José Figueroa-O'Farri (University of Ediuburgh)
Lecture 2 Kinewatical lie algebras (Wednesday 8 Nay 2019)
Last time, we met the maximally symmetric viewannian and brankstan
mantfolds:
$$(M^{n+g}_{,g})$$
 with dim $KV(M^{n+g}_{,g}) = \frac{(n+1)(n+2)}{2}$.
 $f \in E E(M) | d = g = 0$
They have constant sectional curvature:
 $R(X,Y)Z = \lambda (g(Y,Z)X - g(X,Z)Y) = \lambda \in \mathbb{R}$
 $\frac{+ \circ -}{2}$
 $recombine L dS_{n+1} M^{n+1} AdS_{n+1}$
 $S^{n+1} \subset \mathbb{R}^{n+2}$
 $so(n+2)$
 $M^{n+1} = \frac{1}{2}$
 $dS_{n+f} M^{n+2}$
 $dS_{n+f} M^{n+2}$
 $dS_{n+f} M^{n+2}$
 dS_{n+1} and $S_{n+1} = -L^2$
 dS_{n+1} is $o(1, n+1)$
 $So(2, n)$
The lie algebras of isometries of S^{n+1} , H^{n+1} , dS_{n+1} are (recu) simple.

For the flat examples E^{nt1} and M^{nt1}, the lie algebra of isometries is not semisimple : the translations span an ideal. Indeed,

 $\mathbb{E}^{n+1}: \mathcal{E} = \underline{so}(n+1) \ltimes \mathbb{R}^{n+1} \qquad \mathbb{I} \mathbb{M}^{n+1}: \mathcal{P} = \underline{so}(1, \kappa) \ltimes \mathbb{R}^{n+1}$

There is an obvious genetic limit (zero unature limit) relating S^{nil} H^{MII} to IEⁿⁿⁱ and, similarly, AdS_{N+1} or d S_{N+1} to IM^{N+1}. Such geometric limits induce contractions of the lie algebras of isometries.

A (real, f.d.) lie algebra consists of a vector space g and a brachet $[-, -] : \Lambda^2 g \rightarrow g$ obeying the Jacobi identity. If $\Psi \in GL(g)$, then $[X, Y]_{\varphi} := \Psi [\Psi^{-1} X, \Psi^{-1} Y]$

defines another Lie algebra structure on 9 which is isomorphic

to
$$(q, [,])$$
. Let $O(q, [,]) = \{ (q, [,]_{\varphi}) \mid \varphi \in GL(q) \}$. A the
algebra $(q, [,]_{\varphi})$ is said to be a contraction of $(q, [,])$ if
 $(q, [,]_{\varphi}) \not\cong (q, [,]_{\varphi})$ but $(q, [,]_{\varphi}) \in \overline{O(q, [,]_{\varphi})}$ (g: the closure of the
abit.) A more concrete way to describe contractions is this.
Let $\Psi_{\varepsilon} \in GL(G)$ for $\varepsilon \in (0, 1]$ with $\Psi_{1} = id$. Then the
limit lim Ψ_{ε} may not exist, but $\forall [,]_{\varphi} = \lim_{\varepsilon \to 0} [-,]_{\Psi_{\varepsilon}}$ does,
then by continuity, $(q, [-,]_{\varphi})$ is a lie algebra.
Example (Zero-currotule limit)
The $L \to \infty$ limits of $H^{n+1}(L)$, $S^{n+1}(L)$, $dS_{n+1}(L)$, $AdS_{n+1}(L)$ give
either E^{n+1} (in the rewarian case) or M^{n+1} (in the localities (acces),
 $H^{n+1} = \underbrace{so}_{(1, n+1)} \Psi_{\chi_{\varepsilon}}(J_{\varepsilon}b) = J_{\varepsilon}b = \frac{1}{e^{\varepsilon}} J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+1}, J_{q,\omega}]_{\varepsilon}^{-\varepsilon} = \Psi_{\chi_{\varepsilon}}[\Psi_{\chi_{\varepsilon}}^{\varepsilon}J_{0\alpha}, \Psi_{\chi_{\varepsilon}}^{\varepsilon}J_{0b}] = \frac{1}{e^{\varepsilon}} J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+2})} \Psi_{\chi_{\varepsilon}}(J_{\varepsilon}b) = J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+2})} \Psi_{\chi_{\varepsilon}}(J_{\varepsilon}b) = J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+2}, J_{q,\omega}]_{\varepsilon}^{-\varepsilon} = -\frac{1}{e^{\varepsilon}} J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+2}, J_{q,\omega}]_{\varepsilon}^{-\varepsilon} = -\frac{1}{e^{\varepsilon}} J_{\varepsilon}b \to 0$
 $\underbrace{S^{n+1}}_{[J_{q,n+1}, J_{q,\omega}]_{\varepsilon}^{-\varepsilon} = -\frac{1}{e^{\varepsilon}} J_{\varepsilon}b \to 0$

Example (Zero-aurotune limit)
The
$$L \rightarrow \infty$$
 limits of $H^{n+1}(L)$, $S^{n+1}(L)$, $dS_{n+1}(L)$, $AdS_{n+1}(L)$ give
either F^{n+1} (in the riemannian cases) or M^{n+1} (in the lorentzian cases).

erther
$$IE^{n+1}$$
 (in the remannion case) or M^{n+1} (in the brandstan (area),

$$\frac{H^{n+1}}{I} \stackrel{\text{so}(1,n+1)}{=} \frac{\varphi_{12}}{y_{12}} (J_{ab}) = J_{ab} \qquad \varphi_{12} (J_{ba}) = L J_{0a}$$

$$[J_{0a}, J_{0b}]_{\varphi} = \varphi_{12} \left[\frac{\varphi_{12}}{y_{2}} J_{0a}, \frac{\varphi_{12}}{y_{2}} J_{0b} \right] = \frac{1}{2^{2}} J_{ab} \rightarrow 0$$

$$\frac{S^{n+1}}{I} \stackrel{\text{so}(n+2)}{=} \frac{\varphi_{12}}{y_{12}} (J_{ab}) = J_{ab} \quad a, b \leq n+1 \qquad \varphi_{12} (J_{a,n+2}) = L J_{a,n+2}$$

$$[J_{a,n+1}, J_{b,n+1}]_{\varphi} = -\frac{1}{2^{2}} J_{ab} \rightarrow 0$$

$$\frac{dS_{n+1}}{I} \stackrel{\text{so}(1,n+1)}{=} \frac{\varphi_{12}}{y_{2}} (J_{\mu\nu}) = J_{\mu\nu}, \quad 0 \leq \mu, \nu \leq n \qquad \varphi_{12} (J_{\mu,n+1}) = L J_{\mu,n+1}$$

$$\frac{S9(1,n)}{X} \stackrel{\text{so}(1,n+1)}{=} \frac{\varphi_{12}}{y_{2}} (J_{\mu\nu}) = J_{\mu\nu} \quad 0 \leq \mu, \nu \leq n \qquad \varphi_{12} (J_{\mu,n+1}) = L J_{\mu,n+1}$$

$$\frac{S9(1,n)}{X} \stackrel{\text{so}(1,n+1)}{=} \frac{\varphi_{12}}{y_{2}} (J_{\mu\nu}) = J_{\mu\nu} \quad 0 \leq \mu, \nu \leq n \qquad \varphi_{12} (J_{\mu,n+1}) = L J_{\mu,n+1}$$

$$\frac{dS_{n+1}}{dS_{n+1}} = \frac{9}{2} (J_{\mu\nu})^{2} = J_{\mu\nu}, \quad 0 \leq \mu,\nu \leq n \quad \forall \ell (J_{\mu,n+1})^{2} = L J_{\mu,n+1}$$

$$[J_{\mu,n+1}, J_{\nu,n+1}]_{\varphi} = -\frac{1}{\ell^{2}} J_{\mu\nu} \rightarrow 0$$

$$SO(1,n)$$

$$X$$

$$\frac{AdS_{n+1}}{[J_{\mu,n+1}, J_{\nu,n+1}]_{\ell}} \stackrel{\leq}{=} \frac{1}{\ell^2} J_{\mu\nu} \rightarrow 0$$

Définition A kinewatical lie algebra (with n-dimensional space isotropy) is a real lie algebra 19 of dimension (1+1)(1+2) satisfying the following: (1) ∃ <u>so</u>(n) ≃r<k ~ n-dimil vector map of so(n) (2) Under adn, kg = r ⊕ 2 V ⊕ S ← 1-dim L scalar nep of so(m)

We abb	normally reviate H	. write H	le basis of fical lie	f a KLA brachets	h as {Ja as: <u>50</u> (11)	b, Ba, Pa, H 2V S		<i>ν</i> 1	are
	[J,J] = J		[J,B]=B $[J,P]=P$			[J,H]=0			
Different KLAs are characterized by the additional he brachets									
	(M,g)	[B,B]	[B,P]	[P,P]	[н,в]	[H,P]			
	5	-J	н	- J	Р	-B			
	н	-J	Н	J	Р	Ø			
	E	-J	н	0	P	0			
	45	Г	Н	- 2	- P	-B			
	Ads	ত	н	ъ	- P	B			
	M	J	Н	0	- P	0			

Different limits to the zero-curvative limit an obtained by taking the speed of light c to either 0 or ∞ . The $c \rightarrow 0$ limit is called the carrollian (or ultra-relativistic) limit. The lightcone $c^{et^2} = 11241^2$ collapses to the time axis in the $c \rightarrow 0$ limit. The name "carrollian" was coined by Lévy-Leblord in reference of Lewis Carroll's 'Alice in Wondeland'. (d. Red Queen) The limit $c \rightarrow \infty$ is called the galilean (or non-relativistic) limit : the light core collapses to the plane t = 0.

At the level of the KLA, the carrollian limit is obtained by $P_{c}(J) = J \quad P_{c}(B) = \frac{1}{c}B \quad P_{c}(P) = P \quad P_{c}(H) = \frac{1}{c}H \quad (and \ c \to 0)$ whereas the galilean limit is obtained by $P_{\chi_{c}}(J) = J \quad P_{\chi_{c}}(B) = c B \quad P_{\frac{1}{c}}(P) = c P \quad P_{\frac{1}{c}}(H) = H \quad (and \ \frac{1}{c} \to 0)$. Under the carrollian limit:

(M, g)	[B,B]	[B,P]	[P,P]	[H,B]	[H,P]	BAP	
5	-J c2	н	- J	Pc ²	-B	21 62	
Н	-Jc2	Н	J	Pce	B	<u>≈</u> 12	
Æ	-Jc ^e	Н	0	Pct	0	carroll	
45	J C2	Н	- 2	-Pc2	-B	≅ €	
Ads	J Cr	н	5	-Pc2	З	≅ 1 ²	
IM	J ^{c2}	Н	0	-Pc ²	0	Caroll	

Under the galilean limit

(M, 3)	[B,B]	[B,P]	[P,P]	[H,B]	[H,P]	
5	-J t2	H te	- J 2	Р	-8] Newton - Hooke
н	-J ¹ _{c2}	Hà	J 22	Р	₿]
E	-14	Hte	0 =	P	0	Galilean
45	J 7 7	Htz	- J [2	- P	-B	(Newton-Hooke
Ads	J 22	Hice	J (-	- P	B]
M	J	Hite	0 2	- P	0	Galitean

X=0

are ≌ to N-H KLAS

270

In general, there are several other isomosphism danes of KLAs:

 $[H,B] = \gamma B \qquad [H,P] = P \qquad \qquad \gamma \in (-1,1] \qquad \gamma = -1 \\ \boldsymbol{\ell}$

and

 $[H,B] = \chi B + P \qquad [H,P] = \chi P - B$

The classifications of KLAs follow using deformation theory of the static KLA where all non-hinematical he brachets vanish.