Integrable systems of hydrodynamic type in 1+1D. The method of hydrodynamic reductions in 2+1D

- Systems of hydrodynamic type in 1+1D. Diagonalisability criterion. Semi-Hamiltonian property, commuting flows and conservation laws. The generalised hodograph method. Linear degeneracy.
- The method of hydrodynamic reductions in 2+1D. Example of dKP.
- The method of hydrodynamic reductions in higher dimensions.
- Dispersionless Lax pairs.

Based on
S.P. Tsarev, Geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph method. Izvestija AN USSR Math. 54, N5 (1990) 1048-1068.
E. V. Ferapontov and K. R. Khusnutdinova, On the integrability of (2+1)-dimensional quasilinear systems, Comm. Math. Phys. 248 (2004) 187-206.

Systems of hydrodynamic type in 1+1D. Diagonalisability criterion

Systems of hydrodynamic type are equations of the form

$$
\mathbf{u}_{t}=v(\mathbf{u}) \mathbf{u}_{x}, \quad \text { or } \quad u_{t}^{i}=v_{j}^{i}(\mathbf{u}) u_{x}^{j}
$$

Example: Shallow water equations

$$
h_{t}+(u h)_{x}=0, \quad u_{t}+u u_{x}+h_{x}=0
$$

We will be primarily dealing with systems that can be transformed into diagonal (Riemann invariant) form,

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}
$$

Diagonalisability criterion: the Haantjes tensor $H=0$

$$
\begin{gathered}
N_{j k}^{i}=v_{j}^{p} \partial_{u^{p}} v_{k}^{i}-v_{k}^{p} \partial_{u^{p}} v_{j}^{i}-v_{p}^{i}\left(\partial_{u^{j}} v_{k}^{p}-\partial_{u^{k}} v_{j}^{p}\right), \\
H_{j k}^{i}=N_{p r}^{i} v_{j}^{p} v_{k}^{r}-N_{j r}^{p} v_{p}^{i} v_{k}^{r}-N_{r k}^{p} v_{p}^{i} v_{j}^{r}+N_{j k}^{p} v_{r}^{i} v_{p}^{r} .
\end{gathered}
$$

Semi-Hamiltonian property

A diagonal system

$$
\begin{equation*}
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

is said to be semi-Hamiltonian if its characteristic speeds $\lambda^{i}(R)$ satisfy the relations

$$
\partial_{k}\left(\frac{\partial_{j} \lambda^{i}}{\lambda^{j}-\lambda^{i}}\right)=\partial_{j}\left(\frac{\partial_{k} \lambda^{i}}{\lambda^{k}-\lambda^{i}}\right) .
$$

$\partial_{k}=\partial_{R^{k}}, i \neq j \neq k$.
Verify that the following systems are semi-Hamiltonian:

$$
R_{t}^{i}=\left(R^{i} \prod_{k} R^{k}\right) R_{x}^{i}, \quad R_{t}^{i}=\left(R^{i}+\sum_{k} R^{k}\right) R_{x}^{i}
$$

We will see that the semi-Hamiltonian property implies integrability.

Conservation laws

Conservation laws of system (1) are relations of the form $h(R)_{t}=g(R)_{x}$ which must hold by virtue of (1).

Verify that this implies the following relations for the density h and the flux g :

$$
\partial_{i} g=\lambda^{i} \partial_{i} h .
$$

Verify that the elimination of g leads to the second-order system for the conserved density h :

$$
\partial_{i} \partial_{j} h=\frac{\partial_{j} \lambda^{i}}{\lambda^{j}-\lambda^{i}} \partial_{i} h+\frac{\partial_{i} \lambda^{j}}{\lambda^{i}-\lambda^{j}} \partial_{j} h, \quad i \neq j .
$$

Show that involutivity of this system for h is equivalent to the semi-Hamiltonian property.

This will prove the following results: system (1) is semi-Hamiltonian if and only if it possesses infinitely many conservation laws parametrised by n arbitrary functions of 1 variable.

Commuting flows

Systems

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i} \quad \text { and } \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

are said to commute if $R_{t y}^{i}=R_{y t}^{i}$ (that is, they are compatible).
Verify that the commutativity condition implies the following relations:

$$
\frac{\partial_{j} \mu^{i}}{\mu^{j}-\mu^{i}}=\frac{\partial_{j} \lambda^{i}}{\lambda^{j}-\lambda^{i}}, \quad i \neq j .
$$

Show that involutivity of this system for μ^{i} is equivalent to the semi-Hamiltonian property.

This will prove the following results: system (1) is semi-Hamiltonian if and only if it possesses infinitely many commuting flows parametrised by n arbitrary functions of 1 variable.

The generalised hodograph formula

Given 2 commuting flows

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i} \quad \text { and } \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

verify that the implicit relations (the generalised hodograph formula of Tsarev)

$$
\mu^{i}(R)=x+\lambda^{i}(R) t, \quad i=1, \ldots, n
$$

provides a solution of system (1). Since, for semi-Hamiltonian systems, commuting flows μ^{i} depend on n arbitrary functions of 1 variable, the generalised hodograph formula provides a generic solution of system (1).

Linear degeneracy

Linearly degenerate systems are characterised by the condition

$$
\partial_{i} \lambda^{i}=0, \quad 1=1, \ldots, n
$$

Linear degeneracy is known to prevent breakdown of smooth initial data $R^{i}(x, 0)$.

The method of hydrodynamic reductions in 2+1D

Goes back to Yanenko, Meleshko, Burnat, Peradzyński, Grundland, Kodama, Gibbons, Tsarev. Applies to quasilinear equations

$$
A(\mathbf{u}) \mathbf{u}_{x}+B(\mathbf{u}) \mathbf{u}_{y}+C(\mathbf{u}) \mathbf{u}_{t}=0
$$

Consists of seeking n-phase solutions

$$
\mathbf{u}=\mathbf{u}\left(R^{1}, \ldots, R^{n}\right)
$$

The phases $R^{i}(x, y, t)$ are required to satisfy a pair of commuting equations

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

(called hydrodynamic reductions). Commutativity conditions: $\frac{\partial_{j} \mu^{i}}{\mu^{j}-\mu^{i}}=\frac{\partial_{j} \lambda^{i}}{\lambda^{j}-\lambda^{i}}$.
Definition A $2+1$ quasilinear system is said to be integrable if, for any n, it possesses infinitely many n-component reductions parametrized by n arbitrary functions of one variable ($n=3$ is sufficient).

One-phase solutions are of the form $\mathbf{u}=\mathbf{u}(R)$ where $R(x, y, t)$ satisfies the equations

$$
R_{t}=\lambda(R) R_{x}, \quad R_{y}=\mu(R) R_{x}
$$

Generic one-phase solution is constant along a one-parameter family of planes:

$$
w(R)=x+\lambda(R) t+\mu(R) y
$$

Two-phase solutions are of the form $\mathbf{u}=\mathbf{u}\left(R^{1}, R^{2}\right)$ where $R^{1}(x, y, t), R^{2}(x, y, t)$ satisfy the equations

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

Generic two-phase solution is constant along a two-parameter family of lines:

$$
\begin{aligned}
& w^{1}\left(R^{1}, R^{2}\right)=x+\lambda^{1}\left(R^{1}, R^{2}\right) t+\mu^{1}\left(R^{1}, R^{2}\right) y \\
& w^{2}\left(R^{1}, R^{2}\right)=x+\lambda^{2}\left(R^{1}, R^{2}\right) t+\mu^{2}\left(R^{1}, R^{2}\right) y
\end{aligned}
$$

where $\frac{\partial_{j} w^{i}}{w^{j}-w^{i}}=\frac{\partial_{j} \mu^{i}}{\mu^{j}-\mu^{i}}=\frac{\partial_{j} \lambda^{i}}{\lambda^{j}-\lambda^{i}}$.

'Decomposition' point of view

Hydrodynamic reductions can be viewed as decompositions of a given $2+1$ PDE into a pair of consistent $1+1$ PDEs. Further examples of this construction are as follows:

Example 1 The linearly degenerate system

$$
u_{t}=v u_{x}, \quad v_{t}=u v_{x}
$$

can be decoupled into a pair of consistent ODEs,

$$
u_{x}=\frac{f(u)}{u-v}, \quad v_{x}=\frac{g(v)}{v-u}
$$

and

$$
u_{t}=\frac{v f(u)}{u-v}, \quad v_{t}=\frac{u g(v)}{v-u} .
$$

Here f and g are arbitrary functions.

Example 2 The KdV equation,

$$
4 u_{t}+u_{x x x}-6 u u_{x}=0,
$$

can be decoupled into a pair of consistent ODEs (Dubrovin's equations) via the ansatz $u=-2\left(R^{1}+\ldots+R^{n}\right)$:

$$
R_{x}^{i}=\frac{\sqrt{P\left(R^{i}\right)}}{\prod_{k \neq i}\left(R^{i}-R^{k}\right)}, \quad R_{t}^{i}=\frac{\sqrt{P\left(R^{i}\right)}\left(R^{i}-\sum R^{s}\right)}{\prod_{k \neq i}\left(R^{i}-R^{k}\right)} .
$$

Here $P(R)=-4 \prod_{1}^{2 n+1}\left(R-E_{s}\right), \sum E_{s}=0$. This construction gives n-gap solutions of KdV. Note that R^{i} satisfy the linearly degenerate system

$$
R_{t}^{i}=\left(R^{i}-\sum R^{s}\right) R_{x}^{i}
$$

Example of dKP

$$
\left(u_{t}-u u_{x}\right)_{x}=u_{y y} .
$$

First-order (hydrodynamic) form:

$$
u_{t}-u u_{x}=w_{y}, \quad u_{y}=w_{x}
$$

N-phase solutions: $u=u\left(R^{1}, \ldots, R^{n}\right), w=w\left(R^{1}, \ldots, R^{n}\right)$ where

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

Verify that the substitution of u, w into the above first-order system imply

$$
\partial_{i} w=\mu^{i} \partial_{i} u, \quad \lambda^{i}=u+\left(\mu^{i}\right)^{2} .
$$

Derive the following equations for $u(R)$ and $\mu^{i}(R)$ (Gibbons-Tsarev system):

$$
\partial_{j} \mu^{i}=\frac{\partial_{j} u}{\mu^{j}-\mu^{i}}, \quad \partial_{i} \partial_{j} u=2 \frac{\partial_{i} u \partial_{j} u}{\left(\mu^{j}-\mu^{i}\right)^{2}} .
$$

In involution! General solution depends on n arbitrary functions of one variable.

Generalized dKP

$$
\left(u_{t}-f(u) u_{x}\right)_{x}=u_{y y} .
$$

First-order (hydrodynamic) form:

$$
u_{t}-f(u) u_{x}=w_{y}, \quad u_{y}=w_{x}
$$

N-phase solutions: $u=u\left(R^{1}, \ldots, R^{n}\right), w=w\left(R^{1}, \ldots, R^{n}\right)$ where

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}
$$

Verify that

$$
\partial_{i} w=\mu^{i} \partial_{i} u, \quad \lambda^{i}=f(u)+\left(\mu^{i}\right)^{2} .
$$

Derive equations for $u(R)$ and $\mu^{i}(R)$ (generalized Gibbons-Tsarev system):

$$
\partial_{j} \mu^{i}=f^{\prime}(u) \frac{\partial_{j} u}{\mu^{j}-\mu^{i}}, \quad \partial_{i} \partial_{j} u=2 f^{\prime}(u) \frac{\partial_{i} u \partial_{j} u}{\left(\mu^{j}-\mu^{i}\right)^{2}} .
$$

Verify that involutivity of this system implies $f^{\prime \prime}=0$ (integrability condition).

The method of hydrodynamic reductions in higher dimensions

Consider the 4D second heavenly equation,

$$
\theta_{t x}+\theta_{z y}+\theta_{x x} \theta_{y y}-\theta_{x y}^{2}=0
$$

Its first-order quasilinear form is obtained by setting $\theta_{x x}=u, \theta_{x y}=v, \theta_{y y}=w$, $\theta_{t x}=p:$

$$
u_{y}=v_{x}, \quad u_{t}=p_{x}, \quad v_{y}=w_{x}, \quad v_{t}=p_{y}, \quad v_{z}=\left(v^{2}-u w-p\right)_{x}
$$

Hydrodynamic reductions express u, v, w, p as functions of Riemann invariants
R^{1}, \ldots, R^{n} that solve a triple of commuting hydrodynamic type systems

$$
R_{t}^{i}=\lambda^{i}(R) R_{x}^{i}, \quad R_{y}^{i}=\mu^{i}(R) R_{x}^{i}, \quad R_{z}^{i}=\eta^{i}(R) R_{x}^{i}
$$

Verify that this leads to the following generalised Gibbons-Tsarev-type system:

$$
\begin{gathered}
\partial_{j} \mu^{i}=\frac{\left(\mu^{j}-\mu^{i}\right)^{2}}{\eta^{j}-\eta^{i}+u\left(\mu^{j}-\mu^{i}\right)} \partial_{j} u, \quad \partial_{j} \eta^{i}=\frac{\left(\mu^{j}-\mu^{i}\right)\left(\eta^{j}-\eta^{i}\right)}{\eta^{j}-\eta^{i}+u\left(\mu^{j}-\mu^{i}\right)} \partial_{j} u \\
\partial_{i} \partial_{j} u=2 \frac{\mu^{j}-\mu^{i}}{\eta^{j}-\eta^{i}+u\left(\mu^{j}-\mu^{i}\right)} \partial_{i} u \partial_{j} u
\end{gathered}
$$

Verify that this system is in involution, so that its general solution depends on 2 n arbitrary functions of one variable.

Definition A d-dimensional quasilinear system is said to be integrable if, for any n , it possesses infinitely many n-component reductions parametrized by ($\mathrm{d}-2$) n arbitrary functions of one variable.

Based on
E. V. Ferapontov and K. R. Khusnutdinova, Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability, J. Math. Phys. 45, no. 6 (2004) 2365-2377.

Dispersionless Lax pairs

The dKP equation,

$$
u_{t}-u u_{x}=w_{y}, \quad u_{y}=w_{x}
$$

possesses the Lax pair (Zakharov):

$$
\psi_{t}=\frac{1}{3} \psi_{x}^{3}+u \psi_{x}+w, \quad \psi_{y}=\frac{1}{2} \psi_{x}^{2}+u
$$

Observation Integrability by the method of hydrodynamic reductions is equivalent to the existence of a dispersionless Lax pair of the form

$$
\psi_{t}=F\left(\mathbf{u}, \psi_{x}\right), \quad \psi_{y}=G\left(\mathbf{u}, \psi_{x}\right)
$$

(Proved for various classes of integrable models).

