Symmetry gaps for geometric structures

Dennis The

University of Tromsø

November 3, 2016

Geometry and Lie theory, Trondheim (based on joint work with Boris Kruglikov)

Fix a geometry for which the maximal (infinitesimal) sym dim is known.

Q: What is the next possible ("submaximal") symmetry dimension \mathfrak{S} ?

Often there is a gap, i.e. forbidden dimensions.

Fix a geometry for which the maximal (infinitesimal) sym dim is known.

Q: What is the next possible ("submaximal") symmetry dimension \mathfrak{S} ?

Often there is a gap, i.e. forbidden dimensions.

Example (Riemannian geometry)					
	n max G 2 3 1		S	Citation Darboux / Koenigs (~1890)	
			1		
	3	6	4	Wang (1947)	
	4	10	8	Egorov (1955)	
	\geq 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)	

Fix a geometry for which the maximal (infinitesimal) sym dim is known.

Q: What is the next possible ("submaximal") symmetry dimension \mathfrak{S} ?

Often there is a gap, i.e. forbidden dimensions.

Example (Riemannian geometry)					
	n	max	Citation		
	2 3 1 Darboux / Koenigs (Darboux / Koenigs (\sim 1890)		
	3	6	4	Wang (1947)	
	4	10	8	Egorov (1955)	
2	2 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)	

Many other classical studies by: Tresse, Cartan, Kobayashi, Nagano,...

Recently: Čap, Neusser, Kruglikov, T., Doubrov, Matveev, Winther, Zalabova,...

Fix a geometry for which the maximal (infinitesimal) sym dim is known.

Q: What is the next possible ("submaximal") symmetry dimension \mathfrak{S} ?

Often there is a gap, i.e. forbidden dimensions.

Example (Riemannian geometry)					
	n	Citation			
	2 3 1 Darboux / Koenig		Darboux / Koenigs (${\sim}1890$)		
	3	6	4	Wang (1947)	
	4	10	8	Egorov (1955)	
	\geq 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)	

Many other classical studies by: Tresse, Cartan, Kobayashi, Nagano,...

Recently: Čap, Neusser, Kruglikov, T., Doubrov, Matveev, Winther, Zalabova,...

Warning: A priori, submax sym models may not be homogeneous!

Dennis The (University of Tromsø)

Symmetry gaps for geometric structures

2 / 17

More examples of symmetry gaps

Ond order ODE:

• Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).

•
$$\mathfrak{S} = 3$$
: e.g. $y'' = \exp(y')$.

47 ▶

More examples of symmetry gaps

Ond order ODE:

- Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).
- $\mathfrak{S} = 3$: e.g. $y'' = \exp(y')$.
- (2, 3, 5)-distributions:

A 🖓

- Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).
- $\mathfrak{S} = 3$: e.g. $y'' = \exp(y')$.
- ② (2,3,5)-distributions: All are Monge ODE z' = f(x, y, y', y'', z), where $f_{y''y''} \neq 0$, i.e. have 5-mfld (x, y, p, q, z) with rank 2 dist. spanned by $\partial_x + p\partial_y + q\partial_p + f\partial_z$ and ∂_q .

• Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).

•
$$\mathfrak{S} = 3$$
: e.g. $y'' = \exp(y')$.

② (2,3,5)-distributions: All are Monge ODE z' = f(x, y, y', y'', z), where $f_{y''y''} \neq 0$, i.e. have 5-mfld (x, y, p, q, z) with rank 2 dist. spanned by $\partial_x + p\partial_y + q\partial_p + f\partial_z$ and ∂_q .

• Max:
$$z' = (y'')^2$$
 (14-dim: g_2 symmetry);

• $\mathfrak{S} = 7$: $z' = \ln(y'')$ or $z' = (y'')^m$ with $m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}$.

- Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).
- $\mathfrak{S} = 3$: e.g. $y'' = \exp(y')$.
- ② (2,3,5)-distributions: All are Monge ODE z' = f(x, y, y', y'', z), where $f_{y''y''} \neq 0$, i.e. have 5-mfld (x, y, p, q, z) with rank 2 dist. spanned by $\partial_x + p\partial_y + q\partial_p + f\partial_z$ and ∂_q .
 - Max: $z' = (y'')^2$ (14-dim: \mathfrak{g}_2 symmetry);
 - $\mathfrak{S} = 7$: $z' = \ln(y'')$ or $z' = (y'')^m$ with $m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}$.

4-dim Lorentzian conformal structures:

- Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).
- $\mathfrak{S} = 3$: e.g. $y'' = \exp(y')$.
- **2** (2,3,5)-distributions: All are Monge ODE z' = f(x, y, y', y'', z), where $f_{y''y''} \neq 0$, i.e. have 5-mfld (x, y, p, q, z) with rank 2 dist. spanned by $\partial_x + p\partial_y + q\partial_p + f\partial_z$ and ∂_q .
 - Max: $z' = (y'')^2$ (14-dim: g_2 symmetry);
 - $\mathfrak{S} = 7$: $z' = \ln(y'')$ or $z' = (y'')^m$ with $m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}$.
- 4-dim Lorentzian conformal structures:
 - Max: Minkowski metric has 15-dim conformal sym alg $\cong \mathfrak{so}(2,4)$
 - $\mathfrak{S} = 7$: $dy^2 + dz^2 + dwdx + y^2dw^2$ (Petrov type N):

- Max: y'' = 0 (8-dim: \mathfrak{sl}_3 symmetry).
- $\mathfrak{S} = 3$: e.g. $y'' = \exp(y')$.
- **2** (2,3,5)-distributions: All are Monge ODE z' = f(x, y, y', y'', z), where $f_{y''y''} \neq 0$, i.e. have 5-mfld (x, y, p, q, z) with rank 2 dist. spanned by $\partial_x + p\partial_y + q\partial_p + f\partial_z$ and ∂_q .
 - Max: $z' = (y'')^2$ (14-dim: \mathfrak{g}_2 symmetry);
 - $\mathfrak{S} = 7$: $z' = \ln(y'')$ or $z' = (y'')^m$ with $m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}$.
- 4-dim Lorentzian conformal structures:
 - Max: Minkowski metric has 15-dim conformal sym alg $\cong \mathfrak{so}(2,4)$
 - $\mathfrak{S} = 7$: $dy^2 + dz^2 + dwdx + y^2 dw^2$ (Petrov type N):
 - (Q: Fixing Petrov type, what is the max (conformal) sym dim?)

・ 何 ト ・ ヨ ト ・ ヨ ト

Our starting point: soln of the equivalence problem.

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type $(\mathcal{G}, \mathcal{H})$,

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (\mathcal{G}, H) , i.e.

- Have *H*-principal bundle with $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$ a coframing.
- ω is *H*-equivariant and reproduces fundamental vertical vector fields.

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type $(\mathcal{G}, \mathcal{H})$, i.e.

- Have *H*-principal bundle with $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$ a coframing.
- $\bullet \ \omega$ is H-equivariant and reproduces fundamental vertical vector fields.

Curvature: $K = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g}).$

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type $(\mathcal{G}, \mathcal{H})$, i.e.

- Have *H*-principal bundle with $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$ a coframing.
- ω is *H*-equivariant and reproduces fundamental vertical vector fields.

Curvature: $K = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g}).$

• K = 0 ("flat") \leftrightarrow locally equiv. to $(G \rightarrow G/H, \omega_{MC})$.

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type $(\mathcal{G}, \mathcal{H})$, i.e.

- Have *H*-principal bundle with $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$ a coframing.
- ω is *H*-equivariant and reproduces fundamental vertical vector fields. Curvature: $K = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g}).$
 - K = 0 ("flat") \leftrightarrow locally equiv. to $(G \rightarrow G/H, \omega_{MC})$.
 - Sym: $\inf(\mathcal{G}, \omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^H : \mathcal{L}_{\xi}\omega = 0\}$. Max sym $= \dim(\mathcal{G})$.

Our starting point: soln of the equivalence problem.

Example (Riemannian metrics (M^2, g))

 $F_{on}(M)$ is an O(2)-princ. bdle /w principal connection γ (Levi–Civita) and soldering form $\theta = (\theta^1, \theta^2)$. Then $(F_{on}(M), \omega = \gamma + \theta)$ is a Cartan geometry of type ($\mathbb{E}(2), O(2)$), and curvature is torsion-free.

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type $(\mathcal{G}, \mathcal{H})$, i.e.

- Have *H*-principal bundle with $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$ a coframing.
- ω is H-equivariant and reproduces fundamental vertical vector fields.
 Curvature: K = dω + ½[ω, ω] ∈ Ω²(G; g).
 K = 0 ("flat") ↔ locally equiv. to (G → G/H, ω_{MC}).
 Sym: inf(G, ω) = {ξ ∈ X(G)^H : L_Fω = 0}. Max sym = dim(G).

"Underlying structure \leftrightarrow Cartan geometry with normalization on K"

• • • • • • • • • • • • •

Claim: Any (M^2, g) cannot have precisely 2 Killing vectors.

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \kappa \, \theta^1 \wedge \theta^2 \end{cases}$$

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \kappa \theta^1 \wedge \theta^2 \end{cases} \Rightarrow \begin{cases} 0 = d^2 \theta^1 = d^2 \theta^2 \\ 0 = d^2 \gamma = d\kappa \wedge \theta^1 \wedge \theta^2 \\ d\kappa = f \theta^1 + g \theta^2 \end{cases}$$

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \kappa \theta^1 \wedge \theta^2 \end{cases} \Rightarrow \begin{cases} 0 = d^2 \theta^1 = d^2 \theta^2 \\ 0 = d^2 \gamma = d\kappa \wedge \theta^1 \wedge \theta^2 \\ d\kappa = f \theta^1 + g \theta^2 \end{cases}$$

If $\dim(sym) = 2$, then κ is nonconstant, and f, g fcns of κ .

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \kappa \theta^1 \wedge \theta^2 \end{cases} \Rightarrow \begin{cases} 0 = d^2 \theta^1 = d^2 \theta^2 \\ 0 = d^2 \gamma = d\kappa \wedge \theta^1 \wedge \theta^2 \\ d\kappa = f \theta^1 + g \theta^2 \end{cases}$$

If $\dim(sym) = 2$, then κ is nonconstant, and f, g fcns of κ . Then

$$\begin{cases} 0 = d^2 \kappa \wedge \theta^1 = f \gamma \wedge \theta^2 \wedge \theta^1 \\ 0 = d^2 \kappa \wedge \theta^2 = g \gamma \wedge \theta^2 \wedge \theta^1 \end{cases}$$

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \kappa \theta^1 \wedge \theta^2 \end{cases} \Rightarrow \begin{cases} 0 = d^2 \theta^1 = d^2 \theta^2 \\ 0 = d^2 \gamma = d\kappa \wedge \theta^1 \wedge \theta^2 \\ d\kappa = f \theta^1 + g \theta^2 \end{cases}$$

If $\dim(sym) = 2$, then κ is nonconstant, and f, g fcns of κ . Then

$$\begin{cases} 0 = d^2 \kappa \wedge \theta^1 = f \gamma \wedge \theta^2 \wedge \theta^1 \\ 0 = d^2 \kappa \wedge \theta^2 = g \gamma \wedge \theta^2 \wedge \theta^1 \end{cases} \Rightarrow f = g = 0 \Rightarrow \kappa \text{ constant} \quad \bigotimes \end{cases}$$

Focus on Cartan geometries of type (G, P), where G = semisimple Lie group, P = parabolic subgroup.

Theorem (Tanaka, Morimoto, Čap–Schichl)

Regular, normal parabolic geometries are equivalent to underlying geometric structures.

Focus on Cartan geometries of type (G, P), where G = semisimple Lie group, P = parabolic subgroup.

Theorem (Tanaka, Morimoto, Čap–Schichl)

Regular, normal parabolic geometries are equivalent to underlying geometric structures.

Examples of underlying structures: projective, conformal, CR, 2nd order ODE (scalar or system), Legendrian contact, various generic distrib., ...

Focus on Cartan geometries of type (G, P), where G = semisimple Lie group, P = parabolic subgroup.

Theorem (Tanaka, Morimoto, Čap–Schichl)

Regular, normal parabolic geometries are equivalent to underlying geometric structures.

Examples of underlying structures: projective, conformal, CR, 2nd order ODE (scalar or system), Legendrian contact, various generic distrib., ...

Example

Given y'' = f(x, y, y'), have a 3-mfld (x, y, p) with contact distribution $C = (dy - pdx)^{\perp}$ with a splitting $C = E \oplus V$. These are spanned by $\partial_x + p\partial_y + f(x, y, p)\partial_p$ and ∂_p . This underlies a $(SL_3, P_{1,2})$ geometry.

イロト イポト イヨト イヨト 二日

Parabolic subalgebras and gradings

 $\begin{array}{ll} (\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathbb{Z}\text{-}\mathsf{grading:} & \mathfrak{g} = \mathfrak{g}_- \oplus \overbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_+}^\mathfrak{p}. \mbox{ Reductive part is} \\ \mathfrak{g}_0 = \mathfrak{z}(\mathfrak{g}_0) \oplus \mathfrak{g}_0^{ss} \mbox{ and have a unique grading element } \mathsf{Z} \in \mathfrak{z}(\mathfrak{g}_0). \end{array}$

Parabolic subalgebras and gradings

 $(\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathbb{Z}$ -grading: $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$. Reductive part is $\mathfrak{g}_{0} = \mathfrak{z}(\mathfrak{g}_{0}) \oplus \mathfrak{g}_{0}^{ss}$ and have a unique grading element $Z \in \mathfrak{z}(\mathfrak{g}_{0})$.

Example $(SL_3/P_{1,2} \text{ and } G_2/P_1)$

Parabolic subalgebras and gradings

 $(\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathbb{Z}$ -grading: $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$. Reductive part is $\mathfrak{g}_{0} = \mathfrak{z}(\mathfrak{g}_{0}) \oplus \mathfrak{g}_{0}^{ss}$ and have a unique grading element $Z \in \mathfrak{z}(\mathfrak{g}_{0})$.

Example $(SL_3/P_{1,2} \text{ and } G_2/P_1)$

G-invariant structure on $T(G/P) \rightsquigarrow \text{look at } \mathfrak{g}_{-1}$:

- $\operatorname{SL}_3/P_{1,2}$: $C = E \oplus V$.
- G_2/P_1 : (2,3,5) distribution.

Sample gap results for parabolic geometries

Geometry	Range	Model	Max	S
Sig. (p, q) conformal geometry in dim. $n = p + q$	$p,q \geq 2$	$\mathrm{SO}_{p+1,q+1}/P_1$	$\binom{n+2}{2}$	$\binom{n-1}{2} + 6$
Systems of 2nd order ODE in <i>m</i> dependent variables	$m \ge 2$	$\mathrm{SL}_{m+2}(\mathbb{R})/P_{1,2}$	$(m+2)^2 - 1$	$m^2 + 5$
Generic rank ℓ distributions on $\frac{1}{2}\ell(\ell+1)$ -dim. manifolds	$\ell \geq 3$	$\mathrm{SO}_{\ell,\ell+1}/P_\ell$	$\binom{2\ell+1}{2}$	$\begin{cases} \frac{\ell(3\ell-7)}{2} + 10, \ \ell \ge 4; \\ 11, \ \ell = 3 \end{cases}$
Lagrangean contact structures	$\ell \ge 3$	$\operatorname{SL}_{\ell+1}(\mathbb{R})/P_{1,\ell}$	$\ell^2 + 2\ell$	$(\ell - 1)^2 + 4$
Contact projective structures	$\ell \ge 2$	$\operatorname{Sp}_{2\ell}(\mathbb{R})/P_1$	$\ell(2\ell+1)$	$\begin{cases} 2\ell^2 - 5\ell + 8, \ \ell \ge 3; \\ 5, \ \ell = 2 \end{cases}$
Contact path geometries	$\ell \ge 3$	$\operatorname{Sp}_{2\ell}(\mathbb{R})/P_{1,2}$	$\ell(2\ell+1)$	$2\ell^2 - 5\ell + 9$
Exotic parabolic contact structure of type <i>E</i> ₈	-	E_8/P_8	248	147

Table: Kruglikov-The (2013): sample new results

Sample gap results for parabolic geometries

Geometry	Range	Model	Max	S
Sig. (p, q) conformal geometry in dim. $n = p + q$	$p,q \geq 2$	$\mathrm{SO}_{p+1,q+1}/P_1$	$\binom{n+2}{2}$	$\binom{n-1}{2} + 6$
Systems of 2nd order ODE in <i>m</i> dependent variables	$m \ge 2$	$\mathrm{SL}_{m+2}(\mathbb{R})/P_{1,2}$	$(m+2)^2 - 1$	$m^2 + 5$
Generic rank ℓ distributions on $\frac{1}{2}\ell(\ell+1)$ -dim. manifolds	$\ell \geq 3$	$\mathrm{SO}_{\ell,\ell+1}/P_\ell$	$\binom{2\ell+1}{2}$	$\begin{cases} \frac{\ell(3\ell-7)}{2} + 10, \ \ell \ge 4; \\ 11, \ \ell = 3 \end{cases}$
Lagrangean contact structures	$\ell \ge 3$	$\operatorname{SL}_{\ell+1}(\mathbb{R})/P_{1,\ell}$	$\ell^2 + 2\ell$	$(\ell - 1)^2 + 4$
Contact projective structures	$\ell \ge 2$	$\operatorname{Sp}_{2\ell}(\mathbb{R})/P_1$	$\ell(2\ell+1)$	$\begin{cases} 2\ell^2 - 5\ell + 8, \ \ell \ge 3; \\ 5, \ \ell = 2 \end{cases}$
Contact path geometries	$\ell \ge 3$	$\operatorname{Sp}_{2\ell}(\mathbb{R})/P_{1,2}$	$\ell(2\ell+1)$	$2\ell^2 - 5\ell + 9$
Exotic parabolic contact structure of type <i>E</i> ₈	-	E_8/P_8	248	147

Table: Kruglikov–The (2013): sample new results

Doubrov–The (2013):

(ii) conf. Lor:

$$\mathfrak{S} = \begin{cases} \binom{n-1}{2} + 3, & 5 \le n \ne 6; \\ \frac{n^2}{4} + n, & n = 4, 6. \\ \mathfrak{S} = \binom{n-1}{2} + 4, & n \ge 4. \end{cases}$$

For (regular, normal) parabolic geometries, there are two key ingredients for studying the gap problem in a uniform way:

• harmonic curvature κ_H . Geometry is flat iff $\kappa_H = 0$.

2 Tanaka prolongation.
Curvature:
$$\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \quad \Leftrightarrow \quad \kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}.$$

æ

Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \quad \Leftrightarrow \quad \kappa : \mathcal{G} \to \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}.$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

$$\mathsf{Curvature:} \ \mathcal{K} = d\omega + \tfrac{1}{2}[\omega,\omega] \quad \Leftrightarrow \quad \kappa: \mathcal{G} \to \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}.$$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

Harmonic curv: $\kappa_H = \kappa \mod \operatorname{im}(\partial^*)$. Rmk: \mathfrak{g}_+ acts trivially on $\frac{\operatorname{ker}(\partial^*)}{\operatorname{im}(\partial^*)}$.

Curvature:
$$\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \quad \Leftrightarrow \quad \kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}_+$$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

Harmonic curv: $\kappa_H = \kappa \mod \operatorname{im}(\partial^*)$. Rmk: \mathfrak{g}_+ acts trivially on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$. Kostant (1961): As \mathfrak{g}_0 -modules, $\bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^*) \oplus \ker(\Box) \oplus \operatorname{im}(\partial)}_{\ker(\partial)}$.

$$\mathsf{Curvature:} \ \mathcal{K} = d\omega + \tfrac{1}{2}[\omega,\omega] \quad \Leftrightarrow \quad \kappa: \mathcal{G} \to \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}_+$$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

Harmonic curv: $\kappa_{H} = \kappa \mod \operatorname{im}(\partial^{*})$. Rmk: \mathfrak{g}_{+} acts trivially on $\frac{\ker(\partial^{*})}{\operatorname{im}(\partial^{*})}$. Kostant (1961): As \mathfrak{g}_{0} -modules, $\bigwedge^{2} \mathfrak{g}_{-}^{*} \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^{*}) \oplus \ker(\Box) \oplus \operatorname{im}(\partial)}_{\ker(\partial)}$.

$$\therefore rac{{\sf ker}(\partial^*)}{{
m im}(\partial^*)}\cong {\sf ker}(\Box)\cong rac{{\sf ker}(\partial)}{{
m im}(\partial)}\cong {\sf H}^2({\mathfrak g}_-,{\mathfrak g}).$$

Curvature:
$$\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega] \quad \Leftrightarrow \quad \kappa : \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}_+$$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

Harmonic curv: $\kappa_H = \kappa \mod \operatorname{im}(\partial^*)$. Rmk: \mathfrak{g}_+ acts trivially on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$. Kostant (1961): As \mathfrak{g}_0 -modules, $\bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^*) \oplus \ker(\Box) \oplus \operatorname{im}(\partial)}_{\ker(\partial)}$.

$$\therefore \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} \cong \ker(\Box) \cong \frac{\ker(\partial)}{\operatorname{im}(\partial)} \cong H^2(\mathfrak{g}_-, \mathfrak{g}).$$

$$\operatorname{Regular} \Rightarrow \\ \underline{\operatorname{im}(\kappa_H) \subset H^2_+(\mathfrak{g}_-, \mathfrak{g})} \\ (\mathfrak{g}_0\text{-description via Kostant})$$

$$\mathsf{Curvature:} \ \mathcal{K} = d\omega + \tfrac{1}{2}[\omega,\omega] \quad \Leftrightarrow \quad \kappa: \mathcal{G} \to \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}_+$$

- Regular: κ takes values in positive Z-eigenspaces.
- Normal: $\partial^* \kappa = 0$, where ∂^* is the homology differential.

Harmonic curv: $\kappa_H = \kappa \mod \operatorname{im}(\partial^*)$. Rmk: \mathfrak{g}_+ acts trivially on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$. Kostant (1961): As \mathfrak{g}_0 -modules, $\bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^*) \oplus \ker(\Box) \oplus \operatorname{im}(\partial)}_{\ker(\partial)}$.

$$\therefore \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} \cong \ker(\Box) \cong \frac{\ker(\partial)}{\operatorname{im}(\partial)} \cong H^2(\mathfrak{g}_-, \mathfrak{g}). \qquad \begin{array}{c} \operatorname{Regular} \Rightarrow \\ & \underbrace{\operatorname{im}(\kappa_H) \subset H^2_+(\mathfrak{g}_-, \mathfrak{g})}_{(\mathfrak{g}_0\text{-description via Kostant})} \end{array}$$

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3);
- scalar 2nd order ODE: Tresse (relative) invariants I_1, I_2 .

Dennis The (University of Tromsø)

Symmetry gaps for geometric structures

10 / 17

Given $(\mathfrak{g},\mathfrak{p})$, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.

< 67 ▶

3

Given $(\mathfrak{g},\mathfrak{p})$, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$. Define the Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

$$\mathsf{pr}_\mathfrak{g}(\mathfrak{g}_-,\mathfrak{a}_0) = \mathfrak{g}_- \oplus \mathfrak{a}_0 \oplus \mathfrak{a}_1 \oplus ...$$

by defining for $k \ge 1$ that

$$\mathfrak{a}_k = \{X \in \mathfrak{g}_k : [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$$

Given $(\mathfrak{g},\mathfrak{p})$, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$. Define the Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

$$\mathsf{pr}_\mathfrak{g}(\mathfrak{g}_-,\mathfrak{a}_0) = \mathfrak{g}_- \oplus \mathfrak{a}_0 \oplus \mathfrak{a}_1 \oplus ...$$

by defining for $k \ge 1$ that

$$\mathfrak{a}_k = \{X \in \mathfrak{g}_k : [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$$

Given a \mathfrak{g}_0 -module \mathbb{V} , and $\phi \in \mathbb{V}$, let $\mathfrak{a}^{\phi} := \mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_-, \mathfrak{ann}(\phi)).$

Given $(\mathfrak{g},\mathfrak{p})$, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$. Define the Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

$$\mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{1} \oplus ...$$

by defining for $k \ge 1$ that

$$\mathfrak{a}_k = \{X \in \mathfrak{g}_k : [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$$

Given a \mathfrak{g}_0 -module \mathbb{V} , and $\phi \in \mathbb{V}$, let $\mathfrak{a}^{\phi} := \mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_-, \mathfrak{ann}(\phi))$.

Example $(\mathbb{V} = H^2_+(\mathfrak{g}_-, \mathfrak{g})$ for $\mathrm{SL}_3/P_{1,2}$, i.e. 2nd order ODE)

 $H^2_+ = \mathbb{V}_1 \oplus \mathbb{V}_2$, dim $(\mathbb{V}_i) = 1$. Take $0 \neq \phi \in \mathbb{V}_1$. From Kostant, this has weight $3\alpha_1 + \alpha_2 = 3\epsilon_1 - 2\epsilon_2 - \epsilon_3$.

Given $(\mathfrak{g},\mathfrak{p})$, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$.

Let $\mathfrak{a}_0\subset\mathfrak{g}_0.$ Define the Tanaka prolongation of \mathfrak{a}_0 in $\mathfrak{g}:$

$$\mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{1} \oplus ...$$

by defining for $k \ge 1$ that

$$\mathfrak{a}_k = \{X \in \mathfrak{g}_k : [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$$

Given a \mathfrak{g}_0 -module \mathbb{V} , and $\phi \in \mathbb{V}$, let $\mathfrak{a}^{\phi} := \mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_-, \mathfrak{ann}(\phi))$.

Example $(\mathbb{V} = H^2_+(\mathfrak{g}_-, \mathfrak{g})$ for $\mathrm{SL}_3/P_{1,2}$, i.e. 2nd order ODE)

 $H^2_+ = \mathbb{V}_1 \oplus \mathbb{V}_2$, dim $(\mathbb{V}_i) = 1$. Take $0 \neq \phi \in \mathbb{V}_1$. From Kostant, this has weight $3\alpha_1 + \alpha_2 = 3\epsilon_1 - 2\epsilon_2 - \epsilon_3$. Then:

$$\mathfrak{a}^{\phi} = \left(egin{array}{c|c|c|c|c|c|c|c|} c & 0 & 0 \ \hline * & 4c & 0 \ \hline * & * & -5c \end{array}
ight) \quad \Rightarrow \quad \mathfrak{a}^{\phi}_{+} = 0, \quad \dim(\mathfrak{a}^{\phi}) = 4.$$

Fix (G, P). Among regular, normal G/P geometries $(\mathcal{G} \to M, \omega)$,

$$\begin{split} \mathfrak{S} &:= \mathsf{submaximal sym. dim.} \\ &:= \mathsf{max}\{\dim(\mathfrak{inf}(\mathcal{G},\omega)) \mid \kappa_H \not\equiv 0\} \\ \mathfrak{U} &:= \mathsf{max}\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})\} \end{split}$$

3

< 4 →

Fix (G, P). Among regular, normal G/P geometries $(\mathcal{G} \to M, \omega)$,

$$\begin{split} \mathfrak{S} &:= \mathsf{submaximal sym. dim.} \\ &:= \mathsf{max}\{\dim(\mathfrak{inf}(\mathcal{G}, \omega)) \mid \kappa_H \not\equiv 0\} \\ \mathfrak{U} &:= \mathsf{max}\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\} \end{split}$$

Theorem (Universal upper bound) $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

3

Fix (G, P). Among regular, normal G/P geometries $(\mathcal{G} \to M, \omega)$,

$$\begin{split} \mathfrak{S} &:= \mathsf{submaximal sym. dim.} \\ &:= \mathsf{max}\{\dim(\mathfrak{inf}(\mathcal{G}, \omega)) \mid \kappa_H \not\equiv 0\} \\ \mathfrak{U} &:= \mathsf{max}\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\} \end{split}$$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability / computability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Complete exception list when G is simple: SL_3/P_1 , $\mathrm{SL}_3/P_{1,2}$, SO_5/P_1 . For non-exceptions, can read \mathfrak{U} from a Dynkin diagram !

Fix (G, P). Among regular, normal G/P geometries $(\mathcal{G} \to M, \omega)$,

$$\begin{split} \mathfrak{S} &:= \mathsf{submaximal sym. dim.} \\ &:= \mathsf{max}\{\dim(\mathfrak{inf}(\mathcal{G}, \omega)) \mid \kappa_H \not\equiv 0\} \\ \mathfrak{U} &:= \mathsf{max}\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\} \end{split}$$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability / computability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Complete exception list when G is simple: SL_3/P_1 , $\mathrm{SL}_3/P_{1,2}$, SO_5/P_1 . For non-exceptions, can read \mathfrak{U} from a Dynkin diagram !

General real case: Have $\mathfrak{S} \leq \mathfrak{U} \leq \mathfrak{U}^{\mathbb{C}}$, where $\mathfrak{U}^{\mathbb{C}}$ is easily computable.

Dennis The (University of Tromsø)

Maximizing the Tanaka prolongation

 $H^2_+ = 0 \Rightarrow$ locally flat. Otw, $H^2_+ = \bigoplus_i \mathbb{V}_i$ (as \mathfrak{g}_0 -irreps). We have $\mathfrak{U} = \max_i \mathfrak{U}_i$, where $\mathfrak{U}_i = \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in \mathbb{V}_i\}$.

Maximizing the Tanaka prolongation

 $H^2_+ = 0 \Rightarrow$ locally flat. Otw, $H^2_+ = \bigoplus_i \mathbb{V}_i$ (as \mathfrak{g}_0 -irreps). We have $\mathfrak{U} = \max_i \mathfrak{U}_i$, where $\mathfrak{U}_i = \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in \mathbb{V}_i\}$.

Lemma (Complex or split-real case)

Let \mathbb{V} be a \mathfrak{g}_0 -irrep, $\phi_0 \in \mathbb{V}$ an extremal weight vector. Then $\forall 0 \neq \phi \in \mathbb{V}$,

 $\dim(\mathfrak{a}_k^{\phi}) \leq \dim(\mathfrak{a}_k^{\phi_0}), \qquad \forall k \geq 0.$

Maximizing the Tanaka prolongation

 $H^2_+ = 0 \Rightarrow$ locally flat. Otw, $H^2_+ = \bigoplus_i \mathbb{V}_i$ (as \mathfrak{g}_0 -irreps). We have $\mathfrak{U} = \max_i \mathfrak{U}_i$, where $\mathfrak{U}_i = \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in \mathbb{V}_i\}$.

Lemma (Complex or split-real case)

Let \mathbb{V} be a \mathfrak{g}_0 -irrep, $\phi_0 \in \mathbb{V}$ an extremal weight vector. Then $\forall 0 \neq \phi \in \mathbb{V}$,

 $\dim(\mathfrak{a}_k^{\phi}) \leq \dim(\mathfrak{a}_k^{\phi_0}), \qquad \forall k \geq 0.$

Example (pair of 2nd order ODE: $SL_4/P_{1,2}$ -geometry)

$$\mathbb{V} = X \xrightarrow{0 \ -4 \ 4} \subset H^2_+(\mathfrak{g}_-,\mathfrak{g}).$$
 Let $\phi_0 \in \mathbb{V}$ be a l.w. vector.

$$\mathfrak{a}^{\phi_0} = \begin{pmatrix} c_1 & * & 0 & 0 \\ \hline * & c_2 & 0 & 0 \\ \hline * & * & 0 & 0 \\ * & * & * & -c_1 - c_2 \end{pmatrix} \Rightarrow \dim(\mathfrak{a}^{\phi_0}) = \mathfrak{a}$$

Dennis The (University of Tromsø)

4-dim Lorentzian conformal geometry

$$\begin{split} SO(2,4)/P_1: \ \mathfrak{g} &= \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1, \ \text{with} \ \mathfrak{g}_0 = \mathbb{R} \oplus \mathfrak{so}(1,3) = \mathbb{R} \oplus \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}, \\ \mathbb{W} &= H^2_+(\mathfrak{g}_-,\mathfrak{g}) \cong S^4 \mathbb{C}^2 \qquad (\text{as a } \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}\text{-rep}) \end{split}$$

and $Z \in \mathfrak{z}(\mathfrak{g}_0)$ acts by +2.

4-dim Lorentzian conformal geometry

$$\begin{split} SO(2,4)/P_1: \ \mathfrak{g} &= \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1, \ \text{with} \ \mathfrak{g}_0 = \mathbb{R} \oplus \mathfrak{so}(1,3) = \mathbb{R} \oplus \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}, \\ \mathbb{W} &= H^2_+(\mathfrak{g}_-,\mathfrak{g}) \cong S^4 \mathbb{C}^2 \qquad (\text{as a } \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}\text{-rep}) \end{split}$$

and $Z \in \mathfrak{z}(\mathfrak{g}_0)$ acts by +2.

In this case: $\mathfrak{a}^{\phi}_{+} = 0$ for any $0 \neq \phi \in \mathbb{W}$.

4-dim Lorentzian conformal geometry

$$\begin{split} & SO(2,4)/P_1: \ \mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1, \ \text{with} \ \mathfrak{g}_0 = \mathbb{R} \oplus \mathfrak{so}(1,3) = \mathbb{R} \oplus \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}, \\ & \mathbb{W} = H^2_+(\mathfrak{g}_-,\mathfrak{g}) \cong S^4 \mathbb{C}^2 \qquad (\text{as a } \mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}\text{-rep}) \end{split}$$

and $Z \in \mathfrak{z}(\mathfrak{g}_0)$ acts by +2.

In this case: $\mathfrak{a}^{\phi}_{+} = 0$ for any $0 \neq \phi \in \mathbb{W}$.

In terms of std \mathbb{C} -basis $\{H, X, Y\}$ of $\mathfrak{sl}(2, \mathbb{C})$:

Petrov type	Normal form in $S^4\mathbb{C}^2$	Annihilator \mathfrak{a}_0	$\dim(\mathfrak{a})$	sharp?
Ν	x ⁴	X, iX, 2Z - H	7	\checkmark
III	x^3y	Z - 2H	5	×
D	x^2y^2	H, iH	6	\checkmark
II	$x^2y(x-y)$	0	4	\checkmark
Ι	xy(x-y)(x-ky)	0	4	\checkmark

Get bounds for constant Petrov type structures. In particular, $\mathfrak{S} \leq 7$.

Čap-Neusser (2009):

• Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y).$
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$(*): \ [\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i \qquad \Rightarrow \quad \mathfrak{s} \subset \mathfrak{g}_- \oplus \mathfrak{s}_{\geq 0} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}.$$

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

(*): $[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i \Rightarrow \mathfrak{s} \subset \mathfrak{g}_- \oplus \mathfrak{s}_{\geq 0} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}.$ BUT: The "Tanaka property" (*) isn't always true!

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

(*): $[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i \Rightarrow \mathfrak{s} \subset \mathfrak{g}_- \oplus \mathfrak{s}_{\geq 0} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}.$ BUT: The "Tanaka property" (*) isn't always true!

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

 $\begin{array}{l} (*): \ [\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i \\ \text{BUT: The "Tanaka property"} \end{array} \Rightarrow \quad \mathfrak{s} \subset \mathfrak{g}_- \oplus \mathfrak{s}_{\geq 0} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}. \\ \end{array}$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Proof outline:

- (1) **Prop**: At regular points, (*) is true.
- (2) Lemma: The set of regular points is open and dense in M.
- (3) Any nbd of a non-flat point contains a non-flat regular pt.

Dennis The (University of Tromsø) Symmetry gaps for geometric structures

Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant.

Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant. IDEA: Produce sym. alg \mathfrak{f} (filtered) from $\mathfrak{a} = \mathfrak{a}^{\phi_0}$ (graded). Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant. IDEA: Produce sym. alg \mathfrak{f} (filtered) from $\mathfrak{a} = \mathfrak{a}^{\phi_0}$ (graded). Define $\mathfrak{f} = \mathfrak{a}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant. IDEA: Produce sym. alg \mathfrak{f} (filtered) from $\mathfrak{a} = \mathfrak{a}^{\phi_0}$ (graded). Define $\mathfrak{f} = \mathfrak{a}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

Lemma

If \mathfrak{g} is simple with $\operatorname{rank}(\mathfrak{g}) \geq 3$, then $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$ and \mathfrak{f} is a Lie algebra.

Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant. IDEA: Produce sym. alg \mathfrak{f} (filtered) from $\mathfrak{a} = \mathfrak{a}^{\phi_0}$ (graded). Define $\mathfrak{f} = \mathfrak{a}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

Lemma

If \mathfrak{g} is simple with $\operatorname{rank}(\mathfrak{g}) \geq 3$, then $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$ and \mathfrak{f} is a Lie algebra.

Non-exceptions: $\mathfrak{f}/\mathfrak{f}^0 \rightsquigarrow \text{ non-flat model, } \dim(\mathfrak{f}) = \mathfrak{U}$, so $\mathfrak{S} = \mathfrak{U}$.

Via $H^2 \cong \ker(\Box)$, get an explicit l.w. vector $\phi_0 \in \mathbb{V} \subset H^2_+ \subset \bigwedge^2 \mathfrak{g}^*_- \otimes \mathfrak{g}$ from Kostant. IDEA: Produce sym. alg \mathfrak{f} (filtered) from $\mathfrak{a} = \mathfrak{a}^{\phi_0}$ (graded). Define $\mathfrak{f} = \mathfrak{a}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

Lemma

If \mathfrak{g} is simple with $\operatorname{rank}(\mathfrak{g}) \geq 3$, then $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$ and \mathfrak{f} is a Lie algebra.

Non-exceptions: $f/f^0 \rightsquigarrow$ non-flat model, $\dim(f) = \mathfrak{U}$, so $\mathfrak{S} = \mathfrak{U}$.

Have algorithm for constructing an explicit submax. sym. model.
- $\mathfrak{S} \leq \mathfrak{U} \leq \mathfrak{U}^{\mathbb{C}}$ always. Computing \mathfrak{U} may not be easy.
- For studies made thus far, $\mathfrak{S} = \mathfrak{U}$ still occurs almost always.

- $\mathfrak{S} \leq \mathfrak{U} \leq \mathfrak{U}^{\mathbb{C}}$ always. Computing \mathfrak{U} may not be easy.
- For studies made thus far, $\mathfrak{S} = \mathfrak{U}$ still occurs almost always.

Jet-determinacy of symmetries of parabolic geometries:

Theorem (Kruglikov–T. (2016))

Fixing $x \in M$ at which $\kappa_H \neq 0$, any symmetry **X** is 1-jet determined at x.

- $\mathfrak{S} \leq \mathfrak{U} \leq \mathfrak{U}^{\mathbb{C}}$ always. Computing \mathfrak{U} may not be easy.
- For studies made thus far, $\mathfrak{S} = \mathfrak{U}$ still occurs almost always.

Jet-determinacy of symmetries of parabolic geometries:

Theorem (Kruglikov-T. (2016))

Fixing $x \in M$ at which $\kappa_H \neq 0$, any symmetry **X** is 1-jet determined at x.

• Recall $\mathfrak{s}(u) \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_{0}) \subset \mathfrak{a}^{\kappa_{H}(u)}$ at regular points. Improvement: $\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa_{H}(u)}$ everywhere. (e.g. Pointwise Petrov type gives a bound.)

- $\mathfrak{S} \leq \mathfrak{U} \leq \mathfrak{U}^{\mathbb{C}}$ always. Computing \mathfrak{U} may not be easy.
- For studies made thus far, $\mathfrak{S} = \mathfrak{U}$ still occurs almost always.

Jet-determinacy of symmetries of parabolic geometries:

Theorem (Kruglikov–T. (2016))

Fixing $x \in M$ at which $\kappa_H \neq 0$, any symmetry **X** is 1-jet determined at x.

- Recall s(u) ⊂ pr_g(g₋, s₀) ⊂ a^{κ_H(u)} at regular points. Improvement:
 s(u) ⊂ a^{κ_H(u)} everywhere. (e.g. Pointwise Petrov type gives a bound.)
- IDEA: If $\kappa_H(u) \neq 0$, $\mathfrak{a}^{\kappa_H(u)}$ does not reach the top-slot \mathfrak{g}_{ν} of the grading on \mathfrak{g} . (On the flat model, $\mathfrak{g}_{\nu} \leftrightarrow 2$ -jet det syms.)