José Fiqueroa-O'Farnth Wriversity of Edinburgh)
Lecture 1
Maximally symmetric space(time)s
(Monday 6 May 2019)
M : C^{∞}, counected, $\partial M=\phi$.
$C^{\infty}(M), \notin(M), \Omega(M)$
functious, vectorfield, forms

A metric of on M is a non-degenerate section of $S^{2} T^{*} M$. We do not dewand that g be positive-definite. A pair (M, g) is a riewannian manifold. The Fondamental Lemua of Riewannian geonetry samp that (M, g) admits a vaique affine connection ∇ (the Levi-Civita courection) which is

- metric: $\nabla g=0$
- torsion-free: $\nabla_{X} Y-\nabla_{Y} X=[X, Y] \quad \forall X, Y \in \mathcal{X}(M)$

Exevise Derine the Koszol formula:

$$
\begin{aligned}
2 g\left(\nabla_{x} Y, z\right)= & X(g(y, z))+Y(g(x, z)-Z g(x, y) \\
& -g(x,[y, z])-g(y,[x, z])+g(z,[x, y])
\end{aligned}
$$

Eneny mathervatical structue admits a notion of automorphicxes. In the case of a niwoannian (M, g) these are the icometries: diffeomorphisms $\varphi: M \rightarrow M$ s.t. $\quad \varphi^{*} g=g$. At least when g is positive-definite or Voreulzian (signature $(n-1,1), n=\operatorname{dim} M$), isomehries defive a finite-dimeucional lie group. Its he algelora consists of the KMling vector fields: $\xi \in X(M)$ s.t.

$$
\mathcal{L}_{\xi} g=0 \Rightarrow \text { Kiling nector frelds defiue a lie sobalgebra of } X(M) \text {. }
$$

We cau newnite this equation in a conore useful form.
Lemuma
$\xi \in X(M)$ is killing iff $\quad A_{\xi}: T M \rightarrow T M$, defined by $A_{\xi}(X)=-\nabla_{x} \xi$ is shew-symmetric: $g\left(A_{\xi} X, Y\right)=-g\left(X, A_{\xi} Y\right)$.

Proob $0=(\mathcal{L} \xi g)(X, Y)=\xi(g(X, Y))-g([\xi, X], Y)-g(X,[\xi, Y])$

$$
\begin{aligned}
\nabla g=0 & \stackrel{\gtrless}{ }=g\left(\nabla_{\xi} X, Y\right)+g\left(X, \nabla_{\xi} Y\right)-g([\xi, X], Y)-g(X,[\xi, Y]) \\
& =g\left(\nabla_{\xi} X-[\xi, X], Y\right)+g\left(X, \nabla_{\xi} Y-[\xi, Y]\right) \\
\nabla_{\text {in }} \text { in } & =g\left(\nabla_{X} \xi, Y\right)+g\left(X, \nabla_{Y} \xi\right)
\end{aligned}
$$

This still does not show that the lie algebra of Killing vectors is finite-dimensional. That will follow from Killing's identity. Recall, ξ Killing $\Leftrightarrow A_{\xi} \in$ so (TM).
Let's iefferentiate $A_{\xi}: \nabla_{X} A_{\xi} \in \underline{\text { so }}(T M)$.

$$
\begin{aligned}
& \left(\nabla_{X} A_{\xi}\right)(Y)=\nabla_{X}\left(A_{\xi}(Y)\right)-A_{\xi}\left(\nabla_{X} Y\right)=-\nabla_{X} \nabla_{Y} \xi+\nabla_{\nabla_{X} Y} \xi \\
& \left.\therefore\left(\nabla_{X} A_{\xi}\right)(Y)-\nabla_{y} A_{\xi}\right)(x)=-\nabla_{x} \nabla_{y} \xi+\nabla_{y} \nabla_{x} \xi+\nabla_{\nabla_{x} y} \xi-\nabla_{Q_{, x}} \xi \\
& \nabla_{\text {torsion free }} \stackrel{\curvearrowright}{=}-\left[\nabla_{x}, \nabla_{y}\right] \xi+\nabla_{[x, y]} \xi \\
& =R(X, Y) \xi \quad \text { (definition of } R \text {) } \\
& R(x, y)=-R(Y, X) \& \begin{array}{l}
\text { algebraic } \\
\text { Bianchi identity } \\
\\
=
\end{array}-R(Y, \xi) X+R(X, \xi) Y \quad \nabla_{X} A_{\xi}, R(X, \xi)
\end{aligned}
$$

Define $S(X, Y, Z):=g\left(\left(\nabla_{X} A_{\xi}-R(X, \xi)\right) Y, Z\right)$. Then $S(X, Y, Z) \stackrel{\wp}{=}-S(X, Z, Y)$ but also $S(X, Y, Z)=S(Y, X, Z) . \Rightarrow S \equiv 0 \Leftrightarrow \nabla_{X} A_{\xi}=R(X, \xi) \quad$ Killing's identity

Let $E:=T M \oplus \underline{s o}(T M)$, a rank $-\frac{n(n+1)}{2}$ neal VB over $\left(M^{n}, g\right)$. Define a connection D on E by

$$
D_{x}\binom{\xi}{A}=\binom{\nabla_{x} \xi+A(x)}{\nabla_{x} A+R(\xi, x)}=\left(\begin{array}{ll}
\nabla_{x} & 2_{x} \\
R(-, x) & \nabla_{x}
\end{array}\right)\binom{\xi}{A}
$$

Proposition (Killing transport)
$\xi \in \nexists(M)$ is killing $\Leftrightarrow\binom{\xi}{A_{\xi}} \in \Gamma(E)$ is D-parallel
$\operatorname{dim}\left\{\sigma \in \Gamma(E) \mid D_{\sigma}=0\right\} \leqslant \operatorname{rank} E$ since parallel sections are uniquely determined by their value at any given point. (M convected!)
Upshot
$K V(M, g):=\left\{\xi \in \mathcal{H}(M) \mid \mathscr{L}_{\xi} g=0\right\}$ is a neal lie algebra and $\operatorname{dim} K V\left(M^{n}, g\right) \leq \frac{n(n+1)}{2}$. we say that $\left(M^{n}, g\right)$ is maximally symmetric if $\operatorname{dim} K V\left(M^{n}, g\right)=\frac{n(n+1)}{2}$.

Evelideau space
Example Take $M^{n}=\mathbb{A}^{n}$ with affine coordinates $\left(x_{1}, \ldots, x^{n}\right)$ and $g_{0}=\sum_{i}\left(d x^{i}\right)^{2}$. Then $\frac{\nabla_{\partial 丷}^{\partial x^{i}}}{}=\frac{\partial}{\partial x^{i}}$ and $R=0$, so if $\xi=\sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}$ is Killing, then Riling's identity sap $\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \xi^{k}=0 \Rightarrow \xi^{k}={\underset{N}{J}}_{a^{k}}^{j} \sum_{l} \lambda_{l}^{k}{ }_{l}^{n} x^{n(n-1) / 2}$ where $\lambda_{l}^{k}=-\lambda_{k}^{l}$
$\therefore\left(\mathbb{A}^{n}, g_{0}\right)$ is maximally symmetric. The he algebra $\operatorname{KV}\left(\mathbb{A}^{n}, g_{0}\right)$ is the euclidean lie algebra.

Let (M, g) and $\xi \in \operatorname{KV}(M, g)$. Then $[\xi, \zeta] \in K V(M, g)$. What is the Killing transport data anociated with $[\xi, \zeta]$? $[\xi, \xi]=\nabla_{\xi} \xi-\nabla_{\xi} \xi=A_{\xi} \xi-A_{\xi} \xi$, and hence

$$
\begin{aligned}
A_{[\xi, \eta]}(x) & =-\nabla_{x}[\xi, \eta]=-\nabla_{x}\left(A_{\xi} \xi-A_{\xi} \xi\right) \\
& =-\left(\nabla_{x} A_{\xi}\right)(\xi)-A_{\xi}\left(\nabla_{x} \xi\right)+\left(\nabla_{x} A_{\xi}\right)(\xi)+A_{\xi}\left(\nabla_{x} \xi\right) \\
& =-R(x, \xi) \xi+A_{\xi} A_{\xi} x+R(x, \xi) \xi-A_{\xi} A_{\xi} x \\
& =R(\xi, \xi) x+\left[A_{\xi}, A_{\xi}\right] x
\end{aligned}
$$

$$
\therefore\left[\binom{\xi}{A_{\xi}},\binom{\xi}{A_{\xi}}\right]=\binom{A_{\xi} \xi-A_{\zeta} \xi}{\left[A_{\xi}, A_{\zeta}\right]+R(\xi, \eta)}
$$

\therefore For $\left(\mathbb{A}^{n}, g_{0}\right), R=0$, hence $K V\left(\mathbb{A}^{n}, g_{0}\right) \stackrel{\emptyset}{=} \mathbb{R}^{n} \oplus \underline{\text { so }}(n)$ and for all $A, B \in$ so $(n), x, y \in \mathbb{R}^{n}$,

$$
\left.\begin{array}{l}
{[A, B]=A \cdot B-B \cdot A} \\
{[A, x]=A x} \\
{[x, y]=0}
\end{array}\right\} \begin{aligned}
& \text { euclidean lie algebra } \\
& \mathbb{R}^{n} x \underline{s o}^{[n} \text { ir } \\
& 0 \rightarrow \mathbb{R}^{n} \rightarrow e_{n} \rightarrow \underline{s o(n)} \rightarrow 0
\end{aligned}
$$

Remarks (1) R is the obstunction to $\operatorname{KV}(M, g)$ to be a lie subalgebara of E_{n} un general, $K V(M, g)$ is a filtered lie algebra $\eta \oplus V, \eta<\underline{\text { so }}(n)$, $V \subset \mathbb{R}^{n}$ with f deg $\eta=0$, fdeg $V=-1$, and the associated graded lie algebra is a hie sobalgetora of E_{n}. ($\leftarrow K V$ of the flat model!)
(2) Maximally symmetric (M, g) have $\operatorname{dim} \operatorname{KV}(M, g)=\frac{n(n+1)}{2}$. What are about sub-maximully symmetric? Caus one have (M, g) with $\operatorname{dim} K V(M, g)=\frac{n(n+1)}{2}-1$? There is a gap! (Ask Boris\& Dennis!)
(3) We shall be interested in Lorentzian manifolds $\left(M^{n}, g\right)$ where g has signature $(n-1,1)$. The flat model in Minkewski spacetime $\left(\mathbb{A}^{n}, \eta\right)$ where relative to afire coordinates $\left(x^{0}, x^{1}, \ldots, x^{n-1}\right)$ the metic is given by $\eta=-c^{2}\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n-1}\right)^{2}$
$[$ speed of light (often $c \equiv 1$)
radius >0
Examples (1) The round spheres $S^{n}=q^{-1}(l) \subset \mathbb{R}^{n+1}, q: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ Any orthogonal linear transformation $x \mapsto A x, A \in O(n+1)$ is an isometry. The lie algebra of $O(n+1)$ is $\frac{n(n+1)}{2}$-dimensional $\Rightarrow S^{n}$ is maximally symmetric.
 Every Lorentz transformation $A: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ with $\eta(A x, A y)=\eta(x, y)$ is an isometry. The lie algebra so $(n, 1)$ of lorentz? straus formations has dim $=\frac{n(u+1)}{2}$ \& hence H^{n} is maximally symmetric.
(3) de Sitter spacetime $d S_{n} \subset \mathbb{M}^{n+1}$ as $\left\{x \in \mathbb{M}^{n+1} \mid \eta(x, x)=l^{2}\right\}$ maximally $\leftarrow K V\left(d S_{n}\right) \cong$ SO $(n, 1)$ as for H^{n}. The light cone $\eta(x, x)=0$ symmetric
is singular at $x=0$. The future and past lightcones are not singular, but they do not admit (invariant)
 metrics: they admit a camolliare sturctue.
(4) Anti de sitter spacetime AdS $\subset \mathbb{R}^{n+1},\left\{x \in \mathbb{R}^{n+1} \mid\left(x^{\prime}\right)^{2}+\cdots+\left(x^{n-1}\right)^{2}-\left(x^{n}\right)^{2}-\left(x^{n+1}\right)^{2}=-l^{2}\right\}$ $\underset{\text { symanmetic }}{\text { maximally }} \leftarrow K V\left(A d S_{n}\right) \cong$ so $(n-1,2)$ radius
of unrative

Remark Typically, we define (A)dS spacetimes as the universal covers of the above quadrics.
e.g., $A d S_{3} \cong S L(2, \mathbb{R})$ whereas the quadric is $\approx S L(2, \mathbb{R})$.

Theorem A simply-onnected, maximally symmetric riewannian (nesp. Lorentzian) manifold is isometric to euclidean space, $S(l)$ or $H(l)$ Chap., Minkowslie, $d S(l)$ or $A d S(l)$ spacetiones) $\exists!l>0$.

Proof If dion $K V\left(M^{n}, g\right)=\frac{n(n+1)}{2}$, then the Killing transport connection D on E is flat. We calculate its cunsture:

$$
R^{D}(x, y)\binom{\xi}{A}=D_{[x, y]}\binom{\xi}{A}-\left[D_{x}, D_{y}\right]\binom{\xi}{A}
$$

Exercise! $=\left(\begin{array}{l}0 \\ \end{array}\right) \leftarrow$ algebraic Biauchi and ∇ tresion-fue
But for maximal symmetry, we can choose ξ, A independently and arbctranily at any point. Therefore, $\nabla_{\xi} R=0$ for all $\xi \in T_{p} M$ and all $p \in M \Rightarrow(M, g)$ is locally symmetric and $[A, R]=0$ for all $A \in \underline{\text { So }}\left(T_{p} M\right)$ and all $p \in M \Rightarrow R_{p}: \Lambda^{2} T_{p} M \rightarrow$ SO$\left(T_{p} M\right)$ is so $\left(T_{P} M\right)$-equNariant. This means that
$R(X, Y) Z=\lambda(g(X, Z) Y-g(Y, Z) X) \quad \exists \lambda \in C^{\infty}(M)$ but $\nabla R=0 \Rightarrow \lambda$ is constant. So (M, g) has constant sectional urratue. One calculates the Riewann curratue of $\mathbb{E}^{n}, \mathbb{M}^{n}, S^{n}, H^{n}, d S_{n}, A d S_{n}$ and one sees they have constant sectional curvature with $\lambda \propto 1 / l^{2}$. So (M, g) is locally isometric to one of them \& one parses to their universal covers.

