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Systems of hydrodynamic type in 1+1D. Diagonalisability
criterion

Systems of hydrodynamic type are equations of the form

ut = v(u)ux, or uit = vij(u)u
j
x.

Example: Shallow water equations

ht + (uh)x = 0, ut + uux + hx = 0.

We will be primarily dealing with systems that can be transformed into diagonal

(Riemann invariant) form,

Rit = λi(R)Rix.

Diagonalisability criterion: the Haantjes tensor H = 0

N i
jk = vpj ∂upvik − v

p
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Semi-Hamiltonian property

A diagonal system

Rit = λi(R)Rix, i = 1, . . . , n, (1)

is said to be semi-Hamiltonian if its characteristic speeds λi(R) satisfy the relations

∂k

(
∂jλ

i

λj − λi

)
= ∂j

(
∂kλ

i

λk − λi

)
.

∂k = ∂Rk , i 6= j 6= k.

Verify that the following systems are semi-Hamiltonian:

Rit = (Ri
∏
k

Rk)Rix, Rit = (Ri +
∑
k

Rk)Rix.

We will see that the semi-Hamiltonian property implies integrability.
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Conservation laws

Conservation laws of system (1) are relations of the form h(R)t = g(R)x which

must hold by virtue of (1).

Verify that this implies the following relations for the density h and the flux g:

∂ig = λi∂ih.

Verify that the elimination of g leads to the second-order system for the conserved

density h:

∂i∂jh =
∂jλ

i

λj − λi
∂ih+

∂iλ
j

λi − λj
∂jh, i 6= j.

Show that involutivity of this system for h is equivalent to the semi-Hamiltonian

property.

This will prove the following results: system (1) is semi-Hamiltonian if and only if it

possesses infinitely many conservation laws parametrised by n arbitrary functions

of 1 variable.
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Commuting flows

Systems

Rit = λi(R)Rix and Riy = µi(R)Rix

are said to commute if Rity = Riyt (that is, they are compatible).

Verify that the commutativity condition implies the following relations:

∂jµ
i

µj − µi
=

∂jλ
i

λj − λi
, i 6= j.

Show that involutivity of this system for µi is equivalent to the semi-Hamiltonian

property.

This will prove the following results: system (1) is semi-Hamiltonian if and only if it

possesses infinitely many commuting flows parametrised by n arbitrary functions of

1 variable.
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The generalised hodograph formula

Given 2 commuting flows

Rit = λi(R)Rix and Riy = µi(R)Rix,

verify that the implicit relations (the generalised hodograph formula of Tsarev)

µi(R) = x+ λi(R)t, i = 1, . . . , n,

provides a solution of system (1). Since, for semi-Hamiltonian systems, commuting

flows µi depend on n arbitrary functions of 1 variable, the generalised hodograph

formula provides a generic solution of system (1).
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Linear degeneracy

Linearly degenerate systems are characterised by the condition

∂iλ
i = 0, 1 = 1, . . . , n.

Linear degeneracy is known to prevent breakdown of smooth initial data Ri(x, 0).
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The method of hydrodynamic reductions in 2+1D

Goes back to Yanenko, Meleshko, Burnat, Peradzyński, Grundland, Kodama,

Gibbons, Tsarev. Applies to quasilinear equations

A(u)ux +B(u)uy + C(u)ut = 0.

Consists of seeking n-phase solutions

u = u(R1, ..., Rn).

The phases Ri(x, y, t) are required to satisfy a pair of commuting equations

Rit = λi(R)Rix, Riy = µi(R)Rix,

(called hydrodynamic reductions). Commutativity conditions: ∂jµ
i

µj−µi =
∂jλ

i

λj−λi .

Definition A 2+1 quasilinear system is said to be integrable if, for any n, it

possesses infinitely many n-component reductions parametrized by n arbitrary

functions of one variable (n=3 is sufficient).
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One-phase solutions are of the form u = u(R) where R(x, y, t) satisfies

the equations

Rt = λ(R)Rx, Ry = µ(R)Rx.

Generic one-phase solution is constant along a one-parameter family of planes:

w(R) = x+ λ(R)t+ µ(R)y.

Two-phase solutions are of the form u = u(R1, R2) where

R1(x, y, t), R2(x, y, t) satisfy the equations

Rit = λi(R)Rix, Riy = µi(R)Rix.

Generic two-phase solution is constant along a two-parameter family of lines:

w1(R1, R2) = x+ λ1(R1, R2)t+ µ1(R1, R2)y,

w2(R1, R2) = x+ λ2(R1, R2)t+ µ2(R1, R2)y.

where ∂jw
i

wj−wi =
∂jµ

i

µj−µi =
∂jλ

i

λj−λi .
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‘Decomposition’ point of view

Hydrodynamic reductions can be viewed as decompositions of a given 2+1 PDE into

a pair of consistent 1+1 PDEs. Further examples of this construction are as follows:

Example 1 The linearly degenerate system

ut = vux, vt = uvx

can be decoupled into a pair of consistent ODEs,

ux =
f(u)

u− v
, vx =

g(v)

v − u
and

ut =
vf(u)

u− v
, vt =

ug(v)

v − u
.

Here f and g are arbitrary functions.
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Example 2 The KdV equation,

4ut + uxxx − 6uux = 0,

can be decoupled into a pair of consistent ODEs (Dubrovin’s equations) via the

ansatz u = −2(R1 + ...+Rn):

Rix =

√
P (Ri)∏

k 6=i(R
i −Rk)

, Rit =

√
P (Ri)(Ri −

∑
Rs)∏

k 6=i(R
i −Rk)

.

Here P (R) = −4
∏2n+1

1 (R− Es),
∑
Es = 0. This construction gives n-gap

solutions of KdV. Note that Ri satisfy the linearly degenerate system

Rit = (Ri −
∑

Rs)Rix.
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Example of dKP
(ut − uux)x = uyy.

First-order (hydrodynamic) form:

ut − uux = wy, uy = wx.

N -phase solutions: u = u(R1, ..., Rn), w = w(R1, ..., Rn) where

Rit = λi(R)Rix, Riy = µi(R)Rix.

Verify that the substitution of u,w into the above first-order system imply

∂iw = µi∂iu, λi = u+ (µi)2.

Derive the following equations for u(R) and µi(R) (Gibbons-Tsarev system):

∂jµ
i =

∂ju

µj − µi
, ∂i∂ju = 2

∂iu∂ju

(µj − µi)2
.

In involution! General solution depends on n arbitrary functions of one variable.
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Generalized dKP
(ut − f(u)ux)x = uyy.

First-order (hydrodynamic) form:

ut − f(u)ux = wy, uy = wx.

N -phase solutions: u = u(R1, ..., Rn), w = w(R1, ..., Rn) where

Rit = λi(R)Rix, Riy = µi(R)Rix.

Verify that

∂iw = µi∂iu, λi = f(u) + (µi)2.

Derive equations for u(R) and µi(R) (generalized Gibbons-Tsarev system):

∂jµ
i = f ′(u)

∂ju

µj − µi
, ∂i∂ju = 2f ′(u)

∂iu∂ju

(µj − µi)2
.

Verify that involutivity of this system implies f ′′ = 0 (integrability condition).
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The method of hydrodynamic reductions in higher dimensions

Consider the 4D second heavenly equation,

θtx + θzy + θxxθyy − θ2xy = 0.

Its first-order quasilinear form is obtained by setting θxx = u, θxy = v, θyy = w,

θtx = p:

uy = vx, ut = px, vy = wx, vt = py, vz = (v2 − uw − p)x.

Hydrodynamic reductions express u, v, w, p as functions of Riemann invariants

R1, ..., Rn that solve a triple of commuting hydrodynamic type systems

Rit = λi(R) Rix, Riy = µi(R) Rix, Riz = ηi(R) Rix.
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Verify that this leads to the following generalised Gibbons-Tsarev-type system:

∂jµ
i = (µj−µi)2

ηj−ηi+u(µj−µi) ∂ju, ∂jη
i = (µj−µi)(ηj−ηi)

ηj−ηi+u(µj−µi) ∂ju,

∂i∂ju = 2 µj−µi

ηj−ηi+u(µj−µi) ∂iu∂ju.

Verify that this system is in involution, so that its general solution depends on 2n

arbitrary functions of one variable.

Definition A d-dimensional quasilinear system is said to be integrable if, for any n,

it possesses infinitely many n-component reductions parametrized by (d-2)n

arbitrary functions of one variable.

Based on

E. V. Ferapontov and K. R. Khusnutdinova, Hydrodynamic reductions of multi-dimensional

dispersionless PDEs: the test for integrability, J. Math. Phys. 45, no. 6 (2004) 2365-2377.
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Dispersionless Lax pairs

The dKP equation,

ut − uux = wy, uy = wx,

possesses the Lax pair (Zakharov):

ψt =
1

3
ψ3
x + uψx + w, ψy =

1

2
ψ2
x + u.

Observation Integrability by the method of hydrodynamic reductions is equivalent to

the existence of a dispersionless Lax pair of the form

ψt = F (u, ψx), ψy = G(u, ψx).

(Proved for various classes of integrable models).
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