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The gap problem

Fix a geometry for which the maximal (infinitesimal) sym dim is known.

Q: What is the next possible (“submaximal”) symmetry dimension S?

Often there is a gap, i.e. forbidden dimensions.

Example (Riemannian geometry)

n max S Citation

2 3 1 Darboux / Koenigs (∼1890)
3 6 4 Wang (1947)
4 10 8 Egorov (1955)

≥ 5
(n+1

2

) (n
2

)
+ 1 Wang (1947), Egorov (1949)

Many other classical studies by: Tresse, Cartan, Kobayashi, Nagano,...

Recently: Čap, Neusser, Kruglikov, T., Doubrov, Matveev, Winther, Zalabova,...

Warning: A priori, submax sym models may not be homogeneous!
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More examples of symmetry gaps

1 2nd order ODE:

Max: y ′′ = 0 (8-dim: sl3 symmetry).
S = 3: e.g. y ′′ = exp(y ′).

2 (2, 3, 5)-distributions: All are Monge ODE z ′ = f (x , y , y ′, y ′′, z),
where fy ′′y ′′ 6= 0, i.e. have 5-mfld (x , y , p, q, z) with rank 2 dist.
spanned by ∂x + p∂y + q∂p + f ∂z and ∂q.

Max: z ′ = (y ′′)2 (14-dim: g2 symmetry);
S = 7: z ′ = ln(y ′′) or z ′ = (y ′′)m with m 6∈ {−1, 0, 1

3 ,
2
3 , 1, 2}.

3 4-dim Lorentzian conformal structures:

Max: Minkowski metric has 15-dim conformal sym alg ∼= so(2, 4)
S = 7: dy2 + dz2 + dwdx + y2dw2 (Petrov type N):
(Q: Fixing Petrov type, what is the max (conformal) sym dim?)
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Cartan geometries

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M2, g))

Fon(M) is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and
soldering form θ = (θ1, θ2). Then (Fon(M), ω = γ + θ) is a Cartan
geometry of type (E(2),O(2)), and curvature is torsion-free.

Cartan geometry (G → M, ω) of type (G ,H), i.e.

Have H-principal bundle with ω ∈ Ω1(G; g) a coframing.

ω is H-equivariant and reproduces fundamental vertical vector fields.

Curvature: K = dω + 1
2 [ω, ω] ∈ Ω2(G; g).

K = 0 (“flat”) ↔ locally equiv. to (G → G/H, ωMC ).

Sym: inf(G, ω) = {ξ ∈ X(G)H : Lξω = 0}. Max sym = dim(G ).

“Underlying structure ↔ Cartan geometry with normalization on K”
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The symmetry gap for surface metrics

Claim: Any (M2, g) cannot have precisely 2 Killing vectors.

Proof: On Fon(M), have coframing (θ1, θ2, γ). Str. eqns:
dθ1 = γ ∧ θ2

dθ2 = −γ ∧ θ1

dγ = κ θ1 ∧ θ2

⇒


0 = d2θ1 = d2θ2

0 = d2γ = dκ ∧ θ1 ∧ θ2

dκ = f θ1 + gθ2

If dim(sym) = 2, then κ is nonconstant, and f , g fcns of κ. Then{
0 = d2κ ∧ θ1 = f γ ∧ θ2 ∧ θ1

0 = d2κ ∧ θ2 = gγ ∧ θ2 ∧ θ1
⇒ f = g = 0⇒ κ constant ××××
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Parabolic geometries

Focus on Cartan geometries of type (G ,P), where G = semisimple Lie
group, P = parabolic subgroup.

Theorem (Tanaka, Morimoto, Čap–Schichl)

Regular, normal parabolic geometries are equivalent to underlying
geometric structures.

Examples of underlying structures: projective, conformal, CR, 2nd order
ODE (scalar or system), Legendrian contact, various generic distrib., ...

Example

Given y ′′ = f (x , y , y ′), have a 3-mfld (x , y , p) with contact distribution
C = (dy − pdx)⊥ with a splitting C = E ⊕ V . These are spanned by
∂x + p∂y + f (x , y , p)∂p and ∂p. This underlies a (SL3,P1,2) geometry.
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Examples of underlying structures: projective, conformal, CR, 2nd order
ODE (scalar or system), Legendrian contact, various generic distrib., ...

Example

Given y ′′ = f (x , y , y ′), have a 3-mfld (x , y , p) with contact distribution
C = (dy − pdx)⊥ with a splitting C = E ⊕ V . These are spanned by
∂x + p∂y + f (x , y , p)∂p and ∂p. This underlies a (SL3,P1,2) geometry.
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Parabolic subalgebras and gradings

(g, p) Z-grading: g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+. Reductive part is
g0 = z(g0)⊕ gss0 and have a unique grading element Z ∈ z(g0).

Example (SL3/P1,2 and G2/P1)

sl3 =

 0 1 2
-1 0 1
-2 -1 0

 ; G2 :

G -invariant structure on T (G/P) look at g−1:

SL3/P1,2: C = E ⊕ V .

G2/P1: (2, 3, 5) distribution.
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Sample gap results for parabolic geometries

Geometry Range Model Max S

Sig. (p, q) conformal geometry
in dim. n = p + q

p, q ≥ 2 SOp+1,q+1/P1

(
n+2

2

) (
n−1

2

)
+ 6

Systems of 2nd order ODE
in m dependent variables

m ≥ 2 SLm+2(R)/P1,2 (m + 2)2 − 1 m2 + 5

Generic rank ` distributions

on 1
2
`(` + 1)-dim. manifolds

` ≥ 3 SO`,`+1/P`

(
2`+1

2

) {
`(3`−7)

2
+ 10, ` ≥ 4;

11, ` = 3

Lagrangean contact structures ` ≥ 3 SL`+1(R)/P1,` `2 + 2` (`− 1)2 + 4

Contact projective structures ` ≥ 2 Sp2`(R)/P1 `(2` + 1)

{
2`2 − 5` + 8, ` ≥ 3;

5, ` = 2

Contact path geometries ` ≥ 3 Sp2`(R)/P1,2 `(2` + 1) 2`2 − 5` + 9
Exotic parabolic contact

structure of type E8
- E8/P8 248 147

Table: Kruglikov–The (2013): sample new results

Doubrov–The (2013): (i) conf. Riem: S =

{ (
n−1

2

)
+ 3, 5 ≤ n 6= 6;

n2

4
+ n, n = 4, 6.

(ii) conf. Lor: S =
(
n−1

2

)
+ 4, n ≥ 4.
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Two key ingredients

For (regular, normal) parabolic geometries, there are two key ingredients
for studying the gap problem in a uniform way:

1 harmonic curvature κH . Geometry is flat iff κH = 0 .

2 Tanaka prolongation.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 9 / 17



Harmonic curvature

Curvature: K = dω + 1
2 [ω, ω] ⇔ κ : G →

∧2(g/p)∗ ⊗ g ∼=
∧2 g+ ⊗ g.

Regular: κ takes values in positive Z-eigenspaces.
Normal: ∂∗κ = 0, where ∂∗ is the homology differential.

Harmonic curv: κH = κ mod im(∂∗) . Rmk: g+ acts trivially on ker(∂∗)
im(∂∗) .

Kostant (1961): As g0-modules,
∧2 g∗− ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

.

∴
ker(∂∗)

im(∂∗)
∼= ker(�) ∼=

ker(∂)

im(∂)
∼= H2(g−, g).

Regular⇒
im(κH) ⊂ H2

+(g−, g)

(g0-description via Kostant)

Examples (Harmonic curvature)

conformal geometry: Weyl (n ≥ 4) or Cotton (n = 3);

scalar 2nd order ODE: Tresse (relative) invariants I1, I2.
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Tanaka prolongation

Given (g, p), we have g = g− ⊕ g0 ⊕ g+.

Let a0 ⊂ g0. Define the Tanaka prolongation of a0 in g:

prg(g−, a0) = g− ⊕ a0 ⊕ a1 ⊕ ...
by defining for k ≥ 1 that

ak = {X ∈ gk : [X , g−1] ⊂ ak−1}

Given a g0-module V, and φ ∈ V, let aφ := prg(g−, ann(φ)).

Example (V = H2
+(g−, g) for SL3/P1,2, i.e. 2nd order ODE)

H2
+ = V1 ⊕ V2, dim(Vi ) = 1. Take 0 6= φ ∈ V1. From Kostant, this has

weight 3α1 + α2 = 3ε1 − 2ε2 − ε3. Then:

aφ =

 c 0 0

∗ 4c 0

∗ ∗ −5c

 ⇒ aφ+ = 0, dim(aφ) = 4.
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Results of Kruglikov–The (2013)

Fix (G ,P). Among regular, normal G/P geometries (G → M, ω),

S := submaximal sym. dim.

:= max{dim(inf(G, ω)) | κH 6≡ 0}
U := max{dim(aφ) | 0 6= φ ∈ H2

+(g−, g)}

Theorem (Universal upper bound)

S ≤ U < dim(g).

Theorem (Local realizability / computability)

If G/P is complex or split-real, then S = U almost always. Complete
exception list when G is simple: SL3/P1, SL3/P1,2, SO5/P1. For

non-exceptions, can read U from a Dynkin diagram !

General real case: Have S ≤ U ≤ UC, where UC is easily computable.
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Maximizing the Tanaka prolongation

H2
+ = 0 ⇒ locally flat. Otw, H2

+ =
⊕

i Vi (as g0-irreps). We have
U = maxi Ui , where Ui = max{dim(aφ) | 0 6= φ ∈ Vi}.

Lemma (Complex or split-real case)

Let V be a g0-irrep, φ0 ∈ V an extremal weight vector. Then ∀0 6= φ ∈ V,

dim(aφk ) ≤ dim(aφ0

k ), ∀k ≥ 0.

Example (pair of 2nd order ODE: SL4/P1,2-geometry)

V =
0 −4 4

⊂ H2
+(g−, g). Let φ0 ∈ V be a l.w. vector.

aφ0 =


c1 ∗ 0 0

∗ c2 0 0

∗ ∗ 0 0
∗ ∗ ∗ −c1 − c2

 ⇒
dim(aφ0

+ ) = 1,

dim(aφ0) = 9.
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Lemma (Complex or split-real case)

Let V be a g0-irrep, φ0 ∈ V an extremal weight vector. Then ∀0 6= φ ∈ V,

dim(aφk ) ≤ dim(aφ0

k ), ∀k ≥ 0.

Example (pair of 2nd order ODE: SL4/P1,2-geometry)

V =
0 −4 4

⊂ H2
+(g−, g). Let φ0 ∈ V be a l.w. vector.

aφ0 =


c1 ∗ 0 0

∗ c2 0 0

∗ ∗ 0 0
∗ ∗ ∗ −c1 − c2

 ⇒
dim(aφ0

+ ) = 1,

dim(aφ0) = 9.
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4-dim Lorentzian conformal geometry

SO(2, 4)/P1: g = g−1 ⊕ g0 ⊕ g1, with g0 = R⊕ so(1, 3) = R⊕ sl(2,C)R,

W = H2
+(g−, g) ∼= S4C2 (as a sl(2,C)R-rep)

and Z ∈ z(g0) acts by +2.

In this case: aφ+ = 0 for any 0 6= φ ∈W.

In terms of std C-basis {H,X ,Y } of sl(2,C):

Petrov type Normal form in S4C2 Annihilator a0 dim(a) sharp?

N x4 X , iX , 2Z − H 7 X
III x3y Z − 2H 5 ×
D x2y 2 H, iH 6 X
II x2y(x − y) 0 4 X
I xy(x − y)(x − ky) 0 4 X

Get bounds for constant Petrov type structures. In particular, S ≤ 7 .

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 14 / 17



4-dim Lorentzian conformal geometry

SO(2, 4)/P1: g = g−1 ⊕ g0 ⊕ g1, with g0 = R⊕ so(1, 3) = R⊕ sl(2,C)R,

W = H2
+(g−, g) ∼= S4C2 (as a sl(2,C)R-rep)

and Z ∈ z(g0) acts by +2.

In this case: aφ+ = 0 for any 0 6= φ ∈W.

In terms of std C-basis {H,X ,Y } of sl(2,C):

Petrov type Normal form in S4C2 Annihilator a0 dim(a) sharp?

N x4 X , iX , 2Z − H 7 X
III x3y Z − 2H 5 ×
D x2y 2 H, iH 6 X
II x2y(x − y) 0 4 X
I xy(x − y)(x − ky) 0 4 X

Get bounds for constant Petrov type structures. In particular, S ≤ 7 .

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 14 / 17



4-dim Lorentzian conformal geometry

SO(2, 4)/P1: g = g−1 ⊕ g0 ⊕ g1, with g0 = R⊕ so(1, 3) = R⊕ sl(2,C)R,

W = H2
+(g−, g) ∼= S4C2 (as a sl(2,C)R-rep)

and Z ∈ z(g0) acts by +2.

In this case: aφ+ = 0 for any 0 6= φ ∈W.

In terms of std C-basis {H,X ,Y } of sl(2,C):

Petrov type Normal form in S4C2 Annihilator a0 dim(a) sharp?

N x4 X , iX , 2Z − H 7 X
III x3y Z − 2H 5 ×
D x2y 2 H, iH 6 X
II x2y(x − y) 0 4 X
I xy(x − y)(x − ky) 0 4 X

Get bounds for constant Petrov type structures. In particular, S ≤ 7 .

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 14 / 17



Upper bound - proof outline

Čap–Neusser (2009):

Fix any u ∈ G. Then ωu : inf(G, ω) ↪→ g (linearly).

Bracket on f = im(ωu) is [X ,Y ]f := [X ,Y ]g − κu(X ,Y ).

Regularity: f is filtered, so s = gr(f) ⊂ g is a graded subalg.

s0 ⊂ ann(κH(u)).

(∗): [si+1, g−1] ⊂ si ⇒ s ⊂ g− ⊕ s≥0⊂ prg(g−, s0) ⊂ aκH(u).

BUT: The “Tanaka property” (∗) isn’t always true!

Definition

x ∈ M is a regular point iff ∀i , dim(si ) is loc. constant near x .

Proof outline:

(1) Prop: At regular points, (∗) is true.
(2) Lemma: The set of regular points is open and dense in M.
(3) Any nbd of a non-flat point contains a non-flat regular pt.
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Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant.

IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).
Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant. IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).

Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant. IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).
Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant. IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).
Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant. IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).
Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Realizability - proof outline

Via H2 ∼= ker(�), get an explicit l.w. vector φ0 ∈ V ⊂ H2
+ ⊂

∧2 g∗− ⊗ g
from Kostant. IDEA: Produce sym. alg f (filtered) from a = aφ0 (graded).
Define f = a as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

Lemma

If g is simple with rank(g) ≥ 3, then φ0 ∈
∧2 g∗−⊗ a and f is a Lie algebra.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures November 3, 2016 16 / 17



Concluding remarks

General real (non split) cases are difficult to treat in a uniform way.

S ≤ U ≤ UC always. Computing U may not be easy.

For studies made thus far, S = U still occurs almost always.

Jet-determinacy of symmetries of parabolic geometries:

Theorem (Kruglikov–T. (2016))

Fixing x ∈ M at which κH 6= 0, any symmetry X is 1-jet determined at x .

1 Recall s(u) ⊂ prg(g−, s0) ⊂ aκH(u) at regular points. Improvement:

s(u) ⊂ aκH(u) everywhere. (e.g. Pointwise Petrov type gives a bound.)

2 IDEA: If κH(u) 6= 0, aκH(u) does not reach the top-slot gν of the
grading on g. (On the flat model, gν ↔ 2-jet det syms.)
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