. Param. submfld of $J^{2}\left(\mathbb{C}^{n}, \mathbb{C}\right)$:

$$
\mathcal{E}: \quad\left(u_{i j}\right)=\left(\begin{array}{cc}
u_{00} & u_{0 b} \\
u_{a 0} & u_{a b}
\end{array}\right)=\left(\begin{array}{cc}
\mathfrak{C}\left(t^{3}\right) & \frac{3}{2} \mathfrak{C}_{b}\left(t^{2}\right) \\
\frac{3}{2} \mathfrak{C}_{a}\left(t^{2}\right) & 3 \mathfrak{C}_{a b}(t)
\end{array}\right), \quad t \in W .
$$

Theorem (T. 2017,
 symmetries of \mathcal{E})

W	$\mathcal{J}_{2 \ell-5}$ $(\ell \geqslant 3)$	$\mathcal{J}_{2 \ell-6}$ $(\ell \geqslant 5)$	\mathbb{C}	$\mathcal{J}_{3}(\underline{0})$	$\mathcal{J}_{3}\left(\mathbb{R}_{\mathrm{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{C}_{\mathbb{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{H}_{\mathrm{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{O}_{\mathrm{C}}\right)$
n	$2 \ell-3$	$2 \ell-4$	2	4	7	10	16	28
$\operatorname{sym}(\mathcal{E})$	B_{ℓ}	D_{ℓ}	G_{2}	D_{4}	F_{4}	E_{6}	E_{7}	E_{8}

Exceptionally simple (complex) PDE

Let $n-1:=\operatorname{dim}(W)$. Basis $\left\{w_{a}\right\}$ on W, dual basis $\left\{w^{a}\right\}$ on W^{*}. Let $\left\{x^{i}\right\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C} \oplus W$. Param. submfld of $J^{2}\left(\mathbb{C}^{n}, \mathbb{C}\right)$:

$$
\mathcal{E}:\left(u_{i j}\right)=\left(\begin{array}{cc}
u_{00} & u_{0 b} \\
u_{a 0} & u_{a b}
\end{array}\right)=\left(\begin{array}{cc}
\mathfrak{C}\left(t^{3}\right) & \frac{3}{2} \mathfrak{C}_{b}\left(t^{2}\right) \\
\frac{3}{2} \mathfrak{C}_{a}\left(t^{2}\right) & 3 \mathfrak{C}_{a b}(t)
\end{array}\right), \quad t \in W .
$$

Theorem (T. 2017, Contact symmetries of \mathcal{E})

W	$\mathcal{J}_{2 \ell-5}$ $(\geqslant \geqslant 3)$	$\mathcal{J}_{2 \ell-6}(\ell \geqslant 5)$	\mathbb{C}	$\mathcal{J}_{3}(0)$	$\mathcal{J}_{3}\left(\mathbb{R}_{\mathbb{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{C}_{\mathbb{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{H}_{\mathbb{C}}\right)$	$\mathcal{J}_{3}\left(\mathbb{O}_{\mathbb{C}}\right)$
n	$2 \ell-3$	$2 \ell-4$	2	4	7	10	16	28
$\operatorname{sym}(\mathcal{E})$	B_{ℓ}	D_{ℓ}	G_{2}	D_{4}	F_{4}	E_{6}	E_{7}	E_{8}

Theorem (Degenerate cases)

- $u_{i j}=0,1 \leqslant i, j \leqslant n$: point sym $=A_{n+1}$. (NOTE: $\mathfrak{s l}_{2}$ excluded!)
- $u_{i j k}=0,1 \leqslant i, j, k \leqslant n$: contact sym $=C_{n+1}$.

Other exceptionally simple models

$$
\mathcal{F}:\left\{\begin{array}{l}
u_{00}=t^{a} t^{b} u_{a b}-2 \mathfrak{C}\left(t^{3}\right), \\
u_{0 a}=t^{b} u_{a b}-\frac{3}{2} \mathfrak{C}_{a}\left(t^{2}\right)
\end{array} \quad(t \in W) .\right.
$$

$\mathcal{V}=\{[\mathbf{V}(\lambda, t)]:[\lambda, t] \in \mathbb{P}(\mathbb{C} \oplus W)\} \subset \mathbb{P}(\mathcal{C})$, where $\mathbf{V}(\lambda, t)=\lambda^{3} \mathbf{X}_{0}-\lambda^{2} t^{a} \mathbf{X}_{a}-\frac{1}{2} \mathfrak{C}\left(t^{3}\right) \mathbf{U}^{0}-\frac{3}{2} \lambda \mathfrak{C}_{\mathbf{a}}\left(t^{2}\right) \mathbf{U}^{a}$, with $\mathbf{X}_{i}=\partial_{x^{i}}+u_{i} \partial_{u}, \quad \mathbf{U}^{i}=\partial_{u_{i}}$.

$$
\tau(\mathcal{V})=\{Q=0\} \subset \mathbb{P}(\mathcal{C}) \text {, where }
$$

$$
\mathrm{Q}=\left(\omega^{i} \theta_{i}\right)^{2}+2 \theta_{0} \mathfrak{C}\left(\Omega^{3}\right)-2 \omega^{0} \mathbb{C}^{*}\left(\Theta^{3}\right)-9 \mathfrak{C}_{a}\left(\Omega^{2}\right)\left(\mathfrak{C}^{*}\right)^{a}\left(\Theta^{2}\right),
$$

$$
\text { with } \omega^{i}=d x^{i}, \theta_{i}=d u_{i}, \Omega=\omega^{a} \otimes w_{a}, \Theta=\theta_{a} \otimes w^{a} \text {. }
$$

$\overline{\mathcal{E}}: \quad Z_{a}=\frac{3}{2} \mathfrak{C}_{a}\left(T^{2}\right), \quad U_{a b}=3 \mathfrak{C}_{a b}(T) \quad(T \in W)$.

Envelopes

Consider the family of inhom. linear PDE param. by $t \in W$:

$$
\begin{equation*}
\mathcal{M}_{t}:=u_{00}-2 t^{a} u_{a 0}+t^{a} t^{b} u_{a b}-\mathfrak{C}\left(t^{3}\right)=0 \tag{*}
\end{equation*}
$$

Envelopes

Consider the family of inhom. linear PDE param. by $t \in W$:

$$
\begin{equation*}
\mathcal{M}_{t}:=u_{00}-2 t^{a} u_{a 0}+t^{a} t^{b} u_{a b}-\mathfrak{C}\left(t^{3}\right)=0 \tag{*}
\end{equation*}
$$

- first-order envelope: $\left\{\mathcal{M}_{t}=0, \partial_{t^{a}} \mathcal{M}_{t}=0\right\}$ yields \mathcal{F}.
- 2nd-order envelope: $\left\{\mathcal{M}_{t}=0, \partial_{t^{a}} \mathcal{M}_{t}=0, \partial_{t^{a}} \partial_{t^{b}} \mathcal{M}_{t}=0\right\}$ yields \mathcal{E}.
NOTE: $\left({ }^{*}\right)$ generalizes the classical "Goursat parametrization".

Geometry behind the new models

What is a 2nd order PDE?

Global	Local
Contact mfld	$\left(x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i}$
$\left(M^{2 n+1}, \mathcal{C}\right)$	$\mathcal{C}=\{\sigma=0\}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}\right\}$

What is a 2nd order PDE?

Global	Local
Contact mfld	$\left(x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i}$
$\left(M^{2 n+1}, \mathcal{C}\right)$	$\mathcal{C}=\{\sigma=0\}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}\right\}$
\mathcal{C} is a field of conformal	$\left.d \sigma\right\|_{\mathcal{C}}=d x^{i} \wedge d u_{i} \left\lvert\, \mathcal{C}=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)\right.$
symplectic spaces	$\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}$ is a CS-basis

What is a 2nd order PDE?

Global	Local
Contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$	$\mathcal{C}=\left\{\begin{array}{c}\left.x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i} \\ \sigma=0\}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}\right\}\end{array}\right.$
\mathcal{C} is a field of conformal	$\left.d \sigma\right\|_{\mathcal{C}}=d x^{i} \wedge d u_{i} \left\lvert\, \mathcal{C}=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)\right.$
symplectic spaces	$\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}$ is a CS-basis
Legendrian subspace at $m \in M$	$\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}+u_{i j} \partial_{u_{j}}\right\}\left(u_{i j}=u_{j i}\right)$

What is a 2nd order PDE?

\(\left.$$
\begin{array}{c|c}\text { Global } & \text { Local } \\
\hline \hline \begin{array}{c}\text { Contact mfld } \\
\left(M^{2 n+1}, \mathcal{C}\right)\end{array} & \mathcal{C}=\left\{\begin{array}{c}\left(x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i} \\
\sigma=0\}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}\right\}\end{array}\right. \\
\hline \begin{array}{c}\mathcal{C} \text { is a field of conformal } \\
\text { symplectic spaces }\end{array} & \left.d \sigma\right|_{\mathcal{C}}=d x^{i} \wedge d u_{i} \left\lvert\, \mathcal{C}=\left(\begin{array}{cc}0 & I \\
-I & 0\end{array}
$$\right)\right.

\hline \begin{array}{c}Legendrian subspace

at m \in M\end{array} \& \partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}} is a CS-basis\end{array}\right]\)| $\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}+u_{i j} \partial_{u_{j}}\right\}\left(u_{i j}=u_{j i}\right)$ |
| :---: |
| Lagrange-Grassmann
 bundle $\left(M^{i}, u, u_{i}, u_{i j}\right)$
 $\left.\mathcal{C}^{(1)}\right)$ |
| $\mathcal{C}^{(1)}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}+u_{i j} \partial_{u_{j}}, \partial_{u_{i j}}\right\}$ |

What is a 2nd order PDE?

Global	Local
Contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$	$\begin{gathered} \left(x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i} \\ \mathcal{C}=\{\sigma=0\}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}}\right\} \end{gathered}$
\mathcal{C} is a field of conformal symplectic spaces	$\begin{gathered} \left.d \sigma\right\|_{\mathcal{C}}=\left.d x^{i} \wedge d u_{i}\right\|_{\mathcal{C}}=\left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right) \\ \partial_{x^{i}}+u_{i} \partial_{u}, \partial_{u_{i}} \text { is a CS-basis } \end{gathered}$
Legendrian subspace at $m \in M$	$\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}+u_{i j} \partial_{u_{j}}\right\}\left(u_{i j}=u_{j i}\right)$
Lagrange-Grassmann bundle $\left(M^{(1)}, \mathcal{C}^{(1)}\right)$	$\begin{gathered} \left(x^{i}, u, u_{i}, u_{i j}\right) \\ \mathcal{C}^{(1)}=\operatorname{span}\left\{\partial_{x^{i}}+u_{i} \partial_{u}+u_{i j} \partial_{u_{j}}, \partial_{u_{i j}}\right\} \end{gathered}$

A 2nd order PDE Σ is a submanifold of $M^{(1)}$. A contact sym is a sym of $\left(M^{(1)}, \mathcal{C}^{(1)}\right)$ that preserves Σ.

What is a 2nd order PDE?

$\left.\left.$| Global | Local |
| :---: | :---: |
| Contact mfld
 $\left(M^{2 n+1}, \mathcal{C}\right)$ | $\mathcal{C}=\left\{x^{i}, u, u_{i}\right), \sigma:=d u-u_{i} d x^{i}$ |
| \mathcal{C} is a field of conformal | |
| symplectic spaces | |\(\quad d \sigma\right|_{\mathcal{C}}=d x^{i} \wedge d u_{i} \right\rvert\, \mathcal{C}=\left(\begin{array}{cc}0 \& I

-I \& 0\end{array}\right)\).

A 2nd order PDE Σ is a submanifold of $M^{(1)}$. A contact sym is a sym of $\left(M^{(1)}, \mathcal{C}^{(1)}\right)$ that preserves Σ.

IDEA: contact mfld + additional structure.

Let $\mathcal{V}=\left\{\left[\nu^{3}\right]:[v] \in \mathbb{P}^{1}\right\}, V:=S^{3} \mathbb{C}^{2}$, and $[\eta]$ CS-form on V :

$$
\eta(f, g):=\frac{1}{3!}\left(f_{x x x} g_{y y y}-3 f_{x x y} g_{y y x}+3 f_{x y y} g_{y x x}-f_{y y y} g_{x x x}\right),
$$

$[\eta]$ is $G L_{2}$-invariant, and $\operatorname{dim}(\operatorname{LG}(V))=3$.

Let $\mathcal{V}=\left\{\left[\nu^{3}\right]:[v] \in \mathbb{P}^{1}\right\}, V:=S^{3} \mathbb{C}^{2}$, and $[\eta]$ CS-form on V :

$$
\eta(f, g):=\frac{1}{3!}\left(f_{x x x} g_{y y y}-3 f_{x x y} g_{y y x}+3 f_{x y y} g_{y x x}-f_{y y y} g_{x x x}\right),
$$

$[\eta]$ is $G L_{2}$-invariant, and $\operatorname{dim}(\mathrm{LG}(V))=3$.
Example (Osculating filtration: differentiate $\gamma(t)=(\mathrm{x}+t \mathrm{y})^{3}$)

$$
\underset{\left\langle x^{3}\right\rangle}{\ell} \subset \underset{\substack{\left\langle x^{3}, x^{2} y\right\rangle \\ \text { Legendrian! }}}{\hat{T}_{\ell} \mathcal{V}} \subset \underset{\left\langle x^{3}, x^{2} y, x y^{2}\right\rangle}{\hat{T}_{\ell}^{(2)} \mathcal{V}} \subset \hat{T}_{\ell}^{(3)} \mathcal{V}=V
$$

Let $\mathcal{V}=\left\{\left[\nu^{3}\right]:[v] \in \mathbb{P}^{1}\right\}, V:=S^{3} \mathbb{C}^{2}$, and $[\eta]$ CS-form on V :

$$
\eta(f, g):=\frac{1}{3!}\left(f_{x x x} g_{y y y}-3 f_{x x y} g_{y y x}+3 f_{x y y} g_{y x x}-f_{y y y} g_{x x x}\right),
$$

$[\eta]$ is $G L_{2}$-invariant, and $\operatorname{dim}(\mathrm{LG}(V))=3$.
Example (Osculating filtration: differentiate $\left.\gamma(t)=(x+t y)^{3}\right)$

$$
\begin{aligned}
& \underset{\ell}{\ell} \subset \hat{T}_{\ell} \mathcal{V} \subset \hat{T}_{\ell}^{(2)} \mathcal{V} \subset \hat{T}_{\ell}^{(3)} \mathcal{V}=V \\
& \left\langle x^{3}\right\rangle \quad\left\langle x^{3}, x^{2} y\right\rangle \quad\left\langle x^{3}, x^{2} y, x y^{2}\right\rangle \\
& \text { Legendrian! }
\end{aligned}
$$

Wrt CS-basis, i.e. $\eta=\left(\begin{array}{ccc}0 & i d_{2} \\ -i d_{2} & 0\end{array}\right)$, have coords $\left(\begin{array}{lll}c_{11} & c_{12} \\ c_{12} & (& 22\end{array}\right)$ on $L G(V)$.

Twisted cubic $\mathcal{V} \subset \mathbb{P}(V)$

Let $\mathcal{V}=\left\{\left[\nu^{3}\right]:[v] \in \mathbb{P}^{1}\right\}, V:=S^{3} \mathbb{C}^{2}$, and $[\eta]$ CS-form on V :

$$
\eta(f, g):=\frac{1}{3!}\left(f_{x x x} g_{y y y}-3 f_{x x y} g_{y y x}+3 f_{x y y} g_{y x x}-f_{y y y} g_{x x x}\right),
$$

$[\eta]$ is $G L_{2}$-invariant, and $\operatorname{dim}(\mathrm{LG}(V))=3$.
Example (Osculating filtration: differentiate $\gamma(t)=(\mathrm{x}+t \mathrm{y})^{3}$)

$$
\underset{\left\langle x^{3}\right\rangle}{\ell} \subset \underset{\left\langle x^{3}, x^{2} y\right\rangle}{\hat{T}_{\ell} \mathcal{V}} \quad \subset \underset{\substack{\left.x^{3}, x^{2} y, x y^{2}\right\rangle}}{\hat{T}_{\ell}^{(2)} \mathcal{V}} \subset \hat{T}_{\ell}^{(3)} \mathcal{V}=V
$$

Legendrian!

Wrt CS-basis, i.e. $\eta=\left(\begin{array}{cc}0 & \mathrm{id}_{2} \\ -i d_{2} & 0\end{array}\right)$, have coords ($\left(\begin{array}{cc}c_{11} & c_{12} \\ c_{12} & (22\end{array}\right)$ on $L G(V)$. Wrt CS-basis ($\mathrm{x}^{3},-3 \mathrm{x}^{2} \mathrm{y},-6 \mathrm{y}^{3},-6 x \mathrm{y}^{2}$),

$$
(x+t y)^{3}=\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) .
$$

Canonical objects associated to the twisted cubic

- $\widehat{\mathcal{V}}:=\left\{\hat{T}_{\ell} \mathcal{V}: \ell \in \mathcal{V}\right\} \subsetneq L G(V):$ differentiate \& row reduce:

$$
\left.\begin{array}{c}
\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) \\
\left(0,-1,-\frac{t^{2}}{2},-t\right)
\end{array}\right\} \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
0 & 1 & \frac{t^{2}}{2} & t
\end{array}\right)
$$

Canonical objects associated to the twisted cubic

- $\widehat{\mathcal{V}}:=\left\{\hat{T}_{\ell} \mathcal{V}: \ell \in \mathcal{V}\right\} \subsetneq L G(V)$: differentiate \& row reduce:

$$
\begin{gathered}
\left.\begin{array}{r}
\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) \\
\left(0,-1,-\frac{t^{2}}{2},-t\right)
\end{array}\right\} \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
0 & 1 & \frac{t^{2}}{2} & t
\end{array}\right) \\
\rightsquigarrow\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{12} & c_{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{t^{3}}{3} & \frac{t^{2}}{2} \\
\frac{t^{2}}{2} & t
\end{array}\right) \quad(\text { curve in LG }(V)) .
\end{gathered}
$$

Canonical objects associated to the twisted cubic

- $\widehat{\mathcal{V}}:=\left\{\hat{T}_{\ell} \mathcal{V}: \ell \in \mathcal{V}\right\} \subsetneq L G(V)$: differentiate \& row reduce:

$$
\left.\begin{array}{c}
\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) \\
\left(0,-1,-\frac{t^{2}}{2},-t\right)
\end{array}\right\} \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
0 & 1 & \frac{t^{2}}{2} & t
\end{array}\right) .
$$

Canonical objects associated to the twisted cubic

- $\widehat{\mathcal{V}}:=\left\{\hat{T}_{\ell} \mathcal{V}: \ell \in \mathcal{V}\right\} \subsetneq L G(V)$: differentiate \& row reduce:

$$
\left.\begin{array}{c}
\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) \\
\left(0,-1,-\frac{t^{2}}{2},-t\right)
\end{array}\right\} \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
0 & 1 & \frac{t^{2}}{2} & t
\end{array}\right)
$$

$\rightsquigarrow\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{12} & c_{22}\end{array}\right)=\left(\begin{array}{cc}\frac{t^{3}}{3} & \frac{t^{2}}{2} \\ \frac{t^{2}}{2} & t\end{array}\right) \quad$ (curve in $L G(V)$).

- $\tilde{\mathcal{V}}:=\bigcup_{\ell \in \mathcal{V}}\{E \in L G(V): \ell \subset E\} \quad$ (surface in $L G(V)$).
- $\tau(\mathcal{V}):=\bigcup_{\ell \in \mathcal{V}} \mathbb{P}\left(\hat{T}_{\ell} \mathcal{V}\right)=\{\mathrm{Q}=0\} \subset \mathbb{P}(V)$, where $[\mathrm{Q}] \in \mathbb{P}\left(S^{4} V^{*}\right)$ (discriminant).

Canonical objects associated to the twisted cubic

- $\widehat{\mathcal{V}}:=\left\{\hat{T}_{\ell} \mathcal{V}: \ell \in \mathcal{V}\right\} \subsetneq L G(V):$ differentiate \& row reduce:

$$
\left.\begin{array}{c}
\left(1,-t,-\frac{t^{3}}{6},-\frac{t^{2}}{2}\right) \\
\left(0,-1,-\frac{t^{2}}{2},-t\right)
\end{array}\right\} \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & \frac{t^{3}}{3} & \frac{t^{2}}{2} \\
0 & 1 & \frac{t^{2}}{2} & t
\end{array}\right)
$$

$\rightsquigarrow\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{12} & c_{22}\end{array}\right)=\left(\begin{array}{cc}\frac{t^{3}}{3} \frac{t^{2}}{2} \\ \frac{t^{2}}{2} & t\end{array}\right) \quad$ (curve in $L G(V)$).

- $\tilde{\mathcal{V}}:=\bigcup_{\ell \in \mathcal{V}}\{E \in \operatorname{LG}(V): \ell \subset E\} \quad$ (surface in $\mathrm{LG}(V)$).
- $\tau(\mathcal{V}):=\bigcup_{\ell \in \mathcal{V}} \mathbb{P}\left(\hat{T}_{\ell} \mathcal{V}\right)=\{\mathrm{Q}=0\} \subset \mathbb{P}(V)$, where $[\mathrm{Q}] \in \mathbb{P}\left(S^{4} V^{*}\right)$ (discriminant).

These all inherit $G_{0} \cong G L_{2}$ invariance from \mathcal{V}. (and $\mathfrak{g}_{0} \subsetneq \mathfrak{c s p}_{4}$ is a maximal subalgebra.)

Sub-adjoint varieties

For any complex simple G except $S L_{2}$, the adjoint variety $G / P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.

Sub-adjoint varieties

For any complex simple G except $S L_{2}$, the adjoint variety $G / P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.
\rightsquigarrow sub-adjoint variety: G_{0}-inv $\mathcal{V} \subset \mathbb{P}(V) \quad$ (Legendrian!)

Sub-adjoint varieties

For any complex simple G except $S L_{2}$, the adjoint variety $G / P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.
\rightsquigarrow sub-adjoint variety: G_{0}-inv $\mathcal{V} \subset \mathbb{P}(V) \quad$ (Legendrian!)
Example: $\Longleftrightarrow \not \Longrightarrow 0_{0}^{3}$ (twisted cubic)

Sub-adjoint varieties

For any complex simple G except $S L_{2}$, the adjoint variety $G / P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.
\rightsquigarrow sub-adjoint variety: G_{0}-inv $\mathcal{V} \subset \mathbb{P}(V) \quad$ (Legendrian!)
Example: $\Longleftrightarrow \nless{ }_{\circ}^{3}$ (twisted cubic)

G / P	$G_{0}^{s 5} / Q$	$\mathcal{V} \subsetneq \mathbb{P}(V)$
B_{ℓ} / P_{2}	$A_{1} / P_{1} \times B_{\ell-2} / P_{1}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times Q^{2 \ell-5}\right)$
D_{ℓ} / P_{2}	$A_{1} / P_{1} \times D_{\ell-2} / P_{1}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times Q^{2 l-6}\right)$
G_{2} / P_{2}	A_{1} / P_{1}	twisted cubic
D_{4} / P_{2}	$\left(A_{1} / P_{1}\right)^{3}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$
F_{4} / P_{1}	C_{3} / P_{3}	$\operatorname{LG}(3,6)$
E_{6} / P_{2}	A_{5} / P_{3}	Gr 3,6$)$
E_{7} / P_{1}	D_{6} / P_{6}	D_{6}-spinor variety
E_{8} / P_{8}	E_{7} / P_{7}	Freudenthal variety

Sub-adjoint varieties

For any complex simple G except $S L_{2}$, the adjoint variety $G / P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.
\rightsquigarrow sub-adjoint variety: G_{0}-inv $\mathcal{V} \subset \mathbb{P}(V) \quad$ (Legendrian!)
Example: $\Longleftrightarrow \nless<{ }_{0}^{3}$ (twisted cubic)

G / P	$G_{0}^{s 5} / Q$	$\mathcal{V} \subsetneq \mathbb{P}(V)$
B_{ℓ} / P_{2}	$A_{1} / P_{1} \times B_{\ell-2} / P_{1}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times Q^{2 \ell-5}\right)$
D_{ℓ} / P_{2}	$A_{1} / P_{1} \times D_{\ell-2} / P_{1}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times Q^{2 l-6}\right)$
G_{2} / P_{2}	A_{1} / P_{1}	twisted cubic
D_{4} / P_{2}	$\left(A_{1} / P_{1}\right)^{3}$	$\operatorname{Seg}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$
F_{4} / P_{1}	C_{3} / P_{3}	$\operatorname{LG}(3,6)$
E_{6} / P_{2}	A_{5} / P_{3}	Gr 3,6$)$
E_{7} / P_{1}	D_{6} / P_{6}	D_{6}-spinor variety
E_{8} / P_{8}	E_{7} / P_{7}	Freudenthal variety

Type A: $\mathcal{V}=\mathbb{P}^{n-1} \dot{ப} \mathbb{P}^{n-1}$ (reducible); Type $\mathbb{C}: \mathcal{V}=\mathbb{P}(V)$ (not proper).

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.
(Get compatible str grp reductions $G_{0} \rightarrow \operatorname{CSp}_{2 n} . \therefore$ same sym alg!)

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.
(Get compatible str grp reductions $G_{0} \rightarrow \operatorname{CSp}_{2 n} . \therefore$ same sym alg!)
- Equivalence problem is solved $\Rightarrow \operatorname{dim}(\operatorname{sym}) \leqslant \operatorname{dim}(\mathfrak{g})$.

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.
(Get compatible str grp reductions $G_{0} \rightarrow \operatorname{CSp}_{2 n} . \therefore$ same sym alg!)
- Equivalence problem is solved $\Rightarrow \operatorname{dim}(s y m) \leqslant \operatorname{dim}(\mathfrak{g})$.
- Have unique max sym model: flat model, has sym \mathfrak{g}.

G-contact structures

Let $G / P \hookrightarrow \mathbb{P}(\mathfrak{g}), 2 n+1=\operatorname{dim}(G / P), G_{0} \subset P$ the reductive part.

Definition $\left(G \neq A_{\ell}, C_{\ell}\right)$

A G-contact structure is a contact mfld $\left(M^{2 n+1}, \mathcal{C}\right)$ with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E}=\widehat{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\mathcal{F}=\tilde{\mathcal{V}} \subset L G(\mathcal{C})=M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.
(Get compatible str grp reductions $G_{0} \rightarrow C S p_{2 n} . \therefore$ same sym alg!)
- Equivalence problem is solved $\Rightarrow \operatorname{dim}(\operatorname{sym}) \leqslant \operatorname{dim}(\mathfrak{g})$.
- Have unique max sym model: flat model, has sym \mathfrak{g}.
- Can efficiently compute syms of \mathcal{E}, \mathcal{F} by using \mathcal{V} instead. (In the flat cases, can do this uniformly and by-hand!)

Where does \mathfrak{C} come from?

	A_{1}	A_{2}	C_{3}	F_{4}	Hyperplane section of Severi
$\mathfrak{f}_{0}^{s s}$	A_{2}	$A_{2} \times A_{2}$	A_{5}	E_{6}	Severi varieties
$\mathfrak{f}=\mathfrak{g}_{0}^{\text {ss }}$	C_{3}	A_{5}	D_{6}	E_{7}	Sub-adjoint varieties
\mathfrak{g}	F_{4}	E_{6}	E_{7}	E_{8}	Adjoint varieties

Where does \mathfrak{C} come from?

	A_{1}	A_{2}	C_{3}	F_{4}	Hyperplane section of Severi
$\mathfrak{f}_{0}^{s s}$	A_{2}	$A_{2} \times A_{2}$	A_{5}	E_{6}	Severi varieties
$\mathfrak{f}=\mathfrak{g}_{0}^{\text {ss }}$	C_{3}	A_{5}	D_{6}	E_{7}	Sub-adjoint varieties
\mathfrak{g}	F_{4}	E_{6}	E_{7}	E_{8}	Adjoint varieties

Sub-adjoint variety $\mathcal{V}=F / Q \subset \mathbb{P}(V)$:

- Osculating filtration at $\ell=V^{0} \subset V^{-1} \subset V^{-2} \subset V^{-3}=V$.

	A_{1}	A_{2}	C_{3}	F_{4}	Hyperplane section of Severi
$\mathfrak{f}_{0}^{s s}$	A_{2}	$A_{2} \times A_{2}$	A_{5}	E_{6}	Severi varieties
$\mathfrak{f}=\mathfrak{g}_{0}^{\text {ss }}$	C_{3}	A_{5}	D_{6}	E_{7}	Sub-adjoint varieties
\mathfrak{g}	F_{4}	E_{6}	E_{7}	E_{8}	Adjoint varieties

Sub-adjoint variety $\mathcal{V}=F / Q \subset \mathbb{P}(V)$:

- Osculating filtration at $\ell=V^{0} \subset V^{-1} \subset V^{-2} \subset V^{-3}=V$.
- Landsberg-Manivel (2001): Associated graded has a $f_{0}^{5 s}$-graded algebra structure. Get:

$$
V \cong V_{0} \oplus V_{-1} \oplus V_{-2} \oplus V_{-3} \cong \mathbb{C} \oplus W \oplus W^{*} \oplus \mathbb{C}
$$

where $W=$ Jordan alg with $\left(f_{0}^{s s}-i n v\right) \mathfrak{C} \in S^{3} W^{*}$.

	A_{1}	A_{2}	C_{3}	F_{4}	Hyperplane section of Severi
$\mathfrak{f}_{0}^{s s}$	A_{2}	$A_{2} \times A_{2}$	A_{5}	E_{6}	Severi varieties
$\mathfrak{f}=\mathfrak{g}_{0}^{\text {ss }}$	C_{3}	A_{5}	D_{6}	E_{7}	Sub-adjoint varieties
\mathfrak{g}	F_{4}	E_{6}	E_{7}	E_{8}	Adjoint varieties

Sub-adjoint variety $\mathcal{V}=F / Q \subset \mathbb{P}(V)$:

- Osculating filtration at $\ell=V^{0} \subset V^{-1} \subset V^{-2} \subset V^{-3}=V$.
- Landsberg-Manivel (2001): Associated graded has a $f_{0}^{5 s}$-graded algebra structure. Get:

$$
V \cong V_{0} \oplus V_{-1} \oplus V_{-2} \oplus V_{-3} \cong \mathbb{C} \oplus W \oplus W^{*} \oplus \mathbb{C}
$$

where $W=$ Jordan alg with $\left(f_{0}^{s s}-i n v\right) \mathfrak{C} \in S^{3} W^{*}$.

Lemma

From L.-M., $\exists C S$-basis adapted to $V=\mathbb{C} \oplus W \oplus \mathbb{C} \oplus W^{*}$ s.t.
$\mathcal{V} \subset \mathbb{P}(V)$ is given by $\left[\lambda, t^{a}\right] \rightarrow\left[\lambda^{3},-\lambda^{2} t^{a},-\frac{\mathfrak{C}\left(t^{3}\right)}{2},-\frac{3 \lambda \mathfrak{C}_{a}\left(t^{2}\right)}{2}\right]$.

Summary

- Can now define $F_{4}, E_{6}, E_{7}, E_{8}$ as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.

Summary

- Can now define $F_{4}, E_{6}, E_{7}, E_{8}$ as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.
- Uniform descriptions via a cubic form on a Jordan algebra.
- Can now define $F_{4}, E_{6}, E_{7}, E_{8}$ as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.
- Uniform descriptions via a cubic form on a Jordan algebra.
- Moral of the story: Sometimes, complicated questions have exceptionally simple answers.

