José Figueroa - O'Farri (University of Eduburgh) (Monday 6 May 2019) Lecture 1 Maximally symmetric space (time)s

M: C[∞], connected, 2M=Ø. $C^{\infty}(M), \mathcal{H}(M), \Omega^{*}(M)$ functions, rector fields, forms

A metric of on M is a non-degenerate section of S²T*M. We do not deward that g be positive-definite. A pair (M,g) is a riewannian manifold. The Findamental Lenna of Riewannian geometry says that (M,g) admits a voique affine connection ∇ (the Levi-Civita connection) which is

. metric:
$$\nabla g = 0$$

. torsion-free: $\nabla_X Y - \nabla_Y X = [X,Y]$ $\forall X,Y \in X(M)$
Exercise Derive the Koszul formula:
 $2g(\nabla_X Y, Z) = X(g(Y,Z)) + Y(g(X,Z) - Zg(X,Y))$
 $-g(X, [Y,Z]) - g(Y, [Y,T]) + g(Z, [X,Y])$
Every mathewatical structure admits a notion of automorphic ves. In the
case of a rivoannian (M,g) these are the cometries: diffeomorphicsus. In the
case of a rivoannian (M,g) these are the cometries: diffeomorphics
 $Y: M \to M$ s.t. $Y^{*}g = g$. At least when g is positive definite or
loverbjian (signature (n-1,1), n=dim M), isometries define a finite-dimensional
lie group. Its lie algebra consists of the Killing vector fields: $S \in X(M)$

We can rewrite this equation in a more useful form.

Lemma

E C

$$\xi \in \mathcal{X}(M)$$
 is Killing iff $A_{\xi} : TM \rightarrow TM$, defined by $A_{\xi}(X) = -\nabla_X \xi$
is shew-symmetric: $g(A_{\xi}X, Y) = -g(X, A_{\xi}Y)$.

$$\begin{array}{l} P_{roof} & 0 = (\mathcal{X}_{\underline{s}} g)(X,Y) = \underline{s} (g(X,Y)) - g([\underline{s},X],Y) - g(X,[\underline{s},Y]) \\ & \nabla g = 0 \stackrel{\sim}{=} g(\nabla_{\underline{s}} X,Y) + g(X,\nabla_{\underline{s}} Y) - g([\underline{s},X],Y) - g(X,[\underline{s},Y]) \\ & = g(\nabla_{\underline{s}} X - [\underline{s},X],Y) + g(X,\nabla_{\underline{s}} Y - [\underline{s},Y]) \\ & \nabla_{io} \stackrel{\sim}{=} g(\nabla_{X} \underline{s},Y) + g(X,\nabla_{Y} \underline{s}) \end{array}$$

This still does not show that the lie algebra of Killing vectors is finite - dimensional. That will follow from Killing's identity. Recall, ξ Killing \Leftrightarrow Az \in SO (TM). Let's differentiate Az: $\nabla_{X}Az \in$ SO (TM).

$$(\nabla_{X}A_{\frac{1}{2}})(\Upsilon) = \nabla_{X} (A_{\frac{1}{2}}(\Upsilon)) - A_{\frac{1}{2}}(\nabla_{X}\Upsilon) = -\nabla_{X}\nabla_{Y}\xi + \nabla_{\nabla_{X}}\chi\xi$$

$$(\nabla_{X}A_{\frac{1}{2}})(\Upsilon) - (\nabla_{Y}A_{\frac{1}{2}})(\chi) = -\nabla_{X}\nabla_{Y}\xi + \nabla_{Y}\nabla_{X}\xi + \nabla_{\nabla_{X}}\chi\xi - \nabla_{\nabla_{X}}\chi\xi$$

$$\frac{\nabla}{\nabla} i_{0} = (\Upsilon - [\nabla_{X}, \nabla_{Y}]\xi + \nabla_{[X,Y]}\xi$$

$$= R(X,Y)\xi \quad (defendition v_{0}R)$$

$$R(X,Y) = -R(Y,X)\chi \quad (\partial_{y}debrace \ Dianchi identity) = -R(Y,\xi)\chi + R(X,\xi)\Upsilon \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi))$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$R(X,Y) = -R(Y,X)\chi \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi)) = -R(Y,\xi)\chi + R(X,\xi)\Upsilon \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi))$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$R(X,Y) = -R(Y,X)\chi \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi)) = -R(Y,\xi)\chi + R(X,\xi)\Upsilon \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi))$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$R(X,Y) = -R(Y,X)\chi \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi))$$

$$= -R(Y,\xi)\chi \quad (\nabla_{X}A_{\frac{1}{2}}, R(X,\xi)) = -S(X,Z,\Upsilon)$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$= E(X,Y,\xi) \quad (defendition v_{0}R)$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$= E(X,Y,\xi) \quad (defendition v_{0}R)$$

$$= E(X,Y)\xi \quad (defendition v_{0}R)$$

$$= E(X,Y,\xi) \quad (defendition v_{0}R)$$

$$= E(X,Y,$$

Let
$$E := TM \oplus \mathfrak{SO}(TM)$$
, a rank $-\frac{n(n+1)}{2}$ real VB order (M, g) . Define a connection D on E by
 $D_{X}\begin{pmatrix} \xi \\ A \end{pmatrix} = \begin{pmatrix} \nabla_{X}\xi + A(X) \\ \nabla_{X}A + R(\xi, X) \end{pmatrix} = \begin{pmatrix} \nabla_{X} & \mathfrak{I}_{X} \\ R(-,X) & \nabla_{X} \end{pmatrix} \begin{pmatrix} \xi \\ A \end{pmatrix}$

Proposition (Killing transport)

$$\xi \in \mathfrak{X}(M)$$
 is killing $\Leftrightarrow \begin{pmatrix} \xi \\ A_{\xi} \end{pmatrix} \in \Gamma(E)$ is D-parallel
dim $\{ \sigma \in \Gamma(E) \mid D\sigma = 0 \} \leq rank E$ since parallel sections are iniquely
determined by their value at any given point. (M convetted!)
Uprivat
 $kV(M,g) := \{\xi \in \mathfrak{X}(M)\} X_{\xi}g = 0\}$ is a real is algebra and dim $kV(M,g) \leq \frac{n(n+1)}{2}$.
 $we say that (M,g)$ is maximally symmetric if dim $kV(M,g) = \frac{n(n+1)}{2}$.
Example Take $M^{*} = A^{*}$ with affine coordinates $(x'_{1},..,x^{*})$ and $g = \Sigma (dxi)^{2}$.
Then $\nabla_{g} = \frac{g}{g_{\chi_{1}}}$ and $R = 0$, so if $\xi = \Sigma \xi^{1} \frac{g}{g_{\chi_{1}}}$ is kitting, then kitting's
identify samp $\frac{g}{g_{\chi_{1}}} \ge \frac{g}{g_{\chi_{1}}} \le \frac{g}{g} \le \frac{g}{g_{\chi_{1}}} \le \frac{g}{g} \le \frac{g}{g}$

Let (M,g) and $\xi \in KV(M,g)$. Then $[\xi,\xi] \in KV(M,g)$. What is the Killing transport date anociated with $[\xi,\xi]$? $[\xi,\xi] = \nabla_{\xi}\xi - \nabla_{\xi}\xi = A_{\xi}\xi - A_{\xi}\xi$, and hence

$$A_{[\xi,\eta]}(X) = -\nabla_{x} [\xi,\eta] = -\nabla_{x} (A_{\xi} \xi - A_{\xi} \xi)$$

= - $(\nabla_{x} A_{\xi})(\xi) - A_{\xi} (\nabla_{x} \xi) + (\nabla_{x} A_{\xi})(\xi) + A_{\xi} (\nabla_{x} \xi)$
= - R(x, \vec{x}) \x + A_{\vec{x}} A_{\yef{x}} X + R(x, \x) \x - A_{\yef{x}} A_{\vec{x}} X
= R(\vec{x}, \x) \x + [A_{\vec{x}}, A_{\yef{x}}] X

$$\begin{bmatrix} \begin{pmatrix} \xi \\ A_{\xi} \end{pmatrix}, \begin{pmatrix} 5 \\ A_{\xi} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} A_{\xi} \xi - A_{\xi} \xi \\ [A_{\xi}, A_{\xi}] + R(\xi, \eta) \end{pmatrix}$$

$$\therefore For (A^{\eta}, g_{o}), R = 0, hence KV(A^{\eta}, g_{o}) = R^{\eta} \oplus SO(n) \text{ and}$$

$$\text{for all } A, B \in SO(n1, x, y \in R^{\eta}, [A, B] = A \cdot B - B \cdot A \\ [A, x] = A x \\ [x, y] = 0 \end{cases}$$

$$euclidean he degeara$$

$$R^{\eta} \times SO(n) \xrightarrow{} C$$

Remarks (1) R is the obstruction to KV(M,g) to be a lie subalgebra of Rn
In general, KV(M,g) is a filtered lie algebra
$$h \oplus V$$
, $h < \underline{so}(n)$,
 $V \subset \mathbb{R}^n$ with fdeg $h = 0$, fdeg $V = -1$, and the associated graded
lie algebra is a lie subalgebra of P_n . (\leftarrow KV of the flat model!)

2 Maximally symmetric
$$(M,g)$$
 have dim $KV(M,g) = \frac{n(n+1)}{2}$.
What are about sub-maximally symmetric? Can one have (M,g) with dim $KV(M,g) = \frac{n(n+1)}{2} - 1$? There is a gap! (Ask Boris & Dennis!)

(3) We shall be interested in locartian manifolds (M", g) where g has signature (n-1,1). The flat model in Minkewski spacetime (Aⁿ, 7) where relative to affine coordinates (x⁰, x',..., xⁿ⁻¹) the metric is given by 7 = -c²(dx⁰)² + (dx¹)² + ... + (dxⁿ⁻¹)²
L speed of light (often c=1) radius >0

Examples (1) The roord gpheres 5ⁿ = q⁻¹(l) ⊂ Rⁿ⁺¹, q: Rⁿ⁺¹ → R
Any orthogonal linear transformation x → II x II = (∑(xi)²
x → X, A ∈ O(n+1) is an isometry. The lie algebra of O(n+1)
is
$$\frac{n(n+1)}{2}$$
 - dimensional ⇒ 5ⁿ is maximally symmetric.