Dispersive deformations of dispersionless integrable systems
e Deformations of hydrodynamic reductions of dKP.

e Classification of scalar integrable 2+1D soliton equations with simplest

nonlocalities.



KP equation

(ut — uuw)w — Uggrr — Uyy-
Perturbative symmetry approach

(Ut —cutly),, — Ugpze = Uyy-

Dispersive deformation

(ur — uug), P Uy = Uy -

Program of classification of 2+1D integrable systems:

e Classify 2+1D dispersionless systems which may (potentially) arise as
dispersionless limits of integrable soliton equations (method of hydrodynamic
reductions).

e Reconstruct dispersive corrections (deformation of hydrodynamic reductions).



Dispersive deformations of hydrodynamic reductions of dKP

E. V. Ferapontov and A. Moro, Dispersive deformations of hydrodynamic reductions of 2D dispersionless

integrable systems, J. Phys. A: Math. Theor. 42 (2009) 035211, 15pp.

(ur — uug), T Uy -

Look for deformed n-phase solutions in the form
w=u(R" ..., R")+e*(...)+et( )+
where
R = A(R)R.+e*(...)+e*(...)+...
Ré = " (R)R,+e%(...) +*(..)+ ...

Here (... ) are required to be polynomial and homogeneous in the derivatives of
R'. Recall that \* = u + (,uf")2 where 1*, u satisfy the Gibbons-Tsarev system.



Deformations of one-phase reductions of dKP

(ur — uug), T Uy -

Deformed one-phase reductions (modulo the Miura group one can assume u = R):
Ry =(p° + R)R,
+e? ((2up + D Rew + (up” — p(p')* + (1)?/2)RZ)  + O(e"),
Ry =pR,

1
te? (N'Rm - (u’)?’)Ri) L O,

Conjecture

For any soliton system in 2+1D, all hydrodynamic reductions of its dispersionless
limit can be deformed into reductions of the dispersive counterpart (linear

non-degeneracy of the dispersionless limit is required).



Generalised KP equation
Ut — Ulg+E (A Ugy + Agui) + 52(Bluma; + BotpUpy + Bg’LLi) = Wy,

Wy = Uy.

Here A;(u), B;(u) are certain functions of u. Let us require that all one-phase

reductions can be deformed as
u= R, w=w(R)+e*(... )+ (.. ) ...,

where
Re =(p? + R)Ry+e(...) +*(..) + ...,

R, =uR +e*(...)+e*(..)+...,

w’ = . This gives A1 = Ay = By = B3 = 0, By=const, —> KP.



Scalar third-order integrable 2+1 D soliton equations with
simplest nonlocalities

E.V. Ferapontov, A. Moro and V.S. Novikov, Integrable equations in 2 + 1 dimensions: deformations of

dispersionless limits, J. Phys. A: Math. Theor. 42 (2009) (18pp).
2
Ut = PUz + YUy +Nwy+e(...) +€(...), Wy = uy.

here ©, 1, 1 are functions of © and w, and ( .. ) denote terms which are
polynomial in the derivatives of © and w with respect to  and ¥y of orders 2 and 3,
respectively. Here w = D;lDyu is the nonlocality, no other non-local variables
are allowed.

e Classify integrable dispersionless systems of the form
Ut = QUz + YUy + MWy, Wgy = Uy.

e Reconstruct dispersive corrections which inherit all hydrodynamic reductions

(sufficient to consider 1-component reductions up to the order 64).



Known examples

KP Up = Uty + Wy Uy
mKP uy = (w — u?/2)ug + Wy +€ Uz
2
Gardner ur = (Bw — 7u2 + du)u, + wy‘|_€2uxxx
VN Uy = (UW)y+€ Uy,
) 3 uy
mVN ur = (uw)y+e |ty — 7 —
4 u
y
2 /1
Harry Dym Ut = —2WUy + UWy—— | —
u u TrIx

Here w, = u,. Notice that VN and mVN have coinciding dispersionless limits.



Classification of integrable dispersionless limits
Integrability conditions:

E.V. Ferapontov and K.R. Khusnutdinova, The characterization of 2-component (2+1)-dimensional

integrable systems of hydrodynamic type, J. Phys. A: Math. Gen. 37, no. 8 (2004) 2949—-2963.
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wuu — ) wuw — ; Zbww — 9
7 n 7
po = T (Pw = Yu) _ T _

n n
In involution, straightforward to solve: three main cases corresponding to

n=1n=u, n=e"h(u).



New integrable examples

Example 1.
uy = (Bw + B*u?)u, — 3Buuy, + wy+e[B°(u) — BB (u)u,],
B = BuD, — D,
Example 2.
4 1

Uy = 2—772u3ux + (w + vuz)uy + uwy+52 [B?’(u) — gfyuxBQ(u)],

B = zyuD, + D,

Example 3.

) e (1
Ut = —3Up — 2WUy + UWy—— | — :
U u \u/ ..

0 = 0 gives the Harry Dym equation.



Discrete equations as dispersive deformations

Consider a discrete wave-type equation,

Agu — :m:f( ) yyg( ) =0,

equivalently,

E2

Ug — f(U)zz — 9(“) + 5 12 (wtttt — f(U)powe — g(“)ww) +...=0.

The corresponding dispersionless limit is
Uy — f(U)gx — g(u)yy = 0.
Dispersionless limit possesses solutions of the form u = R(x, y, t) where
R, = AR)R;, R, =p(R)R,,

(one-phase reductions), here \? = /' + ¢’ 2.
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Method of dispersive deformations

Let us require that all one-phase reductions of the dispersionless PDE are 'inherited’
by the discrete equation:

Ry = MR)Ry+e(biRyy + b2 R2) + €2 (b3 Rypy + D4Ry Ryo + bsR2) 4 O(€?),

R, = u(R)Ry+e(a1 Ryy + aoR2) + € (a3 Rppy + a4 Ry Ruw + asR3) + O(e2).

This requirement allows us to reconstruct the coefficients a;(R), b; (R) in terms of
A, (. It also leads to strong constraints on f(u), g(u) (integrability conditions):

f// _|_g// — 07 g//(l _|_ f/) L g/f// — O, f//2(1 _I_ 2f/) L f/(f/ _|_ 1)]['/// — O

Setting f(u) = u — In(e* + 1), g(u) = In(e* + 1), we obtain the discrete

equation
AN — Dgzlu —In(e” +1)] — Ayylln(e” +1)] =0,

known as ‘gauge-invariant form’ of the Hirota equation.
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Comparison of 1+1 and 2+1 deformation schemes

1+1D:
w = A(w)u,+e2( ) + ..
e Dispersionless integrable systems form infinite dimensional parameter spaces.

e Terms at £ contain extra functional freedom (central invariants).

e Any integrable system of hydrodynamic type possesses integrable dispersive
deformations (not proved in full generality).

2+1D:
w = A(w)u, + Bwu,+e(...) + ...

e Dispersionless integrable systems form finite dimensional parameter spaces.
e Terms at =2 contain no functional freedom.
e |t is still unclear whether any dispersionless integrable system possesses a

nontrivial dispersive deformation.
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