Dispersionless integrable systems and their dispersive deformations

Evgeny Ferapontov

Department of Mathematical Sciences, Loughborough University, UK

E.V.Ferapontov@lboro.ac.uk

UiT the Arctic University of Norway Tromsø, February 2019

General context

How to classify integrable PDEs of Kadomtsev-Petviashvili (KP) type,

$$(u_t - uu_x)_x - \varepsilon^2 u_{xxxx} = u_{yy}?$$

Possible approach:

- Classify 2+1D dispersionless systems which may (potentially) arise as dispersionless limits of integrable equations (method of hydrodynamic reductions).
- Reconstruct dispersive corrections (deformation of hydrodynamic reductions).

Plan of talks:

- Different approaches to integrability in 1+1D. Example of KdV.
- Integrable systems of hydrodynamic type in 1+1D. The method of hydrodynamic reductions in 2+1D.
- Dispersive deformations of 2+1D dispersionless integrable systems.

Different approaches to integrability. Example of KdV.

- The Korteweg de Vries (KdV) equation.
- Lax pair.
- Higher symmetries (commuting flows).
- Higher conservation laws.
- Bi-Hamiltonian structure, recursion operator.
- Soliton solutions.

The Korteweg de Vries (KdV) equation

This equation models shallow water waves (it was first derived by Boussinesq in 1877 and rediscovered by Korteweg and de Vries in 1895):

$$u_t - 6uu_x + u_{xxx} = 0.$$

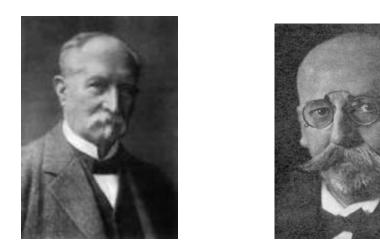


Figure 1: Diederik Korteweg (1848-1941) and Gustav de Vries (1866-1934), Dutch mathematicians

Lax pair

A Lax pair for a nonlinear PDE is an overdetermined linear system (depending on auxiliary spectral parameter λ) whose compatibility condition is the given PDE.

Verify that KdV equation is the compatibility condition of the following linear system

$$\psi_{xx} = (u - \lambda)\psi,$$

$$\psi_t = (4\lambda + 2u)\phi_x - u_x\psi,$$

where λ is a spectral parameter.

Integrability \equiv existence of a Lax pair.

Higher symmetries

We say that an evolutionary PDE

$$u_t = F(u, u_x, \dots)$$

possesses a 'higher' symmetry (commuting flow)

$$u_y = G(u, u_x, \dots)$$

if $u_{ty} = u_{yt}$.

Verify the commutativity of the following flows:

$$u_t = 6uu_x - u_{xxx},$$

$$u_y = 30u^2 u_x - 20u_x u_{xx} - 10u u_{xxx} + u_{xxxxx}.$$

(KdV and its 5th-order commuting flow). Calculate 7th-order commuting flow of KdV. Integrability \equiv existence of infinitely many higher commuting flows.

Higher conservation laws

Conservation laws of a nonlinear PDE are relations of the form

$$h(u, u_x, \dots)_t + f(u, u_x, \dots)_x = 0$$

which hold modulo the PDE (h is the conserved density, f is the flux). Verify that the following are conservation laws of the KdV equation:

$$u_t + (u_{xx} - 3u^2)_x = 0,$$

$$\left(\frac{u^2}{2}\right)_t + \left(uu_{xx} - \frac{1}{2}u_x^2 - 2u^3\right)_x = 0,$$

$$\left(u^3 + \frac{1}{2}u_x^2\right)_t + \left(-\frac{9}{2}u^4 + 3u^2u_{xx} - 6uu_x^2 + u_xu_{xxx} - \frac{1}{2}u_{xx}^2\right)_x = 0,$$

known as the Casimir, momentum and energy.

Find a general conservation law whose density h depends on u, u_x, u_{xx} .

Integrability \equiv existence of infinitely many higher conservation laws.

Bi-Hamiltonian structure, recursion operator.

The KdV equation possesses bi-Hamiltonian structure

$$u_t = J_1 \frac{\delta I_1}{\delta u} = J_2 \frac{\delta I_2}{\delta u},$$

where

$$J_1 = \frac{\partial}{\partial x}, \qquad I_1 = \int_{-\infty}^{\infty} (u^3 + \frac{1}{2}u_x^2)dx$$

and

$$J_2 = -\frac{\partial^3}{\partial x^3} + 4u\frac{\partial}{\partial x} + 2u_x, \qquad I_2 = \frac{1}{2}\int_{-\infty}^{\infty} u^2 dx.$$

Recursion operator R is defined as

$$R = J_2 J_1^{-1} = -\frac{\partial^2}{\partial x^2} + 4u + 2u_x \left(\frac{\partial}{\partial x}\right)^{-1}$$

Integrability \equiv existence of a bi-Hamiltonian representation/recursion operator.

Soliton solutions

N-soliton solutions are given by the explicit formula

$$u_n(x,t) = -2\frac{\partial^2}{\partial x^2} \ln \det \mathbf{A}(x,t)$$

where A is the $n \times n$ matrix

$$A_{rs} = \delta_{rs} + \frac{c_s}{k_s + k_r} e^{-(k_s + k_r)x + 8k_s^3 t},$$

 $c_s, k_s = const.$ Verify that u_n indeed solves the KdV equation for n = 1, 2, 3.Asymptotically:

$$u_n(x,t) \sim -\sum_{s=1}^n 2k_s^2 \operatorname{sech}^2[k_s(x-4k_s^2t-x_s^{\pm})] \text{ as } t \to \pm \infty,$$

where x_s are the phase shifts (given by a certain explicit formula).

Integrability \equiv existence of exact n-soliton solutions.

Further integrability cretiria

- Existence of a Bäcklund transformation
- Existence of a Wahlquist-Estabrook prolongation structure

The choice of definition of integrability depends on the class of PDEs under study