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Abstract

Generalizing polynomials previously studied in the context of linear codes,
we define weight polynomials and an enumerator for a matroid M. Our
main result is that these polynomials are determined by Betti numbers
associated with No-graded minimal free resolutions of the Stanley-Reisner
ideals of M and so-called elongations of M. Generalizing Greene’s the-
orem from coding theory, we show that the enumerator of a matroid is
equivalent to its Tutte polynomial.

1 Introduction

For a linear [n, k]-code C over F, let A¢ ; denote the number of words of weight
j in C. The Hamming weight enumerator

Wo(X,Y) =Y Ag; X" 7Y/

Jj=0

has important applications in the theory of error-correcting codes, where it
amongst other things determines the probability of having an undetected error
(see [12, Proposition 1.12]).

Let M (H) denote the vector matroid associated to a parity-check matrix H
of C'. The connection

X X+(q—1)Y) 1)

WolX,¥) = (X = V)7 Mty (3 550
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between the Hamming weight enumerator of an F;-code and the specialization
of its associated Tutte polynomial on the hyperbola (x —1)(y — 1) = ¢ was first
established in Greene’s paper [7], and we shall therefore refer to equation () as
Greene’s theorem.

For @ a power of g, the set of all Fg-linear combinations of words of C' is
itself a linear code. This code is commonly referred to as the extension of C' to
Fq, and is denoted by C ®r, Fq. In [12], it is found that the number Ac ;(Q)
of words of weight j in C ®p, Fg can be expressed in terms of the initial code
C, as a polynomial in ). This leads the authors to the definition of an ezxtended
weight enumerator We (X, Y, Q) for C, with the desired property that

WC(Xa Ya Q) = WC®Fq]FQ (Xa Y)

The polynomial We(X,Y, Q) is then, in turn, shown to be equivalent to the
Tutte polynomial of M (H) — thereby extending Greene’s theorem.

Our primary objective in this article is to demonstrate that the polynomial
Ac,;(Q) is determined by the Betti numbers associated to Ng-graded minimal
free resolutions of the Stanley-Reisner ideals of M (H) and its so-called elonga-
tions. This is intended to serve as one brick in the bridge being built between
commutative combinatorial algebra and the theory of linear codes. The re-
sult can also be seen as a continuation of the work done in [9], where it is
demonstrated that the Betti numbers associated to an Nyp-graded minimal free
resolution of the Stanley-Reisner ideal of M (H) determine the higher Hamming
weight hierarchy of C.

It seemed natural to begin the pursuit of the above-stated objective by gener-
alizing the polynomial Ac ;(Q) to a polynomial Py ;(Z) defined for all matroids,
not only those stemming from a linear code, but of course with the property
that Ac ;(Q) = P, (Q). Having defined such a polynomial Py ;(Z), it is
equally natural to define and investigate a more general matroidal enumerator

W (X,Y,Z) =Y Py (Z)X" Y.
j=0

Our second objective is to extend Greene’s theorem from codes to matroids
by way of this matroidal weight enumerator. Since its discovery, Greene’s the-
orem has been generalized, specialized, and extended in several ways. For ex-
ample, in addition to the already mentioned equivalence between the Tutte
polynomial and the extended weight enumerator of a linear code, it was demon-
strated in [3, Theorems 4 and 5] and (independently) in [I1, Theorem 3.3.5]
that the Tutte polynomial and the set of so-called higher weight enumerators
of a linear code determine each other as well. Related results and methods can
also be found in [2], where the connection between the weight enumerator and
the Tutte polynomial is used to establish bounds on all-terminal reliability of
vectorial matroids. In addition, [2] provides new proofs of Greene’s theorem it-
self, and shows how the weight polynomial and the partition polynomial of the
Potts model are related. The connection between the weight enumerator and



the Tutte polynomial is also used in [I6 Corollaries 10, 11 and 12] when look-
ing at two-variable coloring formulas for graphs. A generalization of Greene’s
theorem is given in [I7, Theorem 9.4] to latroids, which are useful for studying
codes over rings.

As can be seen in [0, p. 131], the Tutte polynomial of a matroid determines
its higher weights. Thus we already know that the polynomials Py, ;, being
equivalent to the Tutte polynomial, must determine the higher weights of M
as well — at least indirectly. We shall see that they do so in a very simple and
accessible way.

1.1 Structure of this paper

e Section [2] contains definitions and results used later on.

o In Section B we look at the number of codewords in the extension of a
linear code C' over [F;, — as a polynomial in ¢".

e In Section [ we generalize the polynomial from SectionBlto matroids, and
use these generalized weight polynomials to define a matroidal enumerator.
We proceed to demonstrate that this enumerator is equivalent to the Tutte
polynomial of M.

e In Section[Blwe prove our main result: The generalized weight polynomials
are determined by the Betti numbers associated to No-graded minimal free
resolutions of the Stanley-Reisner ideal of M and the elongations of M.

e In Section [6] we shall see a counterexample showing that the converse of
our main result is not true; the generalized weight enumerators do not
determine the Ny-graded Betti numbers of the Stanley-Reisner ideal of
M.

2 Preliminaries

2.1 Linear codes and weight enumerators

A linear [n, k]-code C over F, is, by definition, a k-dimensional subspace of Fy.
The elements of this subspace are commonly referred to as words, and any k xn
matrix whose rows form a basis for C' is referred to as a generator matriz. Thus
a linear code typically has several generator matrices.

The dual code is the orthogonal complement of C, and is denoted by C+. A
parity-check matriz of C is a (n — k) X n-matrix with the property that

Hi' =0ezeC.

It is easy to see that H is a parity check matrix for C' if and only if H is a
generator matrix for C'*.



2.2 Puncturing and shortening a linear code

Let C be a linear code of length n, and let J C {1...n}.

Definition 2.1. The puncturing of C in J is the linear code obtained by elim-
inating the coordinates indexed by J from the words of C.

Definition 2.2.
C(J)={weC:w;=0forall jeJ}.
Clearly, C(J) is itself a linear code.

Definition 2.3. The shortening of C in J is the puncturing of C(J) in J.

2.3 Matroids

There are numerous equivalent ways of defining a matroid. We choose to give
here the definition in terms of independent sets. For an introduction to matroid
theory in general, we recommend e.g. [15].

Definition 2.4. A matroid M consists of a finite set E and a set I(M) of
subsets of E such that:

o ) eI(M).
o If I, € I(M) and I» C Iy, then I» € I(M).

o If I1,I, € I(M) and |I;| > |I2|, then there is a x € I; \ I such that
LUz e I(M).

The elements of I(M) are referred to as the independent sets (of M). The
bases of M are the independent sets that are not contained in any other inde-
pendent set. In other words, the maximal independent sets. Conversely, given
the bases of a matroid, we find the independent sets to be those sets that are
contained in a basis. We denote the bases of M by B(M). It is a fundamental
result that all bases of a matroid have the same cardinality.

The dual matroid M is the matroid on E whose bases are the complements
of the bases of M. Thus

B(M)={E~B:B¢c B(M)}.

Definition 2.5. For ¢ C F, the rank function rj; and nullity function n,s are
defined by
ry(o) =max{|I|: I € I(M),I C o},

and
TL]w(O') = |U| — 7‘]\4(0).



Whenever the matroid M is clear from the context, we omit the subscript
and write simply 7 and n. Note that a subset o of F is independent if and only
if n(o) = 0. The rank r(M) of M itself is defined as r(M) = rp(E).

We let 7 and 7, respectively, denote the rank- and nullity function of M,
and point out that

(o) = |o|+r(E ~ o) —r(E). (2)
Definition 2.6. If 0 C E, then {I C o : I € I(M)} form the set of independent
sets of a matroid M|, on . We refer to M|, as the restriction of M to o.

Definition 2.7. The higher weights {d;} of M are defined by
d; = min{|o|: 0 C E(M) and n(o) = i}.
Definition 2.8. The Tutte polynomial of M is defined by
ta(X,Y) = (X — 1) By — p)lrl=r(@),
oCE
It carries information on several invariants of M. For example t5/(1,1)

counts the number of bases of M, while ty(2,1) is the number of independent
sets.

Definition 2.9. Let f; denote the number of independent sets of cardinality 1.
The reduced Euler characteristic x(M) of M is defined by

X(M) = =1+ f1 — fat+ -+ (1) M7 f .

It is straightforward to verify that x(M) = (—=1)"M)=1¢,,(0,1).
Without any loss of generality we shall throughout this article assume that

E={1,...,n}.

Furthermore, we shall frequently identify ¢ C E with its indicator vector in
{0,1}™ whose i*" coordinate is 1 if and only if i € 0. The expression |o| should,
however, always be interpreted as the number of elements in o, or, equivalently,
as the number of elements in the support of the corresponding indicator vector.

Example 2.1 (U(r,n)). The set of all cardinality-r subsets of E form the set
of bases for a matroid U(r,n) on E. We refer to U(r,n) as the uniform matroid
of rank r on an n-element set. Observe that I C F is independent in U(r,n) if
and only if [T| < r.

Clearly, we have d;(U(r,n)) = r+1i, for 1 <i < n—r. And it is equally clear

that ,
U =S (=),
Wi =30 (]
As for the Tutte polynomial, note that for ¢ C E with |o| < r we have
|o] = (o) = 0. While for those o with |o| > r we have r(E) — r(c) = 0. For the
() subsets o with |o| = r, both |o| —r(c) and r(E) — (o) are equal to 0. Thus

i (oo () 55 (o

=0 i=r+1



2.4 From linear code to matroid

Let A be an m x n matrix over some field k. Let E be the set of column labels
of A. Tt is easy to verify that if we take as independent sets those subsets of F
that correspond to a set of k-linearly independent columns, this constitutes a
matroid on E. We refer to this as the vector matroid of A and denote it M (A).

Note that if G and G’ are two generator matrices for the linear code C,
then M(G) = M(G"). The same goes for parity-check matrices, of course. It
therefore makes sense to speak of the matroid corresponding to a generator (or
parity-check) matrix of C, and to write M(G) and M (H) without specifying
G or H. Thus to a linear code C, with generator matrix G and parity-check
matrix H, there naturally correspond two matroids: M(G) and M(H). We
shall mostly consider M (H), but this is not very crucial since duality results

abound and M (H) = M(G).
Note that (M (G)) = dim(C), while 7(M (H)) = dim(C~), and that d, (M (H))
is equal to the minimum distance of C.

Example 2.2. Let C be the [7,4]-code over F5 with parity-check matrix

100 3 3 3 4
H=101 0 0 2 2 0
0 01 4 4 4 4

1 0
Then M (H) will be a matroid on E = {1,...,7}. The columns [ 0 [,| 0
0 1
3
and | 2 | form a maximal linearly independent set of columns, so {1,3,6} is
4

a basis for M (H), and (M (H)) = 3. The full set of bases is

B(M(H)) = {{1,3,6},{1,3,5},{1,2,6},{2,3,6},{1,2,5},{1,5,7},{3,6,7},{2,4,7},
{1,4,6},{2,3,4},{4,6,7},{1,2,3},{1,2,7},{3,4,5}, {1,6,7}, {1,4, 5},
(1,2,4},{2,3,7},{4,5,7}, {3,5,7},{2,6,7},{2,5,7}, {2, 3,5}, {3,4,6} }.

2.5 The elongation of M to rank (M) +i
Let M be a matroid on E = {1,...,n}.

Definition 2.10. For 0 < i < n —r(M), let M;) be the matroid whose inde-
pendent sets are given by I(M;)) = {0 € E : n(0) < i}.

It is not difficult to verify that M;) is indeed a matroid [I5, Section 1.3, ex.6].
Note that M(O) = M, and that B(M(n—r(M))) ={FE}.
The following is straightforward:



Proposition 2.1. For o C E, we have

i, (o) = {r(o) +1i, n(o) >i. 3)

lo], n(o) <i.

narg, (o) = {n(o) —i, n(o)>i. (4)

0, n(o) <.

By definition we have r;(M(;)) = r;(£). It thus follows from Proposition 2.1]
that
T‘i(M(i)) =r(M) +i. (5)

The matroid M(; is commonly referred to as the elongation of M to rank
r(M) +i.

If 0 C FE then the rank function of M, is the restriction of rj; to subsets of
0. We point out, for later use, that this implies

(M@)o = (M)o)@)- (6)
2.6 The Stanley-Reisner ideal, Betti numbers, and the re-
duced chain complex
Let M be a matroid on E = {1,...,n}. Let k be a field.

Definition 2.11. A circuit of M is a subset C of E with the property that C
is not itself independent, but C' \ z is independent for every = € C.

In other words, the circuits of a matroid are the minimal dependent sets,
while the independent sets are precisely those that do not contain a circuit.
Let S = k[z1,...,2,].

Definition 2.12 (Stanley-Reisner ideal). Let Ip; be the ideal in S generated
by monomials corresponding to circuits of M. That is, let

Ing = (zj ), - -~ x5, {j1j2, ..., Js} is a circuit of M).
We refer to I, as the Stanley-Reisner ideal of M.

It is clear that, viewed as an S-module, the Stanley-Reisner ideal permits
both the standard Ny-grading and the standard Njj-grading [4, Section 6.3].

Definition 2.13. For a € N7, let S(—a) denote the S-module obtained by
shifting the gradation of S, seen as an Njj-graded module, by a.

Definition 2.14. For j € Ny, let S(—j) denote the S-module obtained by
shifting the gradation of .S, seen as an Ny-graded module, by j.

Note that S(—a) is isomorphic to Sx® as an Nj-graded S-module, while
S(—3) is isomorphic to (z7)g as an Np-graded S-module.



Definition 2.15. An Njj-graded S-module F' is said to be free if it is of the
form
F=_5(—a1)®S(—az) - ®S(—ap),

for some aj,az,...,a, € Nj.
And likewise:

Definition 2.16. An Ny-graded S-module F' is said to be free if it is of the
form

F=5(=j1) ®S(=j2) - @& S(—jr),
for some j1, jo, ..., jr € Np.

Definition 2.17. A chain of S-modules and S-homomorphisms

X,

X

is said to be a complex if im ¢; C ker ¢;_;1 for each i. Furthermore, the complex
is said to be minimal whenever im ¢; C (x1,z2,..., ) X;-1.

A complex is said to be exact at homological degree i if im ¢; = ker ¢;_1.
Bringing these concepts together, we have:

Definition 2.18. An N{j-graded minimal free resolution of an Ni-graded S-
module N is a minimal left complex

$1 ¢2 [}

0 F, P Fy F, o (7

where

F; = @ S(—a)’e,

aeNy

which is exact everywhere except for in Fy, where Fy/im ¢1 = N. We also require
the homomorphisms ¢; to be degree-preserving, in that degree a elements of F;
are sent to degree a elements of F;_.

It is straightforward to verify that the resolution being minimal implies
a € {0,1}" for each a appearing in ().
Replacing “Ng-graded” with “Np-graded” and setting

Fi = @ S

J€ENg

in Definition [2.18 gives us the definition of an Ny-graded minimal free resolution
of N.

The f;a and 3;; are referred to as the Nj-graded and Ny-graded Betti
numbers of N, respectively. Sometimes we want to emphasize the module N,
and write 8;a(N) or f; ;(N). Hilbert’s Syzygy Theorem states that the length
I of (@) is less than or equal to n. We shall here only be looking at minimal



free resolutions of the Stanley-Reisner ideal I;. Since M is a matroid, these all
have length n — r(M) — 1 (see e.g. [, Corollary 3(b)]).

It follows from [8 Theroem A.2.2] that the Betti numbers associated with
a (No- or N{-graded) minimal free resolution are unmique, in that any other
minimal free resolution must have the same Betti numbers. We may therefore,
without ambiguity, write

Bij= >, Bia
| Supp(a)|=j

Note that for an empty ideal all the (graded or ungraded) Betti numbers are
zero. This is for example always the case with I M since M, _,(ar)) has
no circuits.

r(M))

Definition 2.19. Let I;(M) denote the set consisting of those independent sets
of M that have cardinality 4, and let k(™) be the free k-vector space on I;(M).
The (reduced) chain complex of M over k is the complex

0 — K@D O LMy S g L) SO0y nan (M)

where the boundary maps §; are defined on independent sets of M of size i as
follows: With the natural ordering on E, set sign(j, o) = (—=1)" "1 if j is the r"
element of ¢ C F, and let

di(o) = Zsign(j, o) o~ j.
j€o
Extending d; k-linearly, we obtain a k-linear map from I;(M) to I;_1(M).
Definition 2.20. The i*" reduced homology of M over k is the vector space
H;(M; k) =ker(6;)/im(d;41)-

In proving our main result (Theorem [5.1]), we shall draw upon the following
two results, the first of which is a concatenation of [I, Proposition 7.4.7 (i) and
Proposition 7.8.1].

Theorem 2.1. Let H;(M;k) denote the i-th homology of M over k. Then

kDX = (M)

Hi(M: k) = {0, i % r(M).

Theorem 2.2 (Hochster’s formula).
ﬁi,U(IM) = dlmlk H\a’\fifl(Mkr; ]k)

We would like to point out, for later use, that Theorems[2.I] and 2.2] combined
imply

n

Z(_l)iﬁi,a = (_1)nM(U)_1ﬁnM(U)fl,d' (8)

=0



It is established in [I] that for a matroid M the dimension of H;(M;k) is in
fact independent of k. Thus for matroids, the (No- or N§-graded) Betti numbers
are not only unique, but independent of the choice of field. We shall therefore
omit referring to or specifying a particular field k throughout.

Example 2.3 (Continuation of Ex.[2:2). Since M (H) has set of circuits
{{1, 2,6,7},{5,6},{2,3,6,7},{1,2,3,5},{1,3,7},{1,4,7},{1, 2, 3,6},
{2,4,6},{2,3,5,7},{3,4,7},{1,2,5,7}, {1,3,4},{2,4,5}}
its Stanley-Reisner ideal is
Inimy = (01722677, T5T6, T2T3T6T7, T1T2T3T5, T1T3TT, T1T4T7, T1T2T3T6,
ToX4T6, T2TIT5LT, L3L4LT, T1T2L5L7, T1T3L4, L2TAL5)-

Using MAGMA ([5]), we find the Np-graded minimal free resolution of Iys(fr)
to be

0« 5(~2) & S(~3)° & S(—4)° ¢ 5(~4)7 @ 5(=5)8 « S(—6)* « S(~7)'0 0.

Similarly, we find the Ny-graded minimal free resolutions corresponding to the
elongations of M to be

Iy
0 «— S(-4)2® (=5 +— S(-6)* «—— S(-7) «—— 0,

IM(H)(Q) :
0 «— S(=6)" «— S(-7)¢ «+— 0,

IM(H)(s) :
0 +— S(=7) +— 0.

3 Number of codewords of weight j
Let C be a linear [n, k]-code over Fy, with a generator matrix G = [g; ;] for
1<i<k,1<j<n.Let Q=q" for some r € N.

Definition 3.1. For 0 < m < n, let Ac »(Q) denote the number of words of
weight m in C ®p, Fg.

Let c; denote column j of G. If a = (a1,a2,...,a;) € IFQk, the codeword
a - G has weight n if and only if

c;l a0

for all 1 < j < n. In other words, if we let S;(Q) = {x € IFZ, ce; T x =0},
corresponding to column j, we have that a - G has weight n if and only if

aeFhH\ (S1(Q)US(Q)U - USu(Q)). (9)

10



Definition 3.2. For U = {uy,uz,...,us} C{1,...,n}, let

SU(Q) = Su1(Q) N Su, (Q) NN Sy, (Q)

By the inclusion/exclusion-principle then, we see from (@) that

Acn(@) =Q% = " 1Su@I+ D 1Su(@]+--+ (D" > ISu(@Q)].

|U|=1 |U|=2 |U|=n

T
C
ot
If By = U2 . then |SU(Q)| — Qdim(kcr By) _— Qkfdim(col By) _— Qker(@(U),
CT

Us

which according to (@) is equal to Q"M (ENU) - Since QF = |Sy(Q)|, we con-
clude that

Acn(Q) = Z (_1)IU\QnM<H>(E\U) =(-1)" Z (_1)\v|QnM<H)(v)' (10)

UCE ~CE

Definition 3.3.
ac,s(Q) = {w € C &r, Fq : Supp(w) = o}|.

Lemma 3.1.

ac.o(Q) = (1)l Z(_l)thnM(w)_

vCo

Proof. Let C5(Q) denote the shortening of C ®p, Fg in {1...n} \ o, and let
H), be the restriction of H to columns indexed by o. Then H), is a parity-check
matrix for Cy(Q).

Clearly ac,,(Q) = ac,,s(Q), and since M(H)|, = M(H|,) it follows by an
argument similar to the one leading to (I0) that

ac,(Q) = (-1)! Z(_l)\ﬂQ"M(H)‘U(’Y)'

vCo
The result follows, since nar(my,, (v) = narc (7) for all v C o O

Proposition 3.1. For 1 <m <n,

AC,m(Q) = (_1)m Z Z(_l)"YIQnZ\J(H)(’Y)

lo|=myCo
Proof. This is clear from Lemma B.1] since Ac,m(Q) = 3_,=,, ac,0(Q)- O

In the following sections we shall see what comes from generalizing the weight
polynomials Ac.m(Q) to matroids.

11



4 Generalized weight polynomials and a gener-
alized enumerator

Looking back at PropositionB.1], it is clear that the polynomial Ax(Q) appearing
there may equally well be defined for matroids in general — not only for those
derived from a linear code.

For the remainder of this section, let M be a matroid on F = {1,...,n}.

4.1 GWP and the enumerator

Definition 4.1 (GWP). We define the polynomial Py ;(Z) by letting Pas,o(Z) =
1 and

P i(Z Z Z |'Y‘Z"M 7 for 1 <j <n.

lo|=j vCo

We shall refer to Py ; as the jth generalized weight polynomial, or just GWP,
of M.

In light of Proposition B.T] we see that Ac ;(¢") = Pam),;(¢") for any linear
F4-code C' with parity check matrix H.

Comparing Definition @I with the definition of d;(M), it is immediately clear
that the generalized weight polynomials together determine the higher weights:

Proposition 4.1.
d;(M) = min{j : deg Pap; = i}.

Also, we would like to point out that the n'* generalized weight polynomial
of M is equal to the characteristic polynomial (see [13]) of M.

Analogous to how Ac ;(Q) is used to define the extended weight enumerator
We(X,Y,Q) of a code C (see [12]), we use the GWP to define the enumerator
of M:

Definition 4.2 (Matroid enumerator). The enumerator Wy of M is
Wi (X,Y,Z) ZPAM Z)X" Y

Example 4.1. Let V® be the matroid on E = {1,...,8} with bases
{oc CE:|o] =4}~ {{1,2,3,4},{1,2,7,8},{3,4,5,6},{3,4,7,8},{5,6,7,8} }.

This is the well-known Vdmos matroid. It is non-representable; that is, it is

not the vector matroid of any matrix (and thus does not come from any code).

Using MAGMA, we find the enumerator of V8 to be

Wys(X,Y, Z) =X3 4+ 5X*Y*Z - 5X*Y* +36X3Y°Z — 36 X3Y° + 28X?Y°® 72
—138X?Y5Z + 110X°?Y° + 8XY 7% — 56 XY 2% +148XY"Z
—100XY" +Y®2Z* - 8Y®Z% 4 28Y® 2% — 51Y8Z + 30Y®.

12



Observe that if C' is a linear code with parity-check matrix H and extended
weight enumerator We (XY, Q) (see e.g. [12]), then

We (XY, Q) = War) (X, Y, Q).

4.2 Equivalence to the Tutte polynomial

It was shown in [I2] that the extended weight enumerator of a linear code is
equivalent to the Tutte polynomial of its associated matroid. We shall see that
this is still true when it comes to matroids and their enumerators, in general.

After a small leap (Proposition[d.2)), an analogous proof to the one found in [12]
for linear codes went through.

Proposition 4.2.

P 'LZ — _1 i+j+n ] Zn]\/[(E\'Y).
ui2)= 3 (e 1) Y

[vI=3
Proof.

Pyi(Z Z Z 1)l zna ()

lo|=i7Co

Z Z |E\’Y\ZnM(E\’Y)

|o|=t ExYCo

Z Z |E\’Y\ZnM(E\’Y)

lo|=t ExoCy

Z Z (_1)\E\’Y|ZHM(E\’Y)

|[y|>n—i Exo:
E~ocCr,

|o|=1
(1) T\ () B g (Ea)
—cu Y (1) ez
[v|zn—i
_ Z Z< ) z+g+nZnM(E\'y)
n-—1
J=n—i|y|=j

O

Proposition 4.2l above is what enables us to use basically the same technique
as that employed in [I2] for the proofs of Theorems 1] and

Lemma 4.1.

W (X,Y,2) =Y > zmE(X —y)yni,
i=0|v|=j

13



WM(X,Y, Z):Z Z (_1)i+j+n( J ) Z ZnM(E'\'y)aniyi

=0 j=n—i TV
ZZ( ) <j—n+i> Z
J=0i=n=j lv|=J
n j .

:ZZ(_l)k (J) Z g (Exy) xi—kyn—j+k
3=0 k=0 F lvI=3
n J .

= na (Exy) k(T yvi—kyk | yn—i
Z K (Z( 1) <k>X Y )Y
=0 |v|=j k=0

_ Z ZnM(E\V)(X _ y)jyn—j'

We shall also need a slight reformulation of the Tutte polynomial.
Lemma 4.2.
ta(X,Y) = Z Z (X — 1)rm (B =(n=r(M)=j) (y _ yna (ENy)
3=0 |y|=j
Proof. Follows by rewriting the ¢5/(X,Y) from Definition 2.8 as

tu(X,Y) = Z (X — 17Oy — 1)ME~)
YCE

and noting that m(y) = n(E ~v) — (F(E) — |v]). -

Using Lemmas [£1] and it is now routine to verify the following two
identities:

Theorem 4.1.

War(X,Y, Z) = (X — y)—ryr(ny (E M) ,

Y’ X-Y
Theorem 4.2.
ta(X,Y) = (X — 1)~ OO Xy (1, X 71 (X = 1)(Y = 1)),

Example 4.2 (Continuation of Ex.[LT]). Having already found the weight enu-
merator of V8, we infer from Theorem that

tys(X,Y) = X* 4+ 4X3 + 10X2 4+ 5XY + 15X + Y4 +4Y2 4+ 10Y? + 15Y.
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5 The GWP is determined by Nj-graded Betti
numbers

As before, let M be a matroid on E = {1,...,n}. Recall from Section2lthat the
No- and Nj-graded Betti numbers corresponding to the Stanley-Reisner ideal
Iy are independent of the choice of the underlying field k. The only thing of
importance, and thus our only assumption, is that the Ny-graded (or Nj-graded)
minimal free resolution of Ip; is constructed with respect to the same field as
the reduced chain complex over M. We may therefore omit specifying a field.
Recall also that M(;) denotes the elongation of M to rank r(M) + .

Throughout the rest of this article we shall employ the convention that
Bij(Iny,,) = 0 whenever [ ¢ [0,n — r(M].

Theorem 5.1 (Main result). For each 1 < j < n the coefficient of Z' in P

is equal to
n

> (=1 (ﬁi,j(IMu,l)) - ﬁi,j(IMm))-

=0

Proof. Let s, denote the coefficient of Z! in Py, o) Since

Py j(Z) =Y Pup,10/(2)

lo|=j
the coefficient of Z! in Py ;(Z) is > |o|=j Soi- On the other hand, we have

Sol = (_1)IUI Z (_1)|7\ — (_1)IUI{ Z (_1)\v| _ Z (_n\vl}.

vCo yCo vCo
nar ()=l nargy (1)=0 nag_qy (7)=0

Applying Theorems 2] and 2:2] in combination with (6]), we see that

(_1)|a| Z (_1)|7\ (-1 )wu)(o) dlerM(l)( y (M)

YVConarg, (v)=0

- (_1)"M<l>(")6nM(l)<a>7170(~’MW)’

which is equal to (~1)"0 78, (o) 1 o(Tn, ) -~ since, in general, f; ,(A) =
ﬂi,d(A\a)'

Thus
SO’,l = (—1)nhl(l) (U)BHM(Z) (U)fl,U(IM(L)) — (_1)"1&1(171) (U)BHM(Z,U (O’)*l,g(IM(L,l))

— (_1)111»1(1,1)(0)—1 (_1)17,1»[(1) (o’)—l

ﬁnM(lfl) (U)*LU(IM(PU) - BnM(l) (o)fl,a(IM(L) )7

which by () is equal to

n n

Z( ) ﬁza IM(L 1) Z Bza IM(l))

=0 =0
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Consequently, the coefficient of Z! in Py ;(Z) is

> (Z(—l)i(ﬁi,g(IMM) —ﬂi,g(IMm))> =D DD o) = Y BioInay)

lo|=4 \i=0 =0 lo|=j lo|=j

|

Il
=]

(—1) (Bi,j(IMufl)) - Bi,j(IMu)))-

K2

O

Example 5.1 (Continuation of Ex. Z3). Let us calculate Py;q)5(Z) using
Theorem 5.1l Having already found the Ny-graded Betti numbers of M (H) and
its elongations, we easily calculate

PM(H)75(Z) 260,5(11\4(111)(1))22
+ (( — Brs(Iv(m)) — (ﬂ075(IM(H)(1))))Z

- ( - 51,5(IM(H)))
=152%+ ((—28) — 15)Z — (—28).

Continuing like this, we find the complete set of weight polynomials:

Py o(Z) =1

Pymya(Z) =0

Py 2(2) =7 —

Py 3(Z) =62 —6

PM(H)4(Z) =27 -7-1
my,5(Z2) = 1522 — 437 + 28
m,6(Z) =72% - 362%+60Z — 31
m(Z) =2 —72°+192* — 237 + 10.

Corollary 5.1. Let C be a linear code over Fy of length n, with parity check
matric H. For 1 <m <n and @ a power of q, we have

Acm(@Q lz(z )V (Bim (D)) = Bian(Inacn m))) Q'

(2

Proof. This is immediate from Theorem B.1] since A (Q) = Prr(ry,m(Q) by
Proposition [311 O

In light of Corollary B.1] the polynomials found in Example [5.1] when eval-
uated at ¢", determine the number of codewords of a given weight in C @, F4»

Occasionally, the result of Corollary 5.1l can greatly simplify the task of
calculating weight polynomials Ac ., (Q) for a linear code C. This is for instance
the case with MDS-codes:
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Example 5.2. Let C be an MDS [n, k]-code over F,, with parity check matrix
H. It is well known that M (H) is the uniform matroid U(s,n), where s = n—k;
which of course implies that

M(H)(l) =U(s+1,n).
From e.g. [0 Example 3], we see that

Sty s s
ﬁivj(IM(H)(l)):{(S-‘rl)(j)?l—] l—s—1.

0, otherwise.

We conclude from Corollary 5] that for 1 < m < n, and Q = ¢", we have

sem@ =S () () (1)) o= come () ()
() (B (e« (7))

5.1 Further results

The generalized weight polynomials of M _1) determine those of M, for all
1<k<n-—r(M).

Proposition 5.1. Let k> 1. If
PM(k—l)xj(Z) =anZ" + an—lzn_1 +--+arZ+ ao,

then
PM(k),j(Z) = anZn_l + anle"J + -+ CLQZ + (CLl + ao).
Proof. Let sgkl) denote the coefficient of Z! in PM(;C)IU,\UM As noted in the proof

of Theorem [5.1] the coefficient of Z! in P,y 5 s ZIUIZj sgkl), and

sep =Dl 3 (=,

vCo
nar gy (V)=1

Assume first that [ > 1. By Proposition 2.1l we have,

sep =D 3 (=

7Co
My (V)=

= (=)l Z (=)l

vCo
nag, ) (V=141

(k=1)

= So’,H—l .
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Finally, by Proposition 2] again, we see that

sff()) = (=1)l! Z (—1)h!

yCo

n(y)<k
= (=1)l! Z (=) 4 (=1)le! Z (=11
7Co 7Co
n(v)=k n(y)<k-1
= (=1)l! Z (=) (=1)le! Z (=11
vCo vCo
naMg,_qy (V=1 nag,,y ()=0

= o Vs,

a,
and this concludes our proof. O

Combining Propositions [5.1] and 1] we see that

Corollary 5.2.
di(M(41)) = dip1(M)).

Example 5.3 (The simplex code S2(3)). Let S2(3) be the simplex code of
dimension 3 over Fy. This code has length n = 7. Let H be a parity-check
matrix of S2(3).

The higher weights of S2(3) are (dy,ds,ds) = (4,6, 7), from which it follows
by way of [10, Theorem 2| that the non-zero Betti numbers of Iy are

(60,47 61,67 62,7) = (77 14-7 8)

By Proposition[5.2] the higher weights of M,y are (di, d2) = (6, 7), which implies
that M (H )y must be the uniform matroid U(5,7). From [9, Example 3] then,
we see that the only non-zero Betti numbers of IM(H)(I) are BO,G(IM(H)(U) =7
and B1,7(In(m),,) = 6. As always, the (n—r(M(H)) - 1)t elongation M (H )
has {1,...,7} as its only circuit, such that the only non-zero Betti number
associated with In(m),, is [3017(IM(H)(2)) =1.

Having found all Ny-graded Betti numbers from all elongations, we easily
calculate the weight polynomials using Corollary Bt

18



6 Concerning the converse

Having seen that the Betti numbers associated with the elongations M;),0 <
i <n —r(M), determine the polynomials Py ;(Z),1 < j < n, it is natural to
ask whether the opposite is true. The answer to this is negative, as the following
counterexample shows:

Example 6.1 (Continuation of Ex. B.)). Let N be the matroid on {1,...,7}
with bases

B(N) = {{1,4,7},{1,3,6},{1,3,5},{1,3,4},{2,3,6},{3,4,7},{1,2,5},{1,5,7},
{3,6,7},{2,4,7},{3,5,6},{2,3,4},{1,2,3},{1,2,7},{1,5,6},{3,4,5},
{1,6,7},{1,4,5},{2,3,7},{2,5,6},{2,4,5},{3,5,7},{2,6,7},{2, 5, 7}}

The Stanley-Reisner ideal of N has minimal free resolution

0+ S(-2)dS(—=3)°®S(—4)° + S(—4)*® S(—5)?® + S(=6)3 « S(-7)' «o0.

Comparing to the minimal free resolution of In;(), we see that the Betti num-
bers are not the same. However, it is easy to see, using Proposition [5.1] that N
has the same generalized weight polynomials as M (H).

Note that this is the “smallest” counterexample, in that there are no coun-

terexamples for n < 7.

Moreover, knowing the Betti numbers of M is in itself not enough to calculate
Ppyj — in general we need the Betti numbers derived from the elongations M
as well:

Example 6.2. The matroids M and N on {1,...,8} with bases

B(M) = {{1,3,4,6,7},{1,2,3,6,8}, {1,2,3,4,8},{1,2,3,5,8},{1,2,5,6,8},{1,2,3,4, 7},
{1,2,3,5,7},{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},{1,2,4,6,8},{1,2,4,6, 7},
{1,3,4,5,8},{1,2,4,5,7},{1,4,5,6,7},{1,2,3,6,7},{1,3,5,6,7},{1,4,5,6, 8},
{1,3,5,6,8},{1,2,4,5,8}}

and

B(N) = {{1,3,4,6,7},{1,2,3,4,8},{1,2,3,5,8}, {1,2,5,6,8},{1,2,3,4,7},{1,2,3,5,7},
{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},{1,2,4,6,8},{1,2,4,6,7},{1,3,4,5, 8},
{1,2,4,5,7},{1,3,4,5,6},{1,2,4,5,6},{1,3,5,6,7},{1,2,3,5,6},{1,2, 3,4, 6},
{1,3,5,6,8},{1,2,4,5,8} },

respectively, both have

0+ S(=2)®S(—4)° « S(=5)*d S(—6)° « S(-7)* < 0
as the minimal free resolution of their associated Stanley-Reisner ideal, while
Pua(Z)=2%—5Z +4+#27Z% —6Z+ 4= Pyu(2).

Again this is the “smallest” counterexample.
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It is however possible for two non-isomorphic matroids to have identical Ny-
graded Betti numbers in all elongation levels (the smallest example of which is
given by a pair of rank 3 on {1,...,6}).
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