
Dispersive deformations of dispersionless integrable systems

• Deformations of hydrodynamic reductions of dKP.

• Classification of scalar integrable 2+1D soliton equations with simplest

nonlocalities.
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KP equation
(ut − uux)x − uxxxx = uyy.

Perturbative symmetry approach

(ut−εuux)x − uxxxx = uyy.

Dispersive deformation

(ut − uux)x−ε
2uxxxx = uyy.

Program of classification of 2+1D integrable systems:

• Classify 2+1D dispersionless systems which may (potentially) arise as

dispersionless limits of integrable soliton equations (method of hydrodynamic

reductions).

• Reconstruct dispersive corrections (deformation of hydrodynamic reductions).
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Dispersive deformations of hydrodynamic reductions of dKP

E. V. Ferapontov and A. Moro, Dispersive deformations of hydrodynamic reductions of 2D dispersionless

integrable systems, J. Phys. A: Math. Theor. 42 (2009) 035211, 15pp.

(ut − uux)x−ε
2uxxxx = uyy.

Look for deformed n-phase solutions in the form

u = u(R1, ..., Rn)+ε2(. . . ) + ε4(. . . ) + . . .

where

Ri
t = λi(R)Ri

x+ε
2(. . . ) + ε4(. . . ) + . . .

Ri
y = µi(R)Ri

x+ε
2(. . . ) + ε4(. . . ) + . . .

Here (. . . ) are required to be polynomial and homogeneous in the derivatives of

Ri. Recall that λi = u+ (µi)2 where µi, u satisfy the Gibbons-Tsarev system.
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Deformations of one-phase reductions of dKP

(ut − uux)x−ε
2uxxxx = uyy.

Deformed one-phase reductions (modulo the Miura group one can assume u = R):

Rt =(µ2 +R)Rx

+ε2
(
(2µµ′ + 1)Rxx + (µµ′′ − µ(µ′)3 + (µ′)2/2)R2

x

)
x
+O(ε4),

Ry =µRx

+ε2

(
µ′Rxx +

1

2
(µ′′ − (µ′)3)R2

x

)
x

+O(ε4).

Conjecture

For any soliton system in 2+1D, all hydrodynamic reductions of its dispersionless

limit can be deformed into reductions of the dispersive counterpart (linear

non-degeneracy of the dispersionless limit is required).
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Generalised KP equation

ut − uux+ε(A1uxx +A2u
2
x) + ε2(B1uxxx +B2uxuxx +B3u

3
x) = wy,

wx = uy.

Here Ai(u), Bi(u) are certain functions of u. Let us require that all one-phase

reductions can be deformed as

u = R, w = w(R)+ε2(. . . ) + ε4(. . . ) + . . . ,

where
Rt =(µ2 +R)Rx+ε

2(. . . ) + ε4(. . . ) + . . . ,

Ry =µRx+ε
2(. . . ) + ε4(. . . ) + . . . ,

w′ = µ. This gives A1 = A2 = B2 = B3 = 0, B1=const, =⇒ KP.
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Scalar third-order integrable 2+1 D soliton equations with
simplest nonlocalities

E.V. Ferapontov, A. Moro and V.S. Novikov, Integrable equations in 2 + 1 dimensions: deformations of

dispersionless limits, J. Phys. A: Math. Theor. 42 (2009) (18pp).

ut = ϕux + ψuy + ηwy+ε(...) + ε2(...), wx = uy.

here ϕ, ψ, η are functions of u and w, and (. . . ) denote terms which are

polynomial in the derivatives of u and w with respect to x and y of orders 2 and 3,

respectively. Here w = D−1
x Dyu is the nonlocality, no other non-local variables

are allowed.

• Classify integrable dispersionless systems of the form

ut = ϕux + ψuy + ηwy, wx = uy.

• Reconstruct dispersive corrections which inherit all hydrodynamic reductions

(sufficient to consider 1-component reductions up to the order ε4).
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Known examples

KP ut = uux + wy+ε
2uxxx

mKP ut = (w − u2/2)ux + wy+ε
2uxxx

Gardner ut = (βw − β2

2
u2 + δu)ux + wy+ε

2uxxx

VN ut = (uw)y+ε
2uyyy

mVN ut = (uw)y+ε
2

(
uyy −

3

4

u2
y

u

)
y

Harry Dym ut = −2wuy + uwy−
ε2

u

(
1

u

)
xxx

Here wx = uy . Notice that VN and mVN have coinciding dispersionless limits.
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Classification of integrable dispersionless limits

Integrability conditions:

E.V. Ferapontov and K.R. Khusnutdinova, The characterization of 2-component (2+1)-dimensional

integrable systems of hydrodynamic type, J. Phys. A: Math. Gen. 37, no. 8 (2004) 2949–2963.

ϕuu = −ϕ
2
w + ψuϕw − 2ψwϕu

η
, ϕuw =

ηwϕu

η
, ϕww =

ηwϕw

η
,

ψuu =
−ϕwψw + ψuψw − 2ϕwηu + 2ηwϕu

η
, ψuw =

ηwψu

η
, ψww =

ηwψw

η
,

ηuu = −ηw (ϕw − ψu)

η
, ηuw =

ηwηu
η

, ηww =
η2
w

η
.

In involution, straightforward to solve: three main cases corresponding to

η = 1, η = u, η = ewh(u).
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New integrable examples

Example 1.

ut = (βw + β2u2)ux − 3βuuy + wy+ε
2[B3(u)− βB2(u)ux],

B = βuDx −Dy .

Example 2.

ut =
4

27
γ2u3ux + (w + γu2)uy + uwy+ε

2[B3(u)− 1

3
γuxB

2(u)],

B = 1
3γuDx +Dy .

Example 3.

ut =
δ

u3
ux − 2wuy + uwy−

ε2

u

(
1

u

)
xxx

,

δ = 0 gives the Harry Dym equation.
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Discrete equations as dispersive deformations

Consider a discrete wave-type equation,

4tt̄u−4xx̄f(u)−4yȳg(u) = 0,

equivalently,

utt − f(u)xx − g(u)yy +
ε2

12
(utttt − f(u)xxxx − g(u)yyyy) + . . . = 0.

The corresponding dispersionless limit is

utt − f(u)xx − g(u)yy = 0.

Dispersionless limit possesses solutions of the form u = R(x, y, t) where

Rt = λ(R)Rx, Ry = µ(R)Rx,

(one-phase reductions), here λ2 = f ′ + g′µ2.
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Method of dispersive deformations

Let us require that all one-phase reductions of the dispersionless PDE are ’inherited’

by the discrete equation:

Rt = λ(R)Rx+ε(b1Rxx + b2R
2
x) + ε2(b3Rxxx + b4RxRxx + b5R

3
x) +O(ε3),

Ry = µ(R)Rx+ε(a1Rxx + a2R
2
x) + ε2(a3Rxxx + a4RxRxx + a5R

3
x) +O(ε3).

This requirement allows us to reconstruct the coefficients ai(R), bi(R) in terms of

λ, µ. It also leads to strong constraints on f(u), g(u) (integrability conditions):

f ′′ + g′′ = 0, g′′(1 + f ′)− g′f ′′ = 0, f ′′2(1 + 2f ′)− f ′(f ′ + 1)f ′′′ = 0.

Setting f(u) = u− ln(eu + 1), g(u) = ln(eu + 1), we obtain the discrete

equation

4tt̄u−4xx̄[u− ln(eu + 1)]−4yȳ[ln(e
u + 1)] = 0,

known as ‘gauge-invariant form’ of the Hirota equation.

11



Comparison of 1+1 and 2+1 deformation schemes

1+1D:

ut = A(u)ux+ε
2(. . . ) + . . .

• Dispersionless integrable systems form infinite dimensional parameter spaces.

• Terms at ε2 contain extra functional freedom (central invariants).

• Any integrable system of hydrodynamic type possesses integrable dispersive

deformations (not proved in full generality).

2+1D:

ut = A(u)ux +B(u)uy+ε
2(. . . ) + . . .

• Dispersionless integrable systems form finite dimensional parameter spaces.

• Terms at ε2 contain no functional freedom.

• It is still unclear whether any dispersionless integrable system possesses a

nontrivial dispersive deformation.
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