Jose Figueroa-O'Farrill (University of Edinburgh)
Lecture 3 Homogeneous kinematical space(time)s (Monday 13 May 2019)
In Lecture 1, we clarified the (simply-connected) maximally symmetric newannian and coreubian maufolds and identified their lie algebras of Killing vector. We saw in Lecture 2 how the zero-currature limits $S \rightarrow \mathbb{E}, H \rightarrow \mathbb{E}, d S \rightarrow \mathbb{M}$ and $A d S \rightarrow \mathbb{M}$ induced a contraction of the tie algelara of isometries. Similarly, the carrollian $(c \rightarrow 0)$ and galilean $(1 / c \rightarrow 0)$ limits induced contractions of the hie algelara of isometries. We reworked that all these lie algebras ane kinewatical and we described the result of the clarification of KLAs in generic dimension. For $n=3$ (manifold dimension $=n+1$) and $n=2$ there are other KLAs and me did not list them.
A KLA with n-dimensional space isotropy has a basis $\left(J_{a b}=-J_{b a}, B_{a}, P_{a}, H\right)$ where $J_{a b}$ span a he sobalgebra \cong so (n), B_{a}, P_{a} are vectors of $s 0(n)$ and H is a scalar. We say that Jab are (infinitesimal) rotations, B_{a} are boosts, P_{a} are spatial translations and H is time translation; but these identifications can orly be made precise once we have a geometric model on which the KLA acts transitively.

Our aim in this lecture is to present the clarification of (simply-connected) homogeneous space(time)s of kinewatical tie group.

Def. A kinewatical lie group is a lie group whose he algebra is kinewatical. A closed subgroup H of a kinewatical lie group IT is admissible if its lie algebra η is a subalgebra of k consisting of rotations and boosts. That is, $h>r \cong$ so (n) and $\eta=s 0(n) \oplus V$ under ad. We cav always choose a basis for h consisting of $\left(J_{a b}, B_{a}\right)$.

Def. A homogeneous kinewatical spacetime) is a connected manifold admitting a transitive action of a kinematical he group with admissible stabelisers. In other words, $M \cong J K / \mathcal{H}$ where $J K$ is a kinewatical he group and $H 6$ is admissible. We may describe M (up to coverings) by the pair (k, η) of lie algebras: $k=\operatorname{Lie}(\mathcal{K})$ and $\eta=\operatorname{Lie}(B)$. choosing a basis (J, B) for h, the pair (l, h) is uniquely determined by the brackets of k in that basis and, in particular, by the brackets which do not involve J.

Examples								$[H, B]$	$[H, P]$	$[B, B]$	$[B, P]$	$[P, P]$
\mathbb{E}	P	0	$-J$	H	0							
S	P	$-B$	$-J$	H	$-J$							
H	P	B	$-J$	H	J							

Scholium (ξ, η) is reductive if $k_{9}=\eta \oplus T m$ and $[\eta, m] c m$ and it is symmetric if, in addition, $[m, T \pi] c \eta$. In the above table, $h=\operatorname{Span}(J, B), 7 \pi=\operatorname{Span}(H, P)$ and all spaces are symmetric.
Fact These are the simply-wounected symmetric homogeneous binermatical space (time)s.
Symmetric spaces have a canonical torsion-fee invariant affine connection: it is flat for $\mathbb{E}, \mathbb{M}, C, G$.

Remark The description of homogeneous spaces via pairs (b, h) is analogous to describing, a he group na its he algebra. Every (fd. neal) he algebra is isomorphic to the lie algebra of a vrique (up to iso,) simply-conuected he group. Equivalently, he algebras (up to i so,) clanify convected lie groups (up to covering). For pains (k, b) existence of a homogeneous space is not guaranteed and uriquevers is also in question.
Non-exauple $\quad k=$ su(3),$\eta=\left\{\left.\left(\begin{array}{c}i \\ i \alpha \\ -i(1+\alpha)\end{array}\right) \right\rvert\, \alpha \in \mathbb{R} \backslash \mathbb{Q}\right\}$
homogeureos space described by $(h, 5)$!

$$
K=S U(3) \text { or PSU(3). The subgroup of sU(3) gen'd by } h
$$

is contained in a maximal tours and is an irrational slope singroup and hence not closed in SU(3). (Neither is it dosed in PSU(3).)
(The irrational slope subgroup of the tomes in not closed in the town, but is closediut the urineral coirs.)
Theorem There is a bijection between (iso clanes) of simply--connected homo geueovs spaces and (iso clanes) of effective, geometrically realisable pairs (k, η). ($\left(k_{1}, h_{1}\right) \cong\left(k_{2}, h_{2}\right)$ i \exists iso $\varphi: h_{1} \cong \eta_{2}$ sending h_{1} to η_{2}.)
(k, η) is effective if η does not contain a nonturvial ideal of k (k, h) is geometrically realisable if there exists a lie group K with lie algebra (iso to) 19 where the lie subgroup H generated by η is closed. Then $M:=J K / H$ is a geometric realisation of (k, b).
Clarification
One cauclanify simply-connected homogeneous kirewatical space(tume)s as follows:
0. Clanify kinewatical he algebras up to isomorphism.

1. For each KLA R, determine the possible admissible sobalgebras h up to the action of $A \circ t(R)$.
2. We discard the nesting pain (k, h) which are not effective. Because of the structure of k and h the only nonturial ideal of k contained in η would be the ideal b generated by the boosts and then $h / b \cong r \cong s o(n)$ and k / b world be an aristotelian he algebra.

Scholium An aristotelian lie algebra or is an $\left(\frac{n(n+1)}{2}+1\right)$ - dim' l neal lie algebra such that
$[H, P]=\alpha P$ and
(i) $\underline{s o}(n) \cong r<0 \tau \quad J \quad \operatorname{det} \quad \mathrm{r}$ mined by $[P, P]=\beta]$
and
There are generically 4 aristotelian LAs op to iso:

$$
(\alpha, \beta) \in\{(0,0),(1,0),(0,1),(0,-1)\} .
$$

For $n=2$ there is an additional aristotelian LA: Heisenberg!'
3. We show that the newaining (h, h) are geoonetrically realisable. This is the most painful part of the process. Here is part of the end result:

We recognise $M, A d S, d S$ as the maximally symmetric Lorentzian spacetimes. Their riewannian cousins are not slow.

We have also their camollian limits, together with the (suture) Uightcone LC.

And we also have their galilean limits which are points in two ore-paroueter families of galuleare spacetimes.

Question What invariant structures do the carvoliau and galilean sparetimes possess?

Let $M=K / H$ be a homogeneous space with Ho convected and $J K$ simply-wurected. Let (k, h) denote the comesponding pair aud let $0 \in M$ be a point with stabiliser \mathcal{H}.

He (and heure η) a ct on $T_{0} M$. The adjoint action of h in k has η as a sobmodule and hence k / η is an η-module and $T_{0} M \cong k / \eta$ as η-modules. If (ξ, η) is reductive, then $\xi=\eta \oplus \pi \quad \exists \eta$-module $\pi \pi$, and $T_{0} M \cong \pi$. The action of η on $J_{0} M$ is called the linear isotropy neprescutation.
Theorem There is a bijection between invariants of the linear isotron nepneseutation and J^{\prime}-invariant tensor fields on M,
For exauple, $\xi_{0} \in(\xi / \eta)^{b}$ is the value at o of a \mathcal{K}-invariant vector field $\xi \in \notin(M)$. similarly, $z_{0} \in\left((k / \eta)^{*}\right)^{b}$ in the value at $0 \in M$ of a K-invariant one-fonm $r \in \Omega^{1}(M)$. Et cetera.

To determine the invariant structure on the homogeneous kinewatical spacettime)s, it is enough to study the linear isotropy representation. Remark All the homogeneous kinematical space(time)s are reductive with the exception of the carrollian future lightione LC
Resolts The lorentzian HESs adwit an h-invariaut $\eta_{0} \in S^{2}\left(\frac{k}{h} / \zeta\right)^{*}$ which is lorentzian.
Similarly, the \dot{N} ewannian $H K S_{s}$ admit an h-invariant $\eta_{0} \in S^{2}(\xi / \eta)^{*}$ which is positive-definite.

For the carroilion HKSs, there is an invariant $k \in \in k / h$ and an invariant corank-1 $\eta_{0} \in S^{2}(k / \eta)^{*}$ such that $\eta_{0}\left(k_{0},-\right)=0$.
For the galilean HESs, there is an invariant $\tau_{0} \in(h / h)^{*}$ and an invariant corank-1 $h_{0} \in S^{2}(k / \eta)$ st. $h_{0}\left(\tau_{0},-\right)=0$.

A null hypersuface in a Corention manifold is carrollian. Dually, if a will KThing vector acts Rely on a lorentzian manifold, the quotient is gablean.

