Jose Figueroa-O'Forrin, University of Edinburgh)
Lecture 2 Kinewatical lie algebras (Wednesday 8 May 2019)
Last time, we met the maximally symmetric iewaunian and Lorentzian manifolds: $\left(M^{n+1}, g\right)$ with $\operatorname{dim} K V\left(M^{n+1}, g\right)=\frac{(n+1)(n+2)}{2}$.

$$
=\left\{\xi \in x(M) \mid \mathscr{L}_{\xi} g=0\right\}
$$

They have constant sectional curvature:

$$
\begin{array}{r}
H^{n+1} \subset \mathbb{M}^{n+2} \\
d S_{n+1}<\mathbb{M}^{n+2} \\
\text { so }(1, n+1)
\end{array}
$$

The lie algebras of isometries of S^{n+1}, H^{n+1}, $d S_{n+1}$ and $A d S_{n+1}$ are (semi) simple.

For the that exauples \mathbb{E}^{n+1} and \mathbb{M}^{n+1}, the he algebra of isometries is not semisimple: the translations span an ideal. Indeed,

$$
\mathbb{E}^{n+1}: 民=\underline{s o}(n+1) \times \mathbb{R}^{n+1} \quad \mathbb{M}^{n+1}: p=\underline{s 0}(1, n) \times \mathbb{R}^{n+1}
$$

There is an obvious gaacetric limit (zero curvature limit) relating $S_{\text {or }}^{n+1} H^{n+1}$ to \mathbb{E}^{n+1} and, similarly, $A d S_{n+1}$ or $d S_{n+1}$ to \mathbb{M}^{n+1}. Sock geometric limits induce contractions of the he algebras of isometries.

A (real, f.d.) lie algebra consists of a vector space 9 and a bracket $[-,-]: \lambda^{2} g \rightarrow 9$ obeying the Jacobi identity. If $\varphi \in G L(g)$, then

$$
[X, Y]_{\varphi}:=\varphi\left[\varphi^{-1} X, \varphi^{-1} Y\right]
$$

defines another Lie algebra structure on 9 which is isomorphic
to $(g,[]$,$) . Let O(g,[-,-])=\{(g,[-,-] \varphi)\} \varphi \in G L(q]\}$. A tie algebra $\left(q,[,]_{0}\right)$ is said to be a contraction of $(q,[]$,$) if$ $\left(9,[,]_{0}\right) \neq(9,[]$,$) but \left(9,[-,-]_{0}\right) \in \overline{O(G,[-,-])}$ (!: the closure of the obit.) A more concrete way to describe contractions is this. Let $\varphi_{\varepsilon} \in G L(G)$ for $\varepsilon \in(0,1]$ with $\varphi_{1}=i d$. Then the limit $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}$ may not exist, but if $[-,-]_{0}:=\lim _{\varepsilon \rightarrow 0}[-,-]_{\varphi_{\varepsilon}}$ does, then by continuity, $\left(9,[-,-]_{0}\right)$ is a lie algebra.

Example (Zero-currature limit)
The $l \rightarrow \infty$ limits of $H^{n+1}(l), S^{n+1}(l), d S_{n+1}(l), A d S_{n+1}(l)$ give either \mathbb{E}^{n+1} (in the riewanmian cases) or \mathbb{M}^{n+1} (i rte corengiancares).
$\underline{H^{n+1}} \quad$ so $(1, n+1) \quad \varphi_{1 / l}\left(J_{a b}\right)=J_{a b} \quad \varphi_{1 / \ell}\left(J_{o a}\right)=l J_{o a}$

$$
\left[J_{o a}, J_{o b}\right]_{\varphi}=\varphi_{y l}\left[\varphi_{1 / l}^{-1} J_{o a}, \varphi_{y l}^{-1} J_{0 b}\right]=\frac{1}{l^{2}} J_{a b} \rightarrow 0
$$

$\underline{S^{n+1}} \quad$ so $(n+2) \quad \varphi_{y_{l}}\left(J_{a b}\right)=J_{a b} \quad a, b \leqslant n+1 \quad \varphi_{1 / l}\left(J_{a, n+2}\right)=l J_{a, n+2}$
$\left[J_{a, n+1}, J_{b, n+1}\right]_{\varphi}=-\frac{1}{e^{2}} J_{a b} \rightarrow 0$
$\left.d S_{n+1} \quad \underline{s o}_{0}(1, n+1) \quad \varphi_{y l}\left(J_{\mu \nu}\right)=J_{\mu \nu}, \quad 0 \leqslant \mu, v \leqslant n \quad \quad \varphi_{y l}\left(J_{\mu, n+1}\right)=\ell J_{\mu, n+1}\right)$

$$
\left[J_{\mu, n+1}, J_{r, n+1}\right]_{\varphi}=-\frac{1}{l^{2}} J_{\mu \nu} \rightarrow 0
$$

$A_{d S_{n+1}}$ so $(2, n)$

$$
\left.\begin{array}{l}
\varphi_{1 / l}\left(J_{\mu \nu}\right)=J_{\mu \nu} \quad 0 \leqslant \mu, v \leqslant n \quad \varphi_{y l}\left(J_{\mu, n+1}\right)=l J_{\mu, n+1} \\
{\left[J_{\mu, n+1}, J_{v, n+1}\right]_{\varphi}=+\frac{1}{l^{2}} J_{\mu \nu} \rightarrow 0}
\end{array}\right\}
$$

All these lie algebras $\left(\underline{s o}(n+2)\right.$, so $(1, n+1)$, so $\left.(2, n), e_{n+1}, p_{n+1}\right)$ are examples of kinewatical lie algebras (with space isotopy).

Definition A kinewatical he algebra (with n-dimensional space isotropy) is a neal lie algelora i_{9} of dimension $\frac{(n+1)(n+2)}{2}$ satisfying the following:
(1) $\exists \underline{s o}(n) \cong r<k$
n-dim'l vector map of $s o(n)$
(2) Under $a d_{r}, k \cong r \oplus 2 V \oplus S \leftarrow 1$-dimull scalar rep ob so (n)

We normally write the basis of a KLA k as $\langle J_{a}, \underbrace{B_{a}, P_{a}}, \underbrace{H}\rangle$ but we abbreviate the kinematical he brackets as: $\operatorname{sol}(n)_{\mathcal{N}}^{\mathrm{V}} \mathrm{S}$

$$
[J, J]=J \quad[J, B]=B \quad[J, P]=P \quad[J, H]=0
$$

Different $K L A s$ are characterised by the additional lie brackets:

(M, g)	$[B, B]$	$[B, P]$	$[P, P]$	$[H, B]$	$[H, P]$
S	$-J$	H	$-J$	P	$-B$
H	$-J$	H	J	P	B
\mathbb{E}	$-J$	H	0	P	0
$d S$	J	H	$-J$	$-P$	$-B$
$A d S$	J	H	J	$-P$	B
\mathbb{M}	J	H	O	$-P$	O

Different limits to the zero-urrature limit are obtained by taking the speed of light c to either 0 or ∞. The $c \rightarrow 0$ limit is called the carrolliau (or ultra-nelativistic) limit. The lightcone $c^{2} t^{2}=\|x\|^{2}$ " collapses to the time axis in the $c \rightarrow 0$ limit. The nave "carrolliau" was coined, by Levy-Leblond in nefenence of Lewis Carroll's 'Alice in Wonderland'. (of. Red Queen) The limit $c \rightarrow \infty$ is called the galilean (or won-nelativistic) limit: the light cone collapses to the plane $t=0$.

At the level of the KLA, the canollian limit is obtained by

$$
\varphi_{c}(J)=J \quad \varphi_{c}(B)=\frac{1}{c} B \quad \varphi_{c}(P)=P \quad \varphi_{c}(H)=\frac{1}{c} H \quad(\text { and } c \rightarrow 0)
$$

whereas the galilean limit is obtained by

$$
\varphi_{1 / c}(J)=J \quad \varphi_{1 / c}(B)=c B \quad \varphi_{\frac{1}{c}}(P)=c P \quad \varphi_{\frac{1}{c}}(H)=H \quad\left(\text { and } \frac{1}{c} \rightarrow 0\right) .
$$

Under the carrollian limit:

(M, g)	$[B, B]$	$[B, P]$	$[P, P]$	$[H, B]$	$[H, P]$	$B \leftrightarrow P$
S	$-J c^{2}$	H	$-J$	$P c^{2}$	$-B$	\cong
H	$-J c^{2}$	H	J	$P c^{2}$	B	$\cong P$
\mathbb{E}	$-J c^{2}$	H	0	$P c^{2}$	0	c carroll
$d S$	$J c^{2}$	H	$-J$	$-P c^{2}$	$-B$	$\cong e$
$A d S$	$J c^{2}$	H	J	$-P c^{2}$	B	$\cong P$
\mathbb{M}	$J c^{2}$	H	0	$-P c^{2}$	0	Carroll

Under the galilean limit
$\left.\begin{array}{|c|c|c|c|c|c|}(M, g) & {[B, B]} & {[B, P]} & {[P, P]} & {[H, B]} & {[H, P]} \\ \hline S & -J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & -J \frac{1}{c^{2}} & P & -B \\ H & -J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & J \frac{1}{c^{2}} & P & B \\ \mathbb{E} & -J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & 0 \frac{1}{c^{2}} & P & 0 \\ \hline d S & J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & -J \frac{1}{c^{2}} & -P & -B \\ \text { AdS } & J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & J \frac{1}{c^{2}} & -P & B \\ \mathbb{M} & J \frac{1}{c^{2}} & H \frac{1}{c^{2}} & O \frac{1}{c^{2}} & -P & O\end{array}\right\}$ Ealiten-Honene

In general, there are several other isomorphism clanes of KLAs:

$$
\begin{array}{llll}
{[H, B]=\gamma B} & {[H, P]=P} & \gamma \in(-1,1] & \gamma=-1 \\
& & & \\
{[H, B]=x B+P} & {[H, P]=x P-B} & x<0 & \\
& & & \text { are } \cong \\
& & & \\
& & N-H \\
& & &
\end{array}
$$

and

For $n=3$, the x product $V \times V \rightarrow V$ gives more $K L A_{s}$
For $n=2$, the sypuplectic sturcture $V \times V \rightarrow S$ does too.
For $n=1$, any Jd LA is binematical (Brauchi 1898) For $n=0,7!$ 1-dim'l LA.

The clanifications of KLAs follow using deformation theory ob the static KLA whereall non-hinematical lie brackets vanish.

