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Systems of hydrodynamic type in 1+1D. Diagonalisability
criterion

Systems of hydrodynamic type are equations of the form

w, =v(u)u,, or ul= v;(u)ugj

Example: Shallow water equations
he + (uh), =0, wus +uu, + h, = 0.

We will be primarily dealing with systems that can be transformed into diagonal
(Riemann invariant) form,

R = \'(R)R..
Diagonalisability criterion: the Haantjes tensor H = 0
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Semi-Hamiltonian property

A diagonal system

R =)X(R)R,, i=1,...,n, (1)

is said to be semi-Hamiltonian if its characteristic speeds \*(R) satisfy the relations

N\ O\’
o (ﬁ) = (m) -

Verify that the following systems are semi-Hamiltonian:

Ri = (R'||R"R.,, Ri=(R'+) RMR..
k k

We will see that the semi-Hamiltonian property implies integrability.



Conservation laws

Conservation laws of system (1) are relations of the form h(R); = g(R), which
must hold by virtue of (1).

Verify that this implies the following relations for the density A and the flux g:

0,9 = \'O;h.
Verify that the elimination of g leads to the second-order system for the conserved
density h:
8 A 8 Y
0;0;h = 8 h + 8 h, i+#3j.

Show that involutivity of this system for h is equivalent to the semi-Hamiltonian
property.
This will prove the following results: system (1) is semi-Hamiltonian if and only if it

possesses infinitely many conservation laws parametrised by n arbitrary functions

of 1 variable.



Commuting flows
Systems

R, =X(R)R, and R, =p'(R)R.
are said to commute if Riy = Zt (that is, they are compatible).

Verify that the commutativity condition implies the following relations:

({9j,LL7’ _ (9j)\z ; 7& .
pl — o A= A g
Show that involutivity of this system for ,ui IS equivalent to the semi-Hamiltonian
property.

This will prove the following results: system (1) is semi-Hamiltonian if and only if it
possesses infinitely many commuting flows parametrised by n arbitrary functions of

1 variable.



The generalised hodograph formula

Given 2 commuting flows

R, =X(R)R, and R, =y (R)R.,

T

verify that the implicit relations (the generalised hodograph formula of Tsarev)
p(R)=x+X(R)t, i=1,...,n,

provides a solution of system . Since, for semi-Hamiltonian systems, commuting
flows ,ufi depend on n arbitrary functions of 1 variable, the generalised hodograph

formula provides a generic solution of system (1).



Linear degeneracy

Linearly degenerate systems are characterised by the condition
oN'=0, 1=1,...,n.

Linear degeneracy is known to prevent breakdown of smooth initial data Ri(:U, O).



The method of hydrodynamic reductions in 2+1D

Goes back to Yanenko, Meleshko, Burnat, Peradzynski, Grundland, Kodama,
Gibbons, Tsarev. Applies to quasilinear equations

A(u)u, + B(u)u, + C(u)u; = 0.
Consists of seeking n-phase solutions
u=u(R, . ..,R").
The phases Ri(a:, Y, t) are required to satisfy a pair of commuting equations

R, = N(R)R,, R, =u'(R)R;,

Y

(called hydrodynamic reductions). Commutativity conditions: Ojp” 95

pd —pt A=A
Definition A 2+1 quasilinear system is said to be integrable if, for any n, it
possesses infinitely many n-component reductions parametrized by n arbitrary
functions of one variable (n=3 is sufficient).



One-phase solutions are of the form u = u(R) where R(x, y, t) satisfies
the equations

R, = M(R)R,, R, =u(R)R,.
Generic one-phase solution is constant along a one-parameter family of planes:
w(R) =z + A(R)t + u(R)y.

Two-phase solutions are of the form u = u(R*!, R?) where
RY(x,y,t), R?(x,y,t) satisfy the equations

R = N(R)R., R'=u'(R)R..

Generic two-phase solution is constant along a two-parameter family of lines:
wl(RY, R?) = o+ M (RY Rt + p' (R, R?)y,
w?(R',R?) = x + \2(R', R?)t + 1i*(R", R?)y.
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‘Decomposition’ point of view

Hydrodynamic reductions can be viewed as decompositions of a given 2+1 PDE into
a pair of consistent 1+1 PDEs. Further examples of this construction are as follows:

Example 1 The linearly degenerate system
U = VU;, Vi = Uy

can be decoupled into a pair of consistent ODEs,

W (OR—(CO)
U —7v V—U
and
ut_”f(“), Ut:ug(v).
U —"7v V—U

Here f and g are arbitrary functions.
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Example 2 The KdV equation,
duy + Ugpgpr — OuUu, = 0,

can be decoupled into a pair of consistent ODEs (Dubrovin’s equations) via the
ansatzu = —2(R' + ... + R"):

P VPR SR
D Y PRy o N S | AN

Here P(R) = —4 H?nﬂ (R— FEs), > FEs = 0. This construction gives n-gap
solutions of KdV. Note that R" satisfy the linearly degenerate system

— Y R°)R
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Example of dKP
(U — uty ), = Uyy.
First-order (hydrodynamic) form:
Up — Uy = Wy, Uy = Wg.

N-phase solutions: © = u(R!, ..., R"), w = w(R!, ..., R™) where

R, = X'(R)R.,, R, =u'(R)R..
Verify that the substitution of u, w into the above first-order system imply

Ow = o, N =u+ (u').
Derive the following equations for u(R) and p*(R) (Gibbons-Tsarev system):

0ju Oiud;u
po— ! (W — p*)?

In involution! General solution depends on n arbitrary functions of one variable.

Oju' =
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Generalized dKP
(up — f(u)ux)x = Uyy-

First-order (hydrodynamic) form:
up — f(u)ug = wy, Uy = wy.
N-phase solutions: © = u(R!, ..., R"), w = w(R!, ..., R"™) where

R; = X'(R)R.,, R =u'(R)R..

x

Verify that
Oiw = p'du, N = f(u)+ (u")>.
Derive equations for u( R) and 1’ (R) (generalized Gibbons-Tsarev system):
0ju Oiud;u
pd — )2

Ojp' = f'(u) 0;05u = 2 f'(u)

(19 — )

Verify that involutivity of this system implies /" = 0 (integrability condition).
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The method of hydrodynamic reductions in higher dimensions

Consider the 4D second heavenly equation,

Its first-order quasilinear form is obtained by setting 0, = u, 05, = v, 0,,, = w,
eta: — D-

2

Uy = Vg, Ut = Pgy Uy = Wg, UVt = Py, ’UZ:(U _uw_p)a:

Hydrodynamic reductions express u, v, w, p as functions of Riemann invariants

Rl, ..., R™ that solve a triple of commuting hydrodynamic type systems

R, =X(R) R,, R, =p'(R)R,, R.=n'(R)R,.
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Verify that this leads to the following generalised Gibbons-Tsarev-type system:

i (p? —p*)?
Ojpt = n? —n'fu(p? —pt)

(! —p")(n’ —n") 9.1,

9.4y — p —p -y
0;0;u = 2 et =) Oiud;u.

Verify that this system is in involution, so that its general solution depends on 2n

arbitrary functions of one variable.

Definition A d-dimensional quasilinear system is said to be integrable if, for any n,
it possesses infinitely many n-component reductions parametrized by (d-2)n

arbitrary functions of one variable.
Based on

E. V. Ferapontov and K. R. Khusnutdinova, Hydrodynamic reductions of multi-dimensional

dispersionless PDEs: the test for integrability, J. Math. Phys. 45, no. 6 (2004) 2365-2377.
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Dispersionless Lax pairs

The dKP equation,

possesses the Lax pair (Zakharov):

1

1
wt=§¢§+u%+w, wy:§w§+u.

Observation Integrability by the method of hydrodynamic reductions is equivalent to

the existence of a dispersionless Lax pair of the form

Ve = F(u,bz), ¢y =G(u,vy).

(Proved for various classes of integrable models).
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