Jet-determination of symmetries of parabolic geometries*

Dennis The ${ }^{\dagger}$

(joint work with Boris Kruglikov)
Department of Mathematics \& Statistics
University of Troms \varnothing

Nov. 14, 2017
Symmetry and Geometric Structures, IMPAN, Warsaw

[^0]The jet-determination problem

Definition

At $x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_{x}^{k}(\mathbf{X}) \neq 0$.
- $\mathcal{S} \subset \mathfrak{X}(M)$ is k-jet determined if $\mathbf{X} \mapsto j_{x}^{k}(\mathbf{X})$ is injective.

The jet-determination problem

Definition

At $x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_{x}^{k}(\mathbf{X}) \neq 0$.
- $\mathcal{S} \subset \mathfrak{X}(M)$ is k-jet determined if $\mathbf{X} \mapsto j_{x}^{k}(\mathbf{X})$ is injective.

Q: If $\mathcal{S}=$ sym. alg. of a geometric str. on M, what is the minimal k such that \mathcal{S} is k-jet det. at a given $x \in M$?

The jet-determination problem

Definition

At $x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_{x}^{k}(\mathbf{X}) \neq 0$.
- $\mathcal{S} \subset \mathfrak{X}(M)$ is k-jet determined if $\mathbf{X} \mapsto j_{x}^{k}(\mathbf{X})$ is injective.

Q: If $\mathcal{S}=$ sym. alg. of a geometric str. on M, what is the minimal k such that \mathcal{S} is k-jet det. at a given $x \in M$?

Example (Conformal structures)

If $g=\sum_{i=1}^{n}\left(d x^{i}\right)^{2}$, then here are all CKV $\mathbf{X}=X^{i} \partial_{x^{i}}$ for $(M,[g])$:

$$
X^{i}=s^{i}+m^{i}{ }_{j} x^{j}+\lambda x^{i}+r^{j} x_{j} x^{i}-\frac{1}{2} r^{i} x_{j} x^{j}
$$

Here, \mathcal{S} is 2-jet determined (everywhere).

Parabolic geometries

- G : semisimple Lie group, P : parabolic subgroup; $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$ and $\mathfrak{p}=\mathfrak{g}^{0}, \mathfrak{p}_{+}=\mathfrak{g}^{1}$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

Parabolic geometries

- G : semisimple Lie group, P : parabolic subgroup; $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$ and $\mathfrak{p}=\mathfrak{g}^{0}, \mathfrak{p}_{+}=\mathfrak{g}^{1}$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

- $(\mathcal{G} \xrightarrow{\pi} M, \omega)$ of type (G, P) has sym alg

$$
\mathfrak{i n f}(\mathcal{G}, \omega)=\left\{\xi \in \mathfrak{X}(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\} .
$$

- G : semisimple Lie group, P : parabolic subgroup; $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$ and $\mathfrak{p}=\mathfrak{g}^{0}, \mathfrak{p}_{+}=\mathfrak{g}^{1}$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

- $(\mathcal{G} \xrightarrow{\pi} M, \omega)$ of type (G, P) has sym alg

$$
\mathfrak{i n f}(\mathcal{G}, \omega)=\left\{\xi \in \mathfrak{X}(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\} .
$$

- (reg/nor) parabolic geometries \leftrightarrow underlying structures.
- G : semisimple Lie group, P : parabolic subgroup; $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$ and $\mathfrak{p}=\mathfrak{g}^{0}, \mathfrak{p}_{+}=\mathfrak{g}^{1}$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

- $(\mathcal{G} \xrightarrow{\pi} M, \omega)$ of type (G, P) has sym alg

$$
\mathfrak{i n f}(\mathcal{G}, \omega)=\left\{\xi \in \mathfrak{X}(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\} .
$$

- (reg/nor) parabolic geometries \leftrightarrow underlying structures.
- harmonic curvature $\kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right)$.
- G : semisimple Lie group, P : parabolic subgroup; $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$ and $\mathfrak{p}=\mathfrak{g}^{0}, \mathfrak{p}_{+}=\mathfrak{g}^{1}$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

- $(\mathcal{G} \xrightarrow{\pi} M, \omega)$ of type (G, P) has sym alg

$$
\mathfrak{i n f}(\mathcal{G}, \omega)=\left\{\xi \in \mathfrak{X}(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\} .
$$

- (reg/nor) parabolic geometries \leftrightarrow underlying structures.
- harmonic curvature $\kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right)$.

Notation:

- Fix $x \in M$ and fix $u \in \pi^{-1}(x)$.
- $\xi \in \mathfrak{i n f}(\mathcal{G}, \omega)$ corresponds $\mathbf{X} \in \mathcal{S}:=\pi_{*}(\mathfrak{i n f}(\mathcal{G}, \omega))$.

Main results: Jet-det of syms of parabolic geometries

Theorem

\mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_{H}(x) \neq 0, \mathcal{S}$ is 1 -jet determined at x.

Main results: Jet-det of syms of parabolic geometries

Theorem

\mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_{H}(x) \neq 0, \mathcal{S}$ is 1 -jet determined at x.

This is connected to the following:

Theorem

Given $0 \neq \omega_{u}(\xi) \in \mathfrak{g}^{i} \backslash \mathfrak{g}^{i+1}$. Then:

$$
\begin{array}{lll}
i<0: & j_{x}^{0}(\mathbf{X}) \neq 0 & (0 \text {-jet determined }) \\
0 \leq i<\nu: & j_{x}^{0}(\mathbf{X})=0, j_{x}^{1}(\mathbf{X}) \neq 0 & \text { (1-jet determined) } \\
i=\nu: & j_{x}^{1}(\mathbf{X})=0, j_{x}^{2}(\mathbf{X}) \neq 0 & (2 \text {-jet determined })
\end{array}
$$

Main results: Jet-det of syms of parabolic geometries

Theorem

\mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_{H}(x) \neq 0, \mathcal{S}$ is 1 -jet determined at x.

This is connected to the following:

Theorem

Given $0 \neq \omega_{u}(\xi) \in \mathfrak{g}^{i} \backslash \mathfrak{g}^{i+1}$. Then:

$$
\begin{array}{lll}
i<0: & j_{x}^{0}(\mathbf{X}) \neq 0 & (0 \text {-jet determined }) \\
0 \leq i<\nu: & j_{x}^{0}(\mathbf{X})=0, j_{x}^{1}(\mathbf{X}) \neq 0 & \text { (1-jet determined) } \\
i=\nu: & j_{x}^{1}(\mathbf{X})=0, j_{x}^{2}(\mathbf{X}) \neq 0 & \text { (2-jet determined) }
\end{array}
$$

IDEA: For 1-jet det, want to show that a certain Tanaka prolongation does not reach the top-slot \mathfrak{g}_{ν}.

Key technical advance: improved Tanaka prolongation result

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2 -jet det. at x, we must have $\kappa_{H}(x)=0$. Can we assert $\kappa_{H} \equiv 0$ an an open nbd of x ?

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2 -jet det. at x, we must have $\kappa_{H}(x)=0$. Can we assert $\kappa_{H} \equiv 0$ an an open nbd of x ?

Let G be simple. (If \mathfrak{g} is real, assume $\mathfrak{g}_{\mathbb{C}}$ is simple.)
Theorem (Torsion-free parabolic geometries)
If $0 \neq \mathbf{X} \in \mathcal{S}$ and $j_{X}^{1}(\mathbf{X})=0$, i.e. $\underline{\omega_{u}}(\xi) \in \mathfrak{g}_{\nu}$, then the geometry is flat on open set $U \subset M$ with $x \in \bar{U}$.

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2 -jet det. at x, we must have $\kappa_{H}(x)=0$. Can we assert $\kappa_{H} \equiv 0$ an an open nbd of x ?

Let G be simple. (If \mathfrak{g} is real, assume $\mathfrak{g}_{\mathbb{C}}$ is simple.)

Theorem (Torsion-free parabolic geometries)

If $0 \neq \mathbf{X} \in \mathcal{S}$ and $j_{X}^{1}(\mathbf{X})=0$, i.e. $\underline{\omega_{u}}(\xi) \in \mathfrak{g}_{\nu}$, then the geometry is flat on open set $U \subset M$ with $x \in \bar{U}$.

Theorem (General parabolic geometries)

Suppose that:

(i) $\omega_{u}(\xi)$ lies in the open G_{0}-orbit of \mathfrak{g}_{ν}.
(ii) G / P is not $A_{\ell} / P_{s, s+1}, 2 \leq s<\frac{\ell}{2}$ or $B_{\ell} / P_{\ell}, \ell \geq 5$ odd.

Then the geometry is flat on an open set $U \subset M$ with $x \in \bar{U}$.

Part 1: Symmetry and Tanaka prolongation

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u)=\operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u)=\operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_{0}(u) \subset \mathfrak{a n n}_{\mathfrak{g}_{0}}\left(\kappa_{H}(u)\right)$.

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u)=\operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_{0}(u) \subset \mathfrak{a n n}_{\mathfrak{g}_{0}}\left(\kappa_{H}(u)\right)$.

Recall $\kappa_{H}(u) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ (completely reducible, so \mathfrak{p}_{+}acts trivially.)

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u)=\operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_{0}(u) \subset \mathfrak{a n n}_{\mathfrak{g}_{0}}\left(\kappa_{H}(u)\right)$.

Recall $\kappa_{H}(u) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ (completely reducible, so \mathfrak{p}_{+}acts trivially.)
Kostant $\Rightarrow \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \cong \frac{\operatorname{ker}(\partial)}{\operatorname{im}(\partial)} \cong H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ as \mathfrak{g}_{0}-modules.

Symmetry as a graded object

Čap-Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is injective on $\left\{\xi_{u}: \xi \in \mathfrak{i n f}(\mathcal{G}, \omega)\right\}$.
- $\mathfrak{f}(u):=\omega_{u}(\mathfrak{i n f}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}}:=[X, Y]_{\mathfrak{g}}-\kappa_{u}(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u)=\operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_{0}(u) \subset \mathfrak{a n n}_{\mathfrak{g}_{0}}\left(\kappa_{H}(u)\right)$.

Recall $\kappa_{H}(u) \in \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ (completely reducible, so \mathfrak{p}_{+}acts trivially.)
Kostant $\Rightarrow \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \cong \frac{\operatorname{ker}(\partial)}{\operatorname{im}(\partial)} \cong H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ as \mathfrak{g}_{0}-modules.
Regularity $\Rightarrow \kappa_{H}(u) \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

Tanaka prolongation
Definition (Tanaka prolongation)
Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

Tanaka prolongation
Definition (Tanaka prolongation)
Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

FACT: This is equivalent to $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^{k}(X) \in \mathfrak{a}_{0}\right\}$.

Tanaka prolongation
Definition (Tanaka prolongation)
Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

FACT: This is equivalent to $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^{k}(X) \in \mathfrak{a}_{0}\right\}$.
Notation: Given $\phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, let $\mathfrak{a}^{\phi}:=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a n n}(\phi)\right)$.

Tanaka prolongation

Definition (Tanaka prolongation)

Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

FACT: This is equivalent to $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^{k}(X) \in \mathfrak{a}_{0}\right\}$.
Notation: Given $\phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, let $\mathfrak{a}^{\phi}:=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a n n}(\phi)\right)$.

Theorem (Prolongation does not reach the last level)

If \mathfrak{g} is simple and $0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, then $\mathfrak{a}_{\nu}^{\phi}=0$.

Tanaka prolongation

Definition (Tanaka prolongation)

Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

FACT: This is equivalent to $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^{k}(X) \in \mathfrak{a}_{0}\right\}$.
Notation: Given $\phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, let $\mathfrak{a}^{\phi}:=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a n n}(\phi)\right)$.
Theorem (Prolongation does not reach the last level)
If \mathfrak{g} is simple and $0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, then $\mathfrak{a}_{\nu}^{\phi}=0$.
Example (K.-T. (2014))

Geometry	$H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$	Result for $0 \neq \phi \in H_{+}^{2}$
$(2,3,5)$-geometry	$-8,4$	$\mathfrak{a}_{+}^{\phi}=0$

Tanaka prolongation

Definition (Tanaka prolongation)

Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0}=\mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}$ for $k>0$. Write $\mathfrak{a}=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$.

FACT: This is equivalent to $\mathfrak{a}_{k}=\left\{X \in \mathfrak{g}_{k} \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^{k}(X) \in \mathfrak{a}_{0}\right\}$.
Notation: Given $\phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, let $\mathfrak{a}^{\phi}:=\operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{a n n}(\phi)\right)$.
Theorem (Prolongation does not reach the last level)
If \mathfrak{g} is simple and $0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, then $\mathfrak{a}_{\nu}^{\phi}=0$.
Example (K.-T. (2014))

Geometry	$H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$	Result for $0 \neq \phi \in H_{+}^{2}$
$(2,3,5)$-geometry	-8,4	$\mathfrak{a}_{+}^{\phi}=0$
torsion-free pairs of 2nd order ODE	$0<-4 \quad 4$	$\mathfrak{a}_{\geq 2}^{\phi}=0$

Symmetry and Tanaka prolongation

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\operatorname{dim}\left(\mathfrak{s}_{i}(u)\right)$ are locally constant.

Symmetry and Tanaka prolongation

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\operatorname{dim}\left(\mathfrak{s}_{i}(u)\right)$ are locally constant. We proved $\left[\mathfrak{s}_{i}(u), \mathfrak{g}_{-1}\right] \subset \mathfrak{s}_{i-1}(u)$, so

$$
\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{s}_{0}(u)\right) \subset \mathfrak{a}^{\kappa_{H}(u)}
$$

Symmetry and Tanaka prolongation

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\operatorname{dim}\left(\mathfrak{s}_{i}(u)\right)$ are locally constant. We proved $\left[\mathfrak{s}_{i}(u), \mathfrak{g}_{-1}\right] \subset \mathfrak{s}_{i-1}(u)$, so

$$
\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{s}_{0}(u)\right) \subset \mathfrak{a}^{\kappa_{H}(u)}
$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U}:=\max \left\{\operatorname{dim}\left(\mathfrak{a}^{\phi}\right): 0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)\right\}$.

Symmetry and Tanaka prolongation

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\operatorname{dim}\left(\mathfrak{s}_{i}(u)\right)$ are locally constant. We proved $\left[\mathfrak{s}_{i}(u), \mathfrak{g}_{-1}\right] \subset \mathfrak{s}_{i-1}(u)$, so

$$
\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{s}_{0}(u)\right) \subset \mathfrak{a}^{\kappa_{H}(u)}
$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U}:=\max \left\{\operatorname{dim}\left(\mathfrak{a}^{\phi}\right): 0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)\right\}$.

Key advance: Can drop the regular point assumption.

Theorem

Fix any $u \in \mathcal{G}$. Then $\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa H(u)}$.

Symmetry and Tanaka prolongation

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\operatorname{dim}\left(\mathfrak{s}_{i}(u)\right)$ are locally constant. We proved $\left[\mathfrak{s}_{i}(u), \mathfrak{g}_{-1}\right] \subset \mathfrak{s}_{i-1}(u)$, so

$$
\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}\left(\mathfrak{g}_{-}, \mathfrak{s}_{0}(u)\right) \subset \mathfrak{a}^{\kappa_{H}(u)}
$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U}:=\max \left\{\operatorname{dim}\left(\mathfrak{a}^{\phi}\right): 0 \neq \phi \in H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)\right\}$.

Key advance: Can drop the regular point assumption.

Theorem

Fix any $u \in \mathcal{G}$. Then $\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa H}(u)$.

- $\mathfrak{S} \leq \mathfrak{U}$ is immediate.
- If \mathfrak{g} is simple and $\kappa_{H}(u) \neq 0$, then $\mathfrak{s}_{\nu}(u)=0$
$\rightsquigarrow \quad j_{x}^{1}(\mathbf{X}) \neq 0, \quad \forall \mathbf{X} \in \mathcal{S}$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A} M=\mathcal{G} \times_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A M}) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A M}=\mathcal{G} \times_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A} M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym $s, s(u) \in \mathfrak{g}^{k} \subset \mathfrak{p}_{+}$, and $t_{j} \in \Gamma\left(\mathcal{A}^{-i_{j}} M\right)$ with $k-i_{1}-\ldots-i_{n} \geq 0$. Then

$$
\left\{t_{n},\left\{\ldots,\left\{t_{1}, s\right\} \ldots\right\}\right\}(u) \cdot \kappa_{H}(u)=0
$$

Reformulating the Tanaka prolongation result

Let $\mathcal{A} M=\mathcal{G} \times{ }_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A} M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym $s, s(u) \in \mathfrak{g}^{k} \subset \mathfrak{p}_{+}$, and $t_{j} \in \Gamma\left(\mathcal{A}^{-i_{j}} M\right)$ with $k-i_{1}-\ldots-i_{n} \geq 0$. Then

$$
\left\{t_{n},\left\{\ldots,\left\{t_{1}, s\right\} \ldots\right\}\right\}(u) \cdot \kappa_{H}(u)=0
$$

For any natural bundle $E=\mathcal{G} \times p \mathbb{E}$, have fundamental derivative $D: \Gamma(\mathcal{A M}) \times \Gamma(E) \rightarrow \Gamma(E)$. Key properties:

Reformulating the Tanaka prolongation result

Let $\mathcal{A} M=\mathcal{G} \times{ }_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A} M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym $s, s(u) \in \mathfrak{g}^{k} \subset \mathfrak{p}_{+}$, and $t_{j} \in \Gamma\left(\mathcal{A}^{-i_{j}} M\right)$ with $k-i_{1}-\ldots-i_{n} \geq 0$. Then

$$
\left\{t_{n},\left\{\ldots,\left\{t_{1}, s\right\} \ldots\right\}\right\}(u) \cdot \kappa_{H}(u)=0
$$

For any natural bundle $E=\mathcal{G} \times p \mathbb{E}$, have fundamental derivative $D: \Gamma(\mathcal{A M}) \times \Gamma(E) \rightarrow \Gamma(E)$. Key properties:

- If $r(u) \in \mathfrak{p}$, then $\left(D_{r} t\right)(u)=-r(u) \cdot t(u)$, where $t \in \Gamma(E)$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A} M=\mathcal{G} \times{ }_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A} M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym $s, s(u) \in \mathfrak{g}^{k} \subset \mathfrak{p}_{+}$, and $t_{j} \in \Gamma\left(\mathcal{A}^{-i_{j}} M\right)$ with $k-i_{1}-\ldots-i_{n} \geq 0$. Then

$$
\left\{t_{n},\left\{\ldots,\left\{t_{1}, s\right\} \ldots\right\}\right\}(u) \cdot \kappa_{H}(u)=0
$$

For any natural bundle $E=\mathcal{G} \times p \mathbb{E}$, have fundamental derivative $D: \Gamma(\mathcal{A M}) \times \Gamma(E) \rightarrow \Gamma(E)$. Key properties:

- If $r(u) \in \mathfrak{p}$, then $\left(D_{r} t\right)(u)=-r(u) \cdot t(u)$, where $t \in \Gamma(E)$.
- s sym $\Rightarrow D_{s} \kappa_{H}=0, D_{s} t=[s, t]$ for $t \in \Gamma(\mathcal{A M})$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A} M=\mathcal{G} \times{ }_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A} M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot, \cdot\}$ and geometric bracket $[\cdot, \cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym $s, s(u) \in \mathfrak{g}^{k} \subset \mathfrak{p}_{+}$, and $t_{j} \in \Gamma\left(\mathcal{A}^{-i_{j}} M\right)$ with $k-i_{1}-\ldots-i_{n} \geq 0$. Then

$$
\left\{t_{n},\left\{\ldots,\left\{t_{1}, s\right\} \ldots\right\}\right\}(u) \cdot \kappa_{H}(u)=0
$$

For any natural bundle $E=\mathcal{G} \times p \mathbb{E}$, have fundamental derivative $D: \Gamma(\mathcal{A} M) \times \Gamma(E) \rightarrow \Gamma(E)$. Key properties:

- If $r(u) \in \mathfrak{p}$, then $\left(D_{r} t\right)(u)=-r(u) \cdot t(u)$, where $t \in \Gamma(E)$.
- s sym $\Rightarrow D_{s} \kappa_{H}=0, D_{s} t=[s, t]$ for $t \in \Gamma(\mathcal{A} M)$.
- Thus, if s sym with $s(u) \in \mathfrak{p}$, then $[s, t](u)=-\{s, t\}(u)$.

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), p_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), \mathfrak{p}_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

Proof ideas

$$
\text { Recall: } \kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), \mathfrak{p}_{+} \text {-action on } \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \text { is trivial. }
$$

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} . \quad(*)
$$

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), p_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} . \quad(*)
$$

- $\left(D_{s} D_{t} \kappa_{H}\right)(u)=-s(u) \cdot\left(D_{t} \kappa_{H}\right)(u)=0$

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times_{P} \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), p_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
\begin{equation*}
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} \tag{*}
\end{equation*}
$$

- $\left(D_{s} D_{t} \kappa_{H}\right)(u)=-s(u) \cdot\left(D_{t} \kappa_{H}\right)(u)=0$
- $[t, s](u)=\{s, t\}(u) \in \mathfrak{g}^{0}=\mathfrak{p}$

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times_{P} \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), p_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
\begin{equation*}
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} \tag{*}
\end{equation*}
$$

- $\left(D_{s} D_{t} \kappa_{H}\right)(u)=-s(u) \cdot\left(D_{t} \kappa_{H}\right)(u)=0$
- $[t, s](u)=\{s, t\}(u) \in \mathfrak{g}^{0}=\mathfrak{p}$
- $(*) \Rightarrow 0=D_{[t, s]} \kappa_{H}=-\{s, t\}(u) \cdot \kappa_{H}(u)$

Proof ideas

Recall: $\kappa_{H} \in \Gamma\left(\mathcal{G} \times_{P} \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), \mathfrak{p}_{+}$-action on $\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}$ is trivial.

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
\begin{equation*}
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} \tag{*}
\end{equation*}
$$

- $\left(D_{s} D_{t} \kappa_{H}\right)(u)=-s(u) \cdot\left(D_{t} \kappa_{H}\right)(u)=0$
- $[t, s](u)=\{s, t\}(u) \in \mathfrak{g}^{0}=\mathfrak{p}$
- $(*) \Rightarrow 0=D_{[t, s]} \kappa_{H}=-\{s, t\}(u) \cdot \kappa_{H}(u)$
|1|-graded case: \checkmark.

$$
\text { Recall: } \kappa_{H} \in \Gamma\left(\mathcal{G} \times P \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}\right), \mathfrak{p}_{+} \text {-action on } \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \text { is trivial. }
$$

Let $s(u) \in \mathfrak{g}^{k \geq 1}$ and $t \in \Gamma\left(\mathcal{A}^{-k} M\right)$. WTS: $\{s, t\}(u) \cdot \kappa_{H}(u)=0$.

$$
\begin{equation*}
0=D_{s} \kappa_{H} \quad \Rightarrow \quad 0=D_{t} D_{s} \kappa_{H}=D_{s} D_{t} \kappa_{H}+D_{[t, s]} \kappa_{H} . \tag{*}
\end{equation*}
$$

- $\left(D_{s} D_{t} \kappa_{H}\right)(u)=-s(u) \cdot\left(D_{t} \kappa_{H}\right)(u)=0$
- $[t, s](u)=\{s, t\}(u) \in \mathfrak{g}^{0}=\mathfrak{p}$
- $(*) \Rightarrow 0=D_{[t, s]} \kappa_{H}=-\{s, t\}(u) \cdot \kappa_{H}(u)$
$|1|$-graded case: \checkmark. General case is a complicated induction. Have to contend with identities like
$\left[t_{2},\left[t_{1}, s\right]\right]=D_{t_{2}}\left[t_{1}, s\right]-D_{\left[t_{1}, s\right]} t_{2}-\kappa\left(\Pi\left(t_{2}\right), \Pi\left(\left[t_{1}, s\right]\right)\right)+\left\{t_{2},\left[t_{1}, s\right]\right\}$.

Sample of general case

Let $s(u) \in \mathfrak{g}^{2}$ and $t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right)$. From $0=D_{t_{2}} D_{t_{1}} D_{s} \kappa_{H}$,
$(*) 0=D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H}$.
Let \doteq mean "equality when evaluated at u "

Sample of general case

Let $s(u) \in \mathfrak{g}^{2}$ and $t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right)$. From $0=D_{t_{2}} D_{t_{1}} D_{s} \kappa_{H}$,
$(*) 0=D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H}$.
Let \doteq mean "equality when evaluated at u "
$\left[t_{j}, s\right](u)=-\left\{t_{j}, s\right\}(u) \in \mathfrak{p}_{+}$, so $(*) \Rightarrow 0 \doteq D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}$.

Sample of general case

Let $s(u) \in \mathfrak{g}^{2}$ and $t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right)$. From $0=D_{t_{2}} D_{t_{1}} D_{s} \kappa_{H}$,
(*) $0=D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H}$.
Let \doteq mean "equality when evaluated at u "
$\left[t_{j}, s\right](u)=-\left\{t_{j}, s\right\}(u) \in \mathfrak{p}_{+}$, so $(*) \Rightarrow 0 \doteq D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}$.
$\left[t_{2},\left[t_{1}, s\right]\right]=D_{t_{2}}\left[t_{1}, s\right]-D_{\left[t_{1}, s\right]} t_{2}-\kappa\left(\Pi\left(t_{2}\right), \Pi\left(\left[t_{1}, s\right]\right)\right)+\left\{t_{2},\left[t_{1}, s\right]\right\}$
$\doteq D_{t_{2}}\left[t_{1}, s\right]=-D_{t_{2}} D_{s} t_{1} \doteq-D_{s} D_{t_{2}} t_{1}-D_{\left[t_{2}, s\right]} t_{1}$
$\doteq-D_{s} D_{t_{2}} t_{1}+\left\{\left\{s, t_{2}\right\}, t_{1}\right\}$

Sample of general case

$$
\begin{aligned}
& \text { Let } s(u) \in \mathfrak{g}^{2} \text { and } t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right) \text {. From } 0=D_{t_{2}} D_{t_{1}} D_{s} \kappa_{H}, \\
& (*) 0=D_{\left[t_{2},\left[t_{1}, s\right]\right.} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H} .
\end{aligned}
$$

Let $=$ mean "equality when evaluated at u "
$\left[t_{j}, s\right](u)=-\left\{t_{j}, s\right\}(u) \in \mathfrak{p}_{+}$, so $(*) \Rightarrow 0 \doteq D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}$.
$\left[t_{2},\left[t_{1}, s\right]\right]=D_{t_{2}}\left[t_{1}, s\right]-D_{\left[t_{1}, s\right]} t_{2}-\kappa\left(\Pi\left(t_{2}\right), \Pi\left(\left[t_{1}, s\right]\right)\right)+\left\{t_{2},\left[t_{1}, s\right]\right\}$

$$
\doteq D_{t_{2}}\left[t_{1}, s\right]=-D_{t_{2}} D_{s} t_{1} \doteq-D_{s} D_{t_{2}} t_{1}-D_{\left[t_{2}, s\right]} t_{1}
$$

$$
\doteq-D_{s} D_{t_{2}} t_{1}+\left\{\left\{s, t_{2}\right\}, t_{1}\right\}
$$

- $\left(D_{s} D_{t_{2}} t_{1}\right)(u) \doteq-s(u) \cdot\left(D_{t_{2}} t_{1}\right)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_{+}$.

Sample of general case

Let $s(u) \in \mathfrak{g}^{2}$ and $t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right)$. From $0=D_{t_{2}} D_{t_{1}} D_{s} \kappa H_{H}$,
(*) $0=D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H}$.
Let $=$ mean "equality when evaluated at u "
$\left[t_{j}, s\right](u)=-\left\{t_{j}, s\right\}(u) \in \mathfrak{p}_{+}$, so $(*) \Rightarrow 0 \doteq D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}$.
$\left[t_{2},\left[t_{1}, s\right]\right]=D_{t_{2}}\left[t_{1}, s\right]-D_{\left[t_{1}, s\right]} t_{2}-\kappa\left(\Pi\left(t_{2}\right), \Pi\left(\left[t_{1}, s\right]\right)\right)+\left\{t_{2},\left[t_{1}, s\right]\right\}$
$\doteq D_{t_{2}}\left[t_{1}, s\right]=-D_{t_{2}} D_{s} t_{1} \doteq-D_{s} D_{t_{2}} t_{1}-D_{\left[t_{2}, s\right.} t_{1}$
$\doteq-D_{s} D_{t_{2}} t_{1}+\left\{\left\{s, t_{2}\right\}, t_{1}\right\}$

- $\left(D_{s} D_{t_{2}} t_{1}\right)(u) \doteq-s(u) \cdot\left(D_{t_{2}} t_{1}\right)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_{+}$.
- $\left\{s,\left\{t_{1}, t_{2}\right\}\right\}(u) \cdot \kappa_{H}(u)=0$ (apply previous case).

Sample of general case

Let $s(u) \in \mathfrak{g}^{2}$ and $t_{1}, t_{2} \in \Gamma\left(\mathcal{A}^{-1} M\right)$. From $0=D_{t_{2}} D_{t_{1}} D_{s} \kappa H_{H}$,
(*) $0=D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}+D_{\left[t_{1}, s\right]} D_{t_{2}} \kappa_{H}+D_{\left[t_{2}, s\right]} D_{t_{1}} \kappa_{H}+D_{s} D_{t_{2}} D_{t_{1}} \kappa_{H}$.
Let $=$ mean "equality when evaluated at u "
$\left[t_{j}, s\right](u)=-\left\{t_{j}, s\right\}(u) \in \mathfrak{p}_{+}$, so $(*) \Rightarrow 0 \doteq D_{\left[t_{2},\left[t_{1}, s\right]\right]} \kappa_{H}$.
$\left[t_{2},\left[t_{1}, s\right]\right]=D_{t_{2}}\left[t_{1}, s\right]-D_{\left[t_{1}, s\right]} t_{2}-\kappa\left(\Pi\left(t_{2}\right), \Pi\left(\left[t_{1}, s\right]\right)\right)+\left\{t_{2},\left[t_{1}, s\right]\right\}$
$\doteq D_{t_{2}}\left[t_{1}, s\right]=-D_{t_{2}} D_{s} t_{1} \doteq-D_{s} D_{t_{2}} t_{1}-D_{\left[t_{2}, s\right.} t_{1}$
$\doteq-D_{s} D_{t_{2}} t_{1}+\left\{\left\{s, t_{2}\right\}, t_{1}\right\}$

- $\left(D_{s} D_{t_{2}} t_{1}\right)(u) \doteq-s(u) \cdot\left(D_{t_{2}} t_{1}\right)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_{+}$.
- $\left\{s,\left\{t_{1}, t_{2}\right\}\right\}(u) \cdot \kappa_{H}(u)=0$ (apply previous case).
- $\left[t_{2},\left[t_{1}, s\right]\right](u)-\left\{t_{2},\left\{t_{1}, s\right\}\right\}(u)=0 \bmod \operatorname{ann}_{\mathfrak{p}}\left(\kappa_{H}(u)\right)$.

Part 2: Structure of \mathfrak{g}_{ν} and rigidity

Čap-Melnick criteria

$\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E:=\omega_{u}(\xi) \in \mathfrak{p}_{+}$. Jacobson-Morozov \Rightarrow std $\mathfrak{s l}_{2}$-triple $\{F, H, E\}$.

Čap-Melnick criteria

$\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E:=\omega_{u}(\xi) \in \mathfrak{p}_{+}$. Jacobson-Morozov \Rightarrow std $\mathfrak{s l}_{2}$-triple $\{F, H, E\}$. "Good" $\mathfrak{s l}_{2}$-triple:
(CM.1) $H \in \mathfrak{g}_{0}$;
(CM.2) Eigenvalues of H on \mathfrak{g}_{-}are ≤ 0, the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^{-}(E)=\left\{X \in \mathfrak{g}_{-} \mid[X, E]=0\right\}$, and $\left.\operatorname{ad}_{H}\right|_{C_{\mathfrak{g}}^{-}(E)}=0$;
(CM.3) H acts s.s. on $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ and all eigenvalues are ≥ 0.

Čap-Melnick criteria

$\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E:=\omega_{u}(\xi) \in \mathfrak{p}_{+}$. Jacobson-Morozov \Rightarrow std $\mathfrak{s l}_{2}$-triple $\{F, H, E\}$. "Good" $\mathfrak{s l}_{2}$-triple:
(CM.1) $H \in \mathfrak{g}_{0}$;
(CM.2) Eigenvalues of H on \mathfrak{g}_{-}are ≤ 0, the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^{-}(E)=\left\{X \in \mathfrak{g}_{-} \mid[X, E]=0\right\}$, and $\left.\operatorname{ad}_{H}\right|_{C_{\mathfrak{g}}^{-}(E)}=0$;
(CM.3) H acts s.s. on $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ and all eigenvalues are ≥ 0.

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_{H}(x)=0$, and $v=\pi_{*}\left(\omega_{u}^{-1}(F)\right) \in T_{x} M$. Then $\exists \gamma:(-\epsilon,+\epsilon) \rightarrow M, \gamma(0)=x, \gamma^{\prime}(0)=v$, preserved by flow of \mathbf{X} \& on which it acts by proj. transf. Let $\gamma^{+}=\gamma((0,+\epsilon)) \subset M$, \exists nbd U of $\gamma^{+}, \bar{U} \ni x$, on which the geometry is flat.

Čap-Melnick criteria

$\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E:=\omega_{u}(\xi) \in \mathfrak{p}_{+}$. Jacobson-Morozov \Rightarrow std $\mathfrak{s l}_{2}$-triple $\{F, H, E\}$. "Good" $\mathfrak{s l}_{2}$-triple:
(CM.1) $H \in \mathfrak{g}_{0}$;
(CM.2) Eigenvalues of H on \mathfrak{g}_{-}are ≤ 0, the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^{-}(E)=\left\{X \in \mathfrak{g}_{-} \mid[X, E]=0\right\}$, and $\left.\operatorname{ad}_{H}\right|_{C_{\mathfrak{g}}^{-}(E)}=0$;
(CM.3) H acts s.s. on $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ and all eigenvalues are ≥ 0.

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_{H}(x)=0$, and $v=\pi_{*}\left(\omega_{u}^{-1}(F)\right) \in T_{x} M$. Then $\exists \gamma:(-\epsilon,+\epsilon) \rightarrow M, \gamma(0)=x, \gamma^{\prime}(0)=v$, preserved by flow of \mathbf{X} \& on which it acts by proj. transf. Let $\gamma^{+}=\gamma((0,+\epsilon)) \subset M$, \exists nbd U of $\gamma^{+}, \bar{U} \ni x$, on which the geometry is flat.

Melnick-Neusser (2015): Investigated the |1|-graded case.

Čap-Melnick criteria

$\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E:=\omega_{u}(\xi) \in \mathfrak{p}_{+}$. Jacobson-Morozov \Rightarrow std $\mathfrak{s l}_{2}$-triple $\{F, H, E\}$. "Good" $\mathfrak{s l}_{2}$-triple:
(CM.1) $H \in \mathfrak{g}_{0}$;
(CM.2) Eigenvalues of H on \mathfrak{g}_{-}are ≤ 0, the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^{-}(E)=\left\{X \in \mathfrak{g}_{-} \mid[X, E]=0\right\}$, and $\left.\operatorname{ad}_{H}\right|_{C_{\mathfrak{g}}^{-}(E)}=0$;
(CM.3) H acts s.s. on $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ and all eigenvalues are ≥ 0.

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_{H}(x)=0$, and $v=\pi_{*}\left(\omega_{u}^{-1}(F)\right) \in T_{x} M$. Then $\exists \gamma:(-\epsilon,+\epsilon) \rightarrow M, \gamma(0)=x, \gamma^{\prime}(0)=v$, preserved by flow of \mathbf{X} \& on which it acts by proj. transf. Let $\gamma^{+}=\gamma((0,+\epsilon)) \subset M$, $\exists n b d U$ of $\gamma^{+}, \bar{U} \ni x$, on which the geometry is flat.

Melnick-Neusser (2015): Investigated the |1|-graded case.
Our study: General grading, but suppose $E \in \mathfrak{g}_{\nu}$ ("top slot").

Structure theory for the top slot \mathfrak{g}_{ν}

Definition

R : reductive, $V: R$-irrep, $\mathcal{V} \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $\operatorname{Sec}_{k}(\mathcal{V}) \backslash \operatorname{Sec}_{k-1}(\mathcal{V})$, then V is sub-cominuscule.

Structure theory for the top slot \mathfrak{g}_{ν}

Definition

R : reductive, $V: R$-irrep, $\mathcal{V} \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $\operatorname{Sec}_{k}(\mathcal{V}) \backslash \operatorname{Sec}_{k-1}(\mathcal{V})$, then V is sub-cominuscule.

Landsberg-Manivel (2003) observed that irred. |1|-graded G/P $\Rightarrow \mathfrak{g}_{1}$ is a sub-cominuscule G_{0}-module.

Structure theory for the top slot \mathfrak{g}_{ν}

Definition

R : reductive, $V: R$-irrep, $\mathcal{V} \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $\operatorname{Sec}_{k}(\mathcal{V}) \backslash \operatorname{Sec}_{k-1}(\mathcal{V})$, then V is sub-cominuscule.

Landsberg-Manivel (2003) observed that irred. |1|-graded G/P
$\Rightarrow \mathfrak{g}_{1}$ is a sub-cominuscule G_{0}-module.

G / P	$G_{0}^{\text {s5 }}$	Sub-cominuscule variety $\mathcal{V} \subset \mathbb{P}\left(\mathfrak{g}_{1}\right)$
A_{ℓ} / P_{k}	$A_{k-1} \times A_{\ell-k}$	$\operatorname{Seg}\left(\mathbb{P}^{k-1} \times \mathbb{P}^{\ell-k}\right) \hookrightarrow \mathbb{P}\left(\mathbb{C}^{k} \boxtimes \mathbb{C}^{\ell+1-k}\right)$
B_{ℓ} / P_{1}	$B_{\ell-1}$	$Q^{2 \ell-3} \hookrightarrow \mathbb{P}^{2 \ell-2}$
D_{ℓ} / P_{1}	$D_{\ell-1}$	quadrics $Q^{2 \ell-4} \hookrightarrow \mathbb{P}^{2 \ell-3}$
C_{ℓ} / P_{ℓ}	$A_{\ell-1}$	$\mathbb{P}^{\ell-1} \hookrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{\ell}\right)$
D_{ℓ} / P_{ℓ}	$A_{\ell-1}$	$\operatorname{Gr}(2, \ell) \hookrightarrow \mathbb{P}\left(\Lambda^{2} \mathbb{C}^{\ell}\right)$
E_{6} / P_{6}	D_{5}	$\mathbb{S}_{5}=D_{5} / P_{5} \hookrightarrow \mathbb{P}^{15}$
E_{7} / P_{7}	E_{6}	$\mathbb{O} \mathbb{P}^{2}=E_{6} / P_{6} \hookrightarrow \mathbb{P}^{26}$

Structure theory for the top slot \mathfrak{g}_{ν}

Definition

R : reductive, $V: R$-irrep, $\mathcal{V} \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $\operatorname{Sec}_{k}(\mathcal{V}) \backslash \operatorname{Sec}_{k-1}(\mathcal{V})$, then V is sub-cominuscule.

Landsberg-Manivel (2003) observed that irred. |1|-graded G/P
$\Rightarrow \mathfrak{g}_{1}$ is a sub-cominuscule G_{0}-module.

G / P	$G_{0}^{\text {s5 }}$	Sub-cominuscule variety $\mathcal{V} \subset \mathbb{P}\left(\mathfrak{g}_{1}\right)$
A_{ℓ} / P_{k}	$A_{k-1} \times A_{\ell-k}$	$\operatorname{Seg}\left(\mathbb{P}^{k-1} \times \mathbb{P}^{\ell-k}\right) \hookrightarrow \mathbb{P}\left(\mathbb{C}^{k} \boxtimes \mathbb{C}^{\ell+1-k}\right)$
B_{ℓ} / P_{1}	$B_{\ell-1}$	quadrics $Q^{2 \ell-3} \hookrightarrow \mathbb{P}^{2 \ell-2}$
D_{ℓ} / P_{1}	$D_{\ell-1}$	$Q^{2 \ell-4} \hookrightarrow \mathbb{P}^{2 \ell-3}$
C_{ℓ} / P_{ℓ}	$A_{\ell-1}$	$\mathbb{P}^{\ell-1} \hookrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{\ell}\right)$
D_{ℓ} / P_{ℓ}	$A_{\ell-1}$	$\operatorname{Gr}(2, \ell) \hookrightarrow \mathbb{P}\left(\Lambda^{2} \mathbb{C}^{\ell}\right)$
E_{6} / P_{6}	D_{5}	$S_{5}=D_{5} / P_{5} \hookrightarrow \mathbb{P}^{15}$
E_{7} / P_{7}	E_{6}	$\mathbb{O} \mathbb{P}^{2}=E_{6} / P_{6} \hookrightarrow \mathbb{P}^{26}$

Proposition

The top-slot \mathfrak{g}_{ν} is a sub-cominuscule G_{0}-module.

The top-slot orthogonal cascade

Q: How to parametrize G_{0}-orbits in $\mathbb{P}\left(\mathfrak{g}_{\nu}\right)$?

The top-slot orthogonal cascade

Q: How to parametrize G_{0}-orbits in $\mathbb{P}\left(\mathfrak{g}_{\nu}\right)$?

Definition

Let G be complex simple. The TSOC is an ordered sequence $\left\{\beta_{1}, \beta_{2}, \ldots\right\} \subset \Delta\left(\mathfrak{g}_{\nu}\right)$, where $\beta_{1}=\lambda$ is the highest root of \mathfrak{g}, and

$$
\beta_{j}=\max \left\{\alpha \in \Delta\left(\mathfrak{g}_{\nu}\right) \mid \alpha \in\left\{\beta_{1}, \ldots, \beta_{j-1}\right\}^{\perp}\right\}, \quad j \geq 2
$$

(Remark: This max is unique.) Let e_{γ} be a root vector for γ.

The top-slot orthogonal cascade

Q: How to parametrize G_{0}-orbits in $\mathbb{P}\left(\mathfrak{g}_{\nu}\right)$?

Definition

Let G be complex simple. The TSOC is an ordered sequence $\left\{\beta_{1}, \beta_{2}, \ldots\right\} \subset \Delta\left(\mathfrak{g}_{\nu}\right)$, where $\beta_{1}=\lambda$ is the highest root of \mathfrak{g}, and

$$
\beta_{j}=\max \left\{\alpha \in \Delta\left(\mathfrak{g}_{\nu}\right) \mid \alpha \in\left\{\beta_{1}, \ldots, \beta_{j-1}\right\}^{\perp}\right\}, \quad j \geq 2
$$

(Remark: This max is unique.) Let e_{γ} be a root vector for γ.

Theorem

The TSOC parametrizes all G_{0}-orbits in $\mathbb{P}\left(\mathfrak{g}_{\nu}\right)$ via

$$
\left[e_{\beta_{1}}\right], \quad\left[e_{\beta_{1}}+e_{\beta_{2}}\right], \quad\left[e_{\beta_{1}}+e_{\beta_{2}}+e_{\beta_{3}}\right], \quad \ldots
$$

with $\left\langle\beta_{i}, \beta_{i}\right\rangle=\langle\lambda, \lambda\rangle$ for all i.

A Dynkin diagram recipe

Let $\mathfrak{T}^{0}\left(\mathfrak{g}_{0}^{s s}, \lambda\right)=$ effective $\mathfrak{g}_{0}^{s \mathfrak{s}}$-action on \mathfrak{g}_{ν}. Iterative algorithm:

- Termination condition: $\mathbb{T}^{0}\left(\mathfrak{g}_{0}^{s s}, \lambda\right)=\emptyset$ or ${ }^{1}-\ldots \ldots 0_{0}^{0}$
- From $\mathfrak{D}(\mathfrak{g}, \mathfrak{p})$, remove contact node(s) (diamond), then remove cross-free connected components.

Example $\left(E_{7} / P_{7}: 3 G_{0}\right.$-orbits in $\left.\mathbb{P}\left(\mathfrak{g}_{\nu}\right), \nu=1\right)$

Dynkin diagram sequence			\times
$\mathfrak{T}^{0}\left(\mathfrak{g}_{0}^{s s}, \lambda\right)$			\varnothing
TSOC in weight notation	$\beta_{1}=\lambda_{1}$	$\beta_{2}=-\lambda_{1}+\lambda_{6}$	$\beta_{3}=-\lambda_{6}+2 \lambda_{7}$

A Dynkin diagram recipe

Let $\mathfrak{T}^{0}\left(\mathfrak{g}_{0}^{s 5}, \lambda\right)=$ effective $\mathfrak{g}_{0}^{5 s}$-action on \mathfrak{g}_{ν}. Iterative algorithm:

- Termination condition: $\mathfrak{T}^{0}\left(\mathfrak{g}_{0}^{s s}, \lambda\right)=\emptyset$ or ${ }_{\circ}^{1}{ }^{0} \ldots \ldots{ }_{\circ}^{0} \ldots$
- From $\mathfrak{D}(\mathfrak{g}, \mathfrak{p})$, remove contact node(s) (diamond), then remove cross-free connected components.

Example $\left(E_{7} / P_{7}: 3 G_{0}\right.$-orbits in $\left.\mathbb{P}\left(\mathfrak{g}_{\nu}\right), \nu=1\right)$

Dynkin diagram sequence			\times
$\mathfrak{T}^{0}\left(\mathfrak{g}_{0}^{\text {ss }}, \lambda\right)$	$\begin{array}{lllll} 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$		\varnothing
TSOC in weight notation	$\beta_{1}=\lambda_{1}$	$\beta_{2}=-\lambda_{1}+\lambda_{6}$	$\beta_{3}=-\lambda_{6}+2 \lambda_{7}$

β 's are determined from contact nodes (in the original labelling). Note that $\sum_{i=1}^{j} \beta_{i}$ is dominant.

Adapted $\mathfrak{s l}$-triples

$\alpha(H)=B\left(H, H_{\alpha}\right), h_{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} H_{\alpha}$. Find std $\mathfrak{s l}_{2}$-triple $\left\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\right\}$.

Adapted $\mathfrak{s l}_{2}$-triples

$\alpha(H)=B\left(H, H_{\alpha}\right), h_{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} H_{\alpha}$. Find std $\mathfrak{s l}_{2}$-triple $\left\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\right\}$.

Lemma

Have std $\mathfrak{s l}_{2}$-triples $\left\{E_{j}, H_{j}, F_{j}\right\}$ given by

$$
E_{j}=\sum_{i=1}^{j} e_{\beta_{i}}, \quad H_{j}=\sum_{i=1}^{j} h_{\beta_{i}}, \quad F_{j}=\sum_{i=1}^{j} e_{-\beta_{i}} .
$$

Adapted $\mathfrak{s l}_{2}$-triples

$\alpha(H)=B\left(H, H_{\alpha}\right), h_{\alpha}=\frac{2}{\{\alpha, \alpha\rangle} H_{\alpha}$. Find std $\mathfrak{s l}_{2}$-triple $\left\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\right\}$.

Lemma

Have std $\mathfrak{s l}_{2}$-triples $\left\{E_{j}, H_{j}, F_{j}\right\}$ given by

$$
E_{j}=\sum_{i=1}^{j} e_{\beta_{i}}, \quad H_{j}=\sum_{i=1}^{j} h_{\beta_{i}}, \quad F_{j}=\sum_{i=1}^{j} e_{-\beta_{i}} .
$$

Express h_{α} via dual basis $\left\{Z_{i}\right\} \subset \mathfrak{h}$ to simple roots $\left\{\alpha_{i}\right\} \subset \mathfrak{h}^{*}$:

$$
\alpha=\sum_{i} r_{i} \lambda_{i} \Rightarrow h_{\alpha}=\sum_{i} r_{i} \frac{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}{\langle\alpha, \alpha\rangle} z_{i} .
$$

$\operatorname{Rmk}:\left\langle\beta_{i}, \beta_{i}\right\rangle=\langle\lambda, \lambda\rangle$. Also, coeffs of all H_{j} wrt Z_{i} are ≥ 0.

Adapted $\mathfrak{s l}_{2}$-triples

$\alpha(H)=B\left(H, H_{\alpha}\right), h_{\alpha}=\frac{2}{\langle\alpha, \alpha\rangle} H_{\alpha}$. Find std $\mathfrak{s l}_{2}$-triple $\left\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\right\}$.

Lemma

Have std $\mathfrak{s l}_{2}$-triples $\left\{E_{j}, H_{j}, F_{j}\right\}$ given by

$$
E_{j}=\sum_{i=1}^{j} e_{\beta_{i}}, \quad H_{j}=\sum_{i=1}^{j} h_{\beta_{i}}, \quad F_{j}=\sum_{i=1}^{j} e_{-\beta_{i}} .
$$

Express h_{α} via dual basis $\left\{Z_{i}\right\} \subset \mathfrak{h}$ to simple roots $\left\{\alpha_{i}\right\} \subset \mathfrak{h}^{*}:$

$$
\alpha=\sum_{i} r_{i} \lambda_{i} \Rightarrow h_{\alpha}=\sum_{i} r_{i} \frac{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}{\langle\alpha, \alpha\rangle} z_{i} .
$$

Rmk: $\left\langle\beta_{i}, \beta_{i}\right\rangle=\langle\lambda, \lambda\rangle$. Also, coeffs of all H_{j} wrt Z_{i} are ≥ 0.

Example (E_{7} / P_{7})

$$
H_{1}=Z_{1}, H_{2}=Z_{6} \text { and } H_{3}=2 Z_{7} .
$$

Specializing the Čap-Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E=E_{j}$, get $\mathfrak{s l}_{2}$-triple $\left\{E_{j}, H_{j}, F_{j}\right\}$.

Specializing the Čap-Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E=E_{j}$, get $\mathfrak{s l}_{2}$-triple $\left\{E_{j}, H_{j}, F_{j}\right\}$. (CM.1) $H_{j} \in \mathfrak{h} \subset \mathfrak{g}_{0}$

Specializing the Čap-Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E=E_{j}$, get $\mathfrak{s l}_{2}$-triple $\left\{E_{j}, H_{j}, F_{j}\right\}$.
(CM.1) $H_{j} \in \mathfrak{h} \subset \mathfrak{g}_{0}$
(CM.2) If $\alpha \in \Delta\left(\mathfrak{g}_{+}\right)$, then $\beta_{i}+\alpha \notin \Delta$ (since β_{i} are in the top-slot), so $\left\langle\beta_{i}, \alpha\right\rangle \geq 0$, and $\beta_{i}-\alpha \in \Delta$ iff $\left\langle\beta_{i}, \alpha\right\rangle>0$. Have

$$
\left[H_{j}, e_{-\alpha}\right]=\sum_{i=1}^{j}-\alpha\left(h_{\beta_{i}}\right) e_{-\alpha}=-\sum_{i=1}^{j} \underbrace{\left\langle\alpha, \beta_{i}^{\vee}\right\rangle}_{\in \mathbb{Z}_{\geq 0}} e_{-\alpha}
$$

Zero-eigenspace: sum of root spaces for $-\alpha \in\left\{\beta_{1}, \ldots, \beta_{j}\right\}^{\perp}$ (same as $\left.C_{\mathfrak{g}}^{-}\left(E_{j}\right)\right)$. Thus, (CM.2) \checkmark.

Specializing the Čap-Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E=E_{j}$, get $\mathfrak{s l}_{2}$-triple $\left\{E_{j}, H_{j}, F_{j}\right\}$.
(CM.1) $H_{j} \in \mathfrak{h} \subset \mathfrak{g}_{0}$
(CM.2) If $\alpha \in \Delta\left(\mathfrak{g}_{+}\right)$, then $\beta_{i}+\alpha \notin \Delta$ (since β_{i} are in the top-slot), so $\left\langle\beta_{i}, \alpha\right\rangle \geq 0$, and $\beta_{i}-\alpha \in \Delta$ iff $\left\langle\beta_{i}, \alpha\right\rangle>0$. Have

$$
\left[H_{j}, e_{-\alpha}\right]=\sum_{i=1}^{j}-\alpha\left(h_{\beta_{i}}\right) e_{-\alpha}=-\sum_{i=1}^{j} \underbrace{\left\langle\alpha, \beta_{i}^{\vee}\right\rangle}_{\in \mathbb{Z}_{\geq 0}} e_{-\alpha}
$$

Zero-eigenspace: sum of root spaces for $-\alpha \in\left\{\beta_{1}, \ldots, \beta_{j}\right\}^{\perp}$ (same as $C_{\mathfrak{g}}^{-}\left(E_{j}\right)$). Thus, (CM.2) \checkmark.
(CM.3) H_{j} acts s.s. on $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right) \checkmark$. Wrt Z_{i}, coeffs of H_{j} are ≥ 0, so it suffices to check:
(CM.3'): $\quad H_{j}(\mu) \geq 0, \quad \mu$ any lowest weight of $H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

By Kostant, $\mu=-w \cdot \lambda$, where $w \in W^{\mathfrak{p}}(2)$.

Top-slot open orbits

Example $\left(E_{7} / P_{7} ; \lambda=\lambda_{1}, w=(76)\right)$
$\mu=-w \cdot \lambda=[-2,-2,-3,-4,-3,-1,+1]$ (root notation).

- $H_{1}=Z_{1}: H_{1}(\mu)=-2$;
- $H_{2}=Z_{6}: H_{2}(\mu)=-1$;
- $H_{3}=2 Z_{7}: H_{3}(\mu)=+2$.

Only H_{3} (corresponding to the open orbit) passes (CM.3').

Top-slot open orbits

Example $\left(E_{7} / P_{7} ; \lambda=\lambda_{1}, w=(76)\right)$
$\mu=-w \cdot \lambda=[-2,-2,-3,-4,-3,-1,+1]$ (root notation).

- $H_{1}=Z_{1}: H_{1}(\mu)=-2$;
- $H_{2}=Z_{6}: H_{2}(\mu)=-1$;
- $H_{3}=2 Z_{7}: H_{3}(\mu)=+2$.

Only H_{3} (corresponding to the open orbit) passes (CM.3').

Theorem (General parabolic geometries)

Suppose that:
(i) $\omega_{u}(\xi)$ lies in the open G_{0}-orbit of \mathfrak{g}_{ν}.
(ii) G / P is not $A_{\ell} / P_{s, s+1}, 2 \leq s<\frac{\ell}{2}$ or $B_{\ell} / P_{\ell}, \ell \geq 5$ odd.

Then the geometry is flat on an open set $U \subset M$ with $x \in \bar{U}$.

Simple example of isotropy restrictions

Proposition

Let $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ be not point trivializable on any open domain. Then the isotropy everywhere is of $\operatorname{dim} \leq 2$.

Simple example of isotropy restrictions

Proposition

Let $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ be not point trivializable on any open domain. Then the isotropy everywhere is of $\operatorname{dim} \leq 2$.

Example (2nd order ODE mod point transf.; $A_{2} / P_{1,2}$)
$y^{\prime \prime}=\left(x y^{\prime}-y\right)^{3}$ has $\mathfrak{s l}_{2}$ symmetry $x \partial_{y}+\partial_{p}, x \partial_{x}-y \partial_{y}-2 p \partial_{p}$, $y \partial_{x}-p^{2} \partial_{p}$. The isotropy dim at the origin is 2 .

Simple example of isotropy restrictions

Proposition

Let $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ be not point trivializable on any open domain. Then the isotropy everywhere is of $\operatorname{dim} \leq 2$.

Example (2nd order ODE mod point transf.; $A_{2} / P_{1,2}$)
$y^{\prime \prime}=\left(x y^{\prime}-y\right)^{3}$ has $\mathfrak{s l}_{2}$ symmetry $x \partial_{y}+\partial_{p}, x \partial_{x}-y \partial_{y}-2 p \partial_{p}$, $y \partial_{x}-p^{2} \partial_{p}$. The isotropy dim at the origin is 2 .

Example (2-dim projective structures; A_{2} / P_{1})

Above ODE example comes from a projective str. with syms $x \partial_{y}$, $x \partial_{x}-y \partial_{y}, y \partial_{x}$. The isotropy dim at the origin is 3 .

[^0]: *Mathematische Annalen (2017), doi: 10.1007/s00208-017-1545-z ${ }^{\dagger}$ supported by project M1884-N35 of the Austrian Science Fund (FWF)

