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A simple criterion for the m-cyclicity of the group of rational
points on an elliptic curve defined over a finite field

By

Hugues Verdure

Abstract. We give a simple criterion for the cyclicity of the m-torsion subgroup of the group
of rational points on an elliptic curve defined over a finite field of characteristic larger than 3 for
m = 2, 3, 4, 6, 12.

1. Introduction and notation. The aim of this paper is to give a very simple criterion
for the cyclicity of the m-torsion of the group of rational points of an elliptic curve defined
over a finite field, in the case where m is a divisor of 12.

In this paper, p� 5 is a prime number and q is a power of p. We denote by Fq the field
with q elements, and by Fq its algebraic closure. Fnq is the product of n copies of Fq , while

F(n)q is the subset of n-th powers.
We refer to [4] for the theory of elliptic curves, and we will use its notation. If

E : y2 = x3 + a2x
2 + a4x + a6

is an elliptic curve defined over Fq , and D ∈ Fq\F(2)q , then we define the D-twist ẼD of
E to be the elliptic curve defined over Fq by

ẼD : y2 = x3 +Da2x
2 +D2a4x +D3a6.

We have the following property:

#ẼD(Fq)+ #E(Fq) = 2q + 2.

Moreover, if d ∈ Fq2 is a square root of D, then

ϕd : E(Fq2) −→ ẼD(Fq2)
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defined by ϕd(x, y) = (Dx, d3y) is an isomorphism of abelian groups that preserves the
rationality of 2-torsion points.

When studying torsion on elliptic curves, it is natural to look at division polynomials
ψn. They have the property that a point P = (x, y) ∈ E(Fq) is n-torsion if and only if
ψn(x, y) = 0. The interested reader can look at [1]. We will just need two of them, namely
the third and the fourth, and they are defined as follows:

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8

and

ψ4

2y
= 2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2

+ (b2b8 − b4b6)x + b4b8 − b2
6.

2. Cyclicity ofE(Fq)[m]E(Fq)[m]E(Fq)[m] form = 2, 3, 4, 6, 12m = 2, 3, 4, 6, 12m = 2, 3, 4, 6, 12. As shown in [2], there exists a neces-
sary but not sufficient condition such thatE(Fq)[m] ≈ (Z/mZ)2, namelym2 | #E(Fq) and
m | q − 1. We shall provide a partial converse when m is a divisor of 12. The results we
are now presenting are known for m = 2 and m = 3 (see [3]), but we haven’t found any
proofs in the literature. To the best of our knowledge, the results are unknown for other m.
We give here a simple proof of the following result:

Theorem 2.1. Let E be an elliptic curve defined over Fq by a Weierstrass equation

E : y2 = x3 + a2x
2 + a4x + a6

of discriminant �. Let m = 2, 3, 4, 6, 12. Assume that m2 | #E(Fq) and m | q − 1. Then
we have

E(Fq)[m] ≈ (Z/mZ)2 ⇔ � ∈ F(m)q .

Before proceeding with the proof, we make some remarks.

R e m a r k 2.2. The previous result is the best possible, in the sense that it can not be
extended to any other positive integer m, since the discriminant is defined up to the 12-th
power of a multiplicative constant.

R e m a r k 2.3. Under changes of variables x = x′ −x0, the discriminant and the form of
the Weierstrass equation are unchanged. We will therefore make such changes of variables
freely.

R e m a r k 2.4. In the proof, we shall define quantities with indices. Except for Pi , xi ,
and yi , these indices are the actual weights of the quantities.

We shall now prove Theorem 2.1 in several steps.
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2.1. 2-cyclicity. In this section, we shall prove the main theorem when m = 2.

P r o o f o f T h e o r e m 2.1 when m = 2. We have

E[2] = {O, (x1, 0), (x2, 0), (x3, 0)}
where the xi’s are the 3 distinct roots of f (x) = x3 + a2x

2 + a4x + a6. Since 2 | #E(Fq),
one of them is in Fq . Then f either splits or has an irreducible factor of degree 2. We then
have

E(Fq)[2] ≈ (Z/2Z)2 ⇔ f splits

⇔ D ∈ F(2)q

where D is the discriminant of f (x). But

D = −4a6a
3
2 + a2

4a
2
2 + 18a6a4a2 − 4a3

4 − 27a2
6 = �

16
,

and the theorem is proved in the case m = 2.

R e m a r k 2.5. We didn’t use the fact that 4 | #E(Fq) but just 2 | #E(Fq).

Corollary 2.6. Let E be an elliptic curve defined over Fq . Assume that the j -invariant
j is such that j �= 1728 and that E has a non-zero rational 2-torsion point. Then we have

E(Fq)[2] is cyclic ⇔ (j − 1728) is not a square.

P r o o f This follows immediately from

j − 1728 = c2
6

�
. �

2.2. 3-cyclicity.

Lemma 2.7. Let E be an elliptic curve defined over Fq by a Weierstrass equation

E : y2 = x3 + a2x
2 + a4x + a6.

Assume that q ≡ 1 [3] and #E(Fq) ≡ 0 [9]. Then we have

x0 ∈ Fq is a root of ψ3 ⇔ ∃P = (x0, y0) ∈ E(Fq)[3].

P r o o f. By definition, we have: x0 ∈ Fq is a root of ψ3 if and only if there exists a point
P = (x0, y0) ∈ E[3], and therefore, one way is straightforward. Assume now that x0 ∈ Fq
is a root ofψ3. Thus there exists a point P = (x0, y0) ∈ E[3]. Assume that y0 �∈ Fq . Since

y2
0 = x3

0 + a2x
2
0 + a4x0 + a6,
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we can deduce that D = y2
0 ∈ Fq\F(2)q . We then consider the D-twist ẼD of E. We know

that ϕy0(x0, y0) ∈ ẼD(Fq2), and it is easy to see that this point is in fact in ẼD(Fq). Since
this is a point of 3-torsion, we thus get

2(q + 1) = #E(Fq)+ #ẼD(Fq) ≡ 0 [3]

which contradicts the assumption q ≡ 1 [3]. �

P r o o f o f T h e o r e m 2. 1 when m = 3. By hypothesis, there exists a point
P = (x0, y0) rational and of order exactly 3, and we can assume that x0 = 0 by a suitable
change of variable. We thus have

E(Fq)[3] ≈ (Z/3Z)2 ⇔ ∃x ∈ F∗
q, ψ3(x) = 0.

By Lemma 2.7, the x-coordinates of rational points of exact order 3 are given by the roots
of ψ3 in Fq , and in our case, ψ3(x) = 3xϕ3(x), where

ϕ3(x) = x3 + b2

3
x2 + b4x + b6

(b8 = 0 since x0 = 0). This polynomial is either irreducible (no other rational points of
order 3), or splits (all the 3-torsion points are rational). By a suitable change of variable,
put ϕ3 in the form

θ3(x) = x3 + α4x + α6

with

α4 = b4 − b2
2

27
= 2a4 − 16a2

2

27
,

and

α6 = b6 − b2b4

3
+ 2b3

2

729
= 1

729
(128a3

2 − 648a2a4 + 2916a6).

Note that the two polynomials are of the same type. We have to consider two cases.
If α4 = 0, then a4 = 8

27a
2
2 , and since b8 = 0,

a2

(

a6 − 16

729
a3

2

)

= 0.

Now, � �= 0 implies that a2 = a4 = 0 and we find that

� = (−3)3(4a6)
2 = (−3)3α2

6 .

We finally get that

� ∈ F(3)q ⇔ α6 ∈ F(3)q ⇔ θ3 splits.
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If α4 �= 0, note that b8 = 0 and � �= 0 imply a2a4 �= 0. We consider the resolvent
polynomial

g(x) = x2 + 3α6

α4
x − α4

3
,

whose discriminant is

δ = 36(−12a2
2a

2
4 + 54a3

4 + 64a3
2a6 − 324a2a4a6 + 729a2

6)

(8a2
2 − 27a2

4)
2

= 9a2
4

4a2
2

.

Since this is a non-zero square in Fq , the polynomial g(x) has two distinct rational roots
α, β ∈ Fq . Note that none of them is zero since their product is equal to −α4

3 . Let r be a
root of θ3 in Fq . Since

β3 + α4β + α6 = − β

3α2
4

· discriminant(θ3) �= 0,

r �= β. Consider then z = r−α
r−β . It is obvious that z ∈ Fq if and only if r ∈ Fq , and

therefore, ϕ3 splits if and only if z ∈ Fq . We now look at A = z3. Since we know that
r3 + α4r + α6 = 0, αβ = −α4

3 and α + β = − 3α6
α4

, we easily find that

(r − α)3 = −α(3r2 − 3(α + β)r + α2 + αβ + β2)

and similarly for (r − β)3. Then we have

A = α

β
∈ Fq

which means that ϕ3 splits if and only if A = α
β

is a cubic residue in Fq . Finally, remem-
bering that b8 = 0, we get that

A = α

β
=
(

128a4
2 − 864a2

2a4 + 729a2
4 + 2916a2a6

128a4
2 − 432a2

2a4 − 729a2
4 + 2916a2a6

)±1

=
(

�

8a3
4

)±1

,

and thus A is a cubic residue in Fq if and only if � is.

Corollary 2.8. Let E be an elliptic curve defined over Fq . Assume that the j -invariant
j is such that j �= 0. Then we have

E(Fq)[3] ≈ (Z/3Z)2 ⇔ j ∈ F(3)q , q ≡ 1 [3] and 9 | #E(Fq).

P r o o f We have

j = c3
4

�
. �
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2.3. 4-cyclicity.

Lemma 2.9. Let E be an elliptic curve defined over Fq by a Weierstrass equation

E : y2 = x3 + a2x
2 + a4x + a6.

Assume that q ≡ 1 [4] and #E(Fq) ≡ 0 [16]. Suppose also that

E(Fq)[2] ≈ (Z/2Z)2.

Then we have

x0 ∈ Fq is a root of ψ4/2y ⇔ ∃P = (x0, y0) ∈ E(Fq)[4]\E(Fq)[2].

P r o o f. As in the proof of Lemma 2.7, one way is straightforward. Assume now that
x0 ∈ Fq is a root of ψ4/2y. Thus there exists a point P = (x0, y0) ∈ E[4]. Assume that
y0 �∈ Fq . As in Lemma 2.7, using twists, we can find a point of order exactly 4 on any
D-twist. We also have that every 2-torsion point on E, as well as on ẼD is rational. That
means that the number of rational points on ẼD is divisible by 8. Thus we have

2(q + 1) = #E(Fq)+ #ẼD(Fq) ≡ 0 [8]

which is absurd since q ≡ 1 [4]. �

P r o o f o f T h e o r e m 2. 1 when m = 4. We first note that since the theorem is true
for m = 2, we have E(Fq)[2] ≈ (Z/2Z)2, and the previous lemma applies. Moreover, the
assumption #E(Fq) ≡ 0 [16] says that there exists a rational point P0 = (x0, y0) of order
exactly 4 on E. Let

P1 = 2P0 = (x1, y1).

By a suitable change of variable, we may assume that x1 = 0, which implies that a6 = 0.
Moreover, since

0 = x1 = x4
0 − b4x

2
0 − 2b6x0 − b8

4x3
0 + b2x

2
0 + 2b4x0 + b6

,

we get that x2
0 = a4. Finally, since E(Fq)[2] ≈ (Z/2Z)2, the polynomial

f (x) = x3 + a2x
2 + a4x = x(x2 + a2x + a4)

splits, which is equivalent to

a2
2 − 4a4 ∈ F(2)q .

We denote by δ2 one of its square roots. Since (x0, y0) ∈ E(Fq),
y2

0 = x3
0 + a2x

2
0 + a4x0 = a4(a2 + 2x0).
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Knowing that a4 ∈ F(2)q , we find that a2 + 2x0 ∈ F(2)q . Now, since

(a2 − 2x0)(a2 + 2x0) = δ2
2,

a2 − 2x0 ∈ F(2)q as well. We denote by t+, t− square roots of a2 ± 2x0 in Fq , with the
additional property that t+t− = δ2.

We now consider

ψ4

2y
(x) = 2x6 + 4a2x

5 + 10a4x
4 − 10a2

4x
2 − 4a2a

2
4x − 2a3

4

= 2(x − x0)(x + x0)(x
2 + (a2 − δ2)x + a4)(x

2 + (a2 + δ2)x + a4).

The discriminant D of the fourth factor of this polynomial is

D = (a2 + δ2)
2 − 4a4

= 2δ2(a2 + δ2)

= δ2(t
2+ + t2− + 2δ2)

= δ2[(t+ + t−)2 + 2(δ2 − t+t−)]

= δ2(t+ + t−)2.

We then see that

D ∈ F(2)q ⇔ δ2 ∈ F(2)q ,

and similarly for the third factor. Since q ≡ 1 [4] and � = 16a2
4δ

2
2 = (2x0)

4 δ2
2,

δ2 ∈ F(2)q ⇔ � ∈ F(4)q .

Putting all the pieces together, we get that

� ∈ F(4)q ⇔ E(Fq)[4] ≈ (Z/4Z)2.

2.4. 6- and 12-cyclicity.

P r o o f o f T h e o r e m 2. 1 when m = 6, 12. The theorem is a direct consequence of
our theorem when m = 2, 3, 4.
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