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Definitions

The conformal class of a pseudo-Riem metric g on Mn+1 is uniquely
determined by its field of null cones

PTM ⊃ C2n = {[v] ∈ PTM | g(v, v) = 0}

Assigning a null cone at each tangent space is the main ingredient for
understanding causal properties of M.
Roughly speaking, if Cx not quadratic, then C is a field of proj
hypersurfaces locally described by

PTM ⊃ C2n = {[v] ∈ TM | G(v) = 0}.

If the projective 2nd fund form of Cx ⊂ PTxM, ∀x ∈ M is
non-degenerate everywhere one obtains a causal structure.
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Definitions

The relation of causal str to conformal pseudo-Riem str is an analogue
of what Finsler str are to Riem str:

Pseudo-Riemannian metric on Mn+1 is uniquely determined by its unit
sphere bundle

TM ⊃ Σ2n+1 = {v ∈ TM | g(v, v) = 1}

Roughly speaking, if Σx not quadratic one has a (local) Finsler metric

TM ⊃ Σ2n+1 = {v ∈ TM | F(v) = 1}

assuming radial transversality and non-deg of the 2nd fund form of
Σx ⊂ TxM, ∀x ∈ M.
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Definitions
Following Bryant’s notion of generalized Finsler structures:

Definition A causal structure on Mn+1 is denoted by (Mn+1, C2n)
together with an immersion ι : C → PTM where C is a connected,
smooth manifold of dimension 2n and ι is an immersions satisfying

The map π ◦ ι : C → M is a submersion with connected fibers.
In the fibration π ◦ ι : C → M, the fibers Cn−1

x := (π ◦ ι)−1(x) are
mapped to immersed connected tangentially non-degenerate
projective hypersurfaces via ιx : Cx → PTxM, i.e., they have
non-deg projective 2nd fund form everywhere.

(M, C)
locally∼= (M̃, C̃)

at x ∈ M, x̃ ∈ M̃
if ∃ diffeo ϕ : U→ Ũ

where x ∈ U ⊂ M, x̃ ∈ Ũ ⊂ M̃

C|U
ϕ∗ - C̃|Ũ

U

µ

? ϕ - Ũ

µ̃

?

x̃ = ϕ(x)
ϕ∗(Cy) = C̃ϕ(y)
∀y ∈ U
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where x ∈ U ⊂ M, x̃ ∈ Ũ ⊂ M̃
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Remarks

C2n is called the(projective) null cone bundle of the causal
structure. We do not assume that its fibers are convex or closed in
PTxM.

Note that C can be open and be immersed as an open hypersurface
in PTM.

For the local aspects of causal geometry ι can be assumed to be an
embedding in a sufficiently small neighborhood of C.
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Definitions and examples
Locally a causal structure can be expressed as

C ⊃ U = {(x, [y]) ∈ PTM|L(x; y) = 0}.

L : TM→ R or C satisfies


L(x;λy) = λrL(x; y) for some r[

∂2L
∂yi∂yj

]
has max rank over L = 0.

L(x; y), S(x; y)L(x; y) −→ same causal str (S nowhere vanishing.)

Example : L(x; y) = (y1)2 + (y2)2 + (y3)2 − (y4)2 : flat 4D causal
structure.

Example : L(x; y) = 1
3(y

2)3 + y0y3y3 − y1y2y3:
Null cones are projectively equivalent to Cayley’s cubic surface.
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Definitions and examples

Definition : (M, C) is called locally V-isotrivial if Cx ∼= V ⊂ Pn, ∀x ∈ M

(M, C) is called locally V-isotrivially flat if (M, C)
loc∼= (U,U×V) where

V ⊂ Pn is a projective hypersurface.
i.e., locally it can be expressed as

{(x; [y]) ∈ PTM | L(y) = 0}

with L(y) not depending on x.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.

Omid Makhmali Half-flat causal structures and integrable systems 8 / 26



Definitions and examples

Definition : (M, C) is called locally V-isotrivial if Cx ∼= V ⊂ Pn, ∀x ∈ M

(M, C) is called locally V-isotrivially flat if (M, C)
loc∼= (U,U×V) where

V ⊂ Pn is a projective hypersurface.

i.e., locally it can be expressed as

{(x; [y]) ∈ PTM | L(y) = 0}

with L(y) not depending on x.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.

Omid Makhmali Half-flat causal structures and integrable systems 8 / 26



Definitions and examples

Definition : (M, C) is called locally V-isotrivial if Cx ∼= V ⊂ Pn, ∀x ∈ M

(M, C) is called locally V-isotrivially flat if (M, C)
loc∼= (U,U×V) where

V ⊂ Pn is a projective hypersurface.
i.e., locally it can be expressed as

{(x; [y]) ∈ PTM | L(y) = 0}

with L(y) not depending on x.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.

Omid Makhmali Half-flat causal structures and integrable systems 8 / 26



Definitions and examples

Definition : (M, C) is called locally V-isotrivial if Cx ∼= V ⊂ Pn, ∀x ∈ M

(M, C) is called locally V-isotrivially flat if (M, C)
loc∼= (U,U×V) where

V ⊂ Pn is a projective hypersurface.
i.e., locally it can be expressed as

{(x; [y]) ∈ PTM | L(y) = 0}

with L(y) not depending on x.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.

Omid Makhmali Half-flat causal structures and integrable systems 8 / 26



Definitions and examples

Definition : (M, C) is called locally V-isotrivial if Cx ∼= V ⊂ Pn, ∀x ∈ M

(M, C) is called locally V-isotrivially flat if (M, C)
loc∼= (U,U×V) where

V ⊂ Pn is a projective hypersurface.
i.e., locally it can be expressed as

{(x; [y]) ∈ PTM | L(y) = 0}

with L(y) not depending on x.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.

Omid Makhmali Half-flat causal structures and integrable systems 8 / 26



Initial motivation: Geometrization of DEs
This program, pioneered by Cartan and Chern, was aimed to
characterize geometric structures arising from certain classes of
differential equations.

{
Contact equivalence class of
y′′′ = f(x, y, y′, y′′)

}
locally←→ Certain foliations of J2(R,R)

Theorem (Holland-Sparling following the works of Cartan, Chern,
Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...){

contact equivalent classes
of 3rd order ODEs

}
1−1←→

{
causal structures
(M3, C4)

}

3-dimensional causal structures (M3, C4)

J1(R,R) ∼= K3 � ρ
J2(R,R) ∼= C4 µ- M3 ∼= Space of solutions

This picture can be generalized to higher dimensions.
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The equivalence problem: causal geometry
At (x; [y]) ∈ C, with µ : C2n → Mn+1, µ−1(x) = Cn−1

x define

µ−1
∗ (0) ⊂ µ−1

∗ (ŷ) ⊂µ−1
∗ (T̂yCx) ⊂T(x;[y])C

Vn−1 ⊂ J n ⊂P2n−1 ⊂T(x;[y])C

Define ω0 the projective Hilbert
form

ω0 = Ann(P) := Ann(T[y]Cx)

{ω0, · · · , ωn−1} = Ann(J )
{ω0, · · · , ωn} = Ann(V),
with {ω0, · · · , ωn, θ1, · · · , θn−1}

being a coframe on C.
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Causal vs. Finsler

Finsler Causal

Indicatix bdle Σ2n+1 → Mn+1 (Proj.) null cone bdle C2n → Mn+1

Loc. expressed as F = 1 Loc. expressed as L = 0

Hilbert form η0 = ∂F
∂yi dxi Pojective Hilbert form ω0 = ∂L

∂yi dxi

η0 : contact form on Σ2n+1 ω0 : quasi-contact form on C2n

dη0 = −ζ1 ∧ η1 − · · · − ζn ∧ ηn, dω0 = −θ1 ∧ ω1 − · · · − θn−1 ∧ ωn−1

η0 ∧ (dη0)n ̸= 0 −2ϕ0 ∧ ω0, ω0 ∧ (dω0)n−1 ̸= 0
Geodesics: integral curves of Null geodesics: integral curves of

the Reeb vector field the characteristic line field
η0(u) = 1,dη0(u, .) = 0 ω0(v) = 0,dω0(v, .) = 0
Σx ⊂ TxM is Legendrian Cx ⊂ PTxM are quasi-Legendrian

Σn
x = Ker{ηi} Cn−1

x = Ker{ωi}
g = (η0)2 + δijηiηj [g] = [2ω0ωn + εabω

aωb]
is well-def on Σ (osc. quadric) is well-def on C (osc. quadric)
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Causal vs. Finsler

Finsler Causal

Cartan’s conn on Σ reg. norm. Cartan conn on C
Parabolic geometry of type
(Bn−1,P12), (Dn,P12),n ≥ 4

(D3,P123), (B2,P12)

Essential invariants Essential invariants (Harmonic)
Iijk : centro-affine invariant of Σx Fabc : Fubini cubic form of Cx

Ri0j0 : Flag curvature Wanbn : Weyl shadow flag curvature
Iijk = 0⇒ Riem. geom. on M Fabc = 0⇒ Conformal

pseudo-Riem. geom. on M
Ri0j0 = 0⇒ β-int Segre Wanbn = 0⇒ β-int Lie contact
str on K (space of geod) str on K (space of null geod)
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Half-flatnesss in 4D conformal geometry
The proj quadric Q2 ⊂ P3 given by ω0ω3 − ω1ω2 = 0 is doubly ruled

α-planes are Ker{ω0 − λω1, ω2 − λω3}
β-planes are Ker{ω0 − λω2, ω1 − λω3}
α-surface is a surface whose tangent space is a α-plane everywhere.
Penrose’s observation:

halfflatness⇐⇒ α−integrability.

i.e., ∃ a 3-parameter family of surfaces (α-surfaces) such that at each
point and through each α-plane at that point, there passes a unique
surface tangent to that α-plane.

The lift of these surfaces foliate C by 3-folds.
In terms of the Weyl curvature, using hodge star operator

W = Wsd ⊕Wasd

and half-flatness or self-duality is defined as Wasd = 0.
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Half-flatnesss in 4D causal geometry

Let us look at the structure equations

dω0 = ψ0 ∧ ω0 − θ1 ∧ ω2 − θ2 ∧ ω1,

dω1 = −γ1 ∧ ω0 − ψ1 ∧ ω1 − θ1 ∧ ω3 + F2θ
2 ∧ ω2 + F1θ

2 ∧ ω0

dω2 = −γ2 ∧ ω0)− (ψ0 + ψ2) ∧ ω
1 − θ2 ∧ ω3 + E2θ

1 ∧ ω1 + E1θ
1 ∧ ω0

dω3 = −γ1 ∧ ω2 − γ2 ∧ ω1 − (ψ1 + ψ2) ∧ ω
3 + F0θ

2 ∧ ω0 + E0θ
1 ∧ ω0,

dθ1 = −π1 ∧ ω0 − π3 ∧ ω1 − ψ2 ∧ θ1

+ W4ω
2 ∧ ω3 + W3ω

1 ∧ ω2 + f2θ2 ∧ ω2 + f1θ2 ∧ ω0

dθ2 = π2 ∧ ω0 − π3 ∧ ω2 − (ψ0 − ψ1) ∧ θ
2

+ V4ω
1 ∧ ω3 + V3ω

1 ∧ ω2 + e2θ
1 ∧ ω1 + e1θ

1 ∧ ω0

Conditions that guarantees a foliation of C by 3-folds are E2 = V4 = 0.
The condition E2F2 = 0 implies the null cones are ruled.
If E2 = F2 = 0, then W4 and V4 generate Wsd and Wasd.
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The condition E2F2 = 0 implies the null cones are ruled.
If E2 = F2 = 0, then W4 and V4 generate Wsd and Wasd.
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Double fibrations

For 4D indefinite self-dual causal structure:

T3 �
E2,V4 = 0

C6
E2,F2 = 0

- M4

path geom � causal - conformal

If F2 = E2 = V4 = 0, then (C,M) gives a half-flat conformal strucure
and T is equipped with a torsion-free path geometry

If E2 = W4 = V4 = 0 then T has a projective str.

Theorem

indefinite half-flat causal on M 4 ⇐⇒ path geom. on T 3
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Principal null planes
When E2 = V4 = 0 then {ω0, ω2, θ2} is integrable.

The ruling planes {ω0 = 0, ω2 = 0}, are the α-planes for the deg metric

g = ω0ω3 − ω1ω2

Are there any integrable β-planes of g?
Let {ω3 − λω1 = 0, ω2 − λω0 = 0} be an integrable β-plane.
Taking d:

dλ ≡ λ2θ1 + λψ2 − γ2 mod ω0, ω1.

d2(λ) = 0⇒ F2λ
2 + 2F1λ+ F0 = 0

where ∂
∂θ1 Fi = iFi−1.The condition d(F2λ2 + 2F1λ+ F3) = 0 implies

W4λ
4 + 4W3λ

3 + 6W2λ
2 + 4W1λ+ W0 = 0, ∂

∂θ1 Wi = iWi−1

f3λ3 + 3f2λ2 + 3f1λ+ f0 = 0, f3 = ∂
∂ω3 F2,

∂
∂θ1 fi = ifi−1

Thus quartic polynomial in conformal geometry is replaced by three
polynomials in the causal setting
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Submaximal indefinite 4D causal str

Theorem : The submaximal 4D causal str of indefinite signature that
does not descend to a conformal structure is V-isotrivially flat where V
is the Cayley cubic and its infinitesimal symmetry algebra is
8-dimensional and solvable.

Note that classically the Cayley cubic is associated to pair of ODEs:

z′′1 = z2, z′′2 = 0.

It appears that this pair is point equivalent to Egorov projective
structure.
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Cayley structures
A Cayley structure is a V-isotrivial causal structure where V is
projectively equivalent to the Cayley cubic.

A Cayley structure on M can be introduced via the cubic form

ρ = 1
3(ω

2)3 + ω0ω3ω3 − ω1ω2ω3

The 4D structure group preserving [ρ] is given by
f0 u v 1

f0
uv− 1

3f02 u3

0 f0 f1 u f1 v f1
0 0 f0 f1

2 u f1
2

0 0 0 f0 f1
3


Thus, any Cayley structure is equipped with an invariant flag given by

P3 = {ω3 = 0} ⊃ P2 = {ω3 = ω2 = 0} ⊃ P1 = {ω3 = ω2 = ω1 = 0}
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Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

dω0 = − ϕ0 ∧ ω0 − θ2 ∧ ω1 − θ1 ∧ ω2,

dω1 = − (ϕ0 + ϕ1) ∧ ω
1 − θ2 ∧ ω2 − θ1 ∧ ω3,

dω2 = − (ϕ0 + 2ϕ1) ∧ ω
2 − θ2 ∧ ω3 + c a6ω

0 ∧ ω1 + a2ω
0 ∧ ω3,

dω3 = − (ϕ0 + 3ϕ1) ∧ ω
3 + a6ω

0 ∧ ω2 + a4ω
0 ∧ ω3

+ a5ω
1 ∧ ω2 + a3ω

1 ∧ ω3 + a1ω
2 ∧ ω3

The fundamental invariants are a1 and W4.
If a1 = 0, one obtains a class of path geometries depending on 6
functions of 2 variables.
If W4 = 0, one obtains a class of projective structures depending on 2
constants.
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of ai implies integrability of P2,P3 in

P3 = {ω3 = 0} ⊃ P2 = {ω3 = ω2 = 0} ⊃ P1 = {ω3 = ω2 = ω1 = 0}

1 Each of the 3-parameter family of surfaces carry a flat projective
structure.

2 a6 = 0→ then P2 is a principal null plane and is integrable (A null
foliation) and has a projective structure.

3 a6 = a5 = 0 + another diff cond → The 2D quotient space of
integral surface of P2

4 a5 ̸= 0 + another diff cond → Association of a contact equivalence
class of 3rd order scalar ODE.

5 a6 = 0, a5 ̸= 0 + another diff cond → Association of a point
equivalence class of 3rd order scalar ODE.
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DFK construction of a Lax pair
A torsion-free pair of ODEs z′′i = Fi(t, z, z′), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and
Kruglikov gave the following construction of a Lax pair for them

Let J ⊂ J1(R,R2) be a slice at t = 0.
The conformal metric [g] is given by g = ω0ω3 − ω1ω2where

ω0 = dz2

ω1 = dp2 − (∂p1F2dz1 + ∂p2F2dz2)

ω2 = dz1

ω3 = dp1 − (∂p1F1dz1 + ∂p2F1dz2)

The 4-fold J has a conformal structure with α-planes given by
V1 = λ ∂

∂ω0 + ∂
∂ω1 ,V2 = λ ∂

∂ω2 + ∂
∂ω3

By half-flatness the lift α-surfaces foliate the circle bundle N = P1 ×M
of α-planes.
The lift of {V1,V2} to N is ambiguous up to ∂

∂λ .
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DFK construction of a Lax pair

Define Z1 = V1 + m ∂
∂λ ,Z2 = V2 + n ∂

∂λ .

Determine m,n from [Z1,Z2] ≡ 0 modulo { ∂
∂ω0 ,

∂
∂ω2 ,

∂
∂λ}

[Z1,Z2] ≡ 0 modulo ∂
∂ω0 ,

∂
∂ω2 gives two PDEs of order 3 in four variables

which is involutive. The solutions depend on 6 functions of 3 variables.
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Half-flat Cayley str: characterizing Fel’s torsion
Given a pair (zi)′′ = Fi(t, z, z′), let Dt = ∂t + pi∂zi + Fi∂pi ,
and D = span{∂p1 , ∂p2}.

Given X ∈ span{Dt}, a frame V = (V1,V2) for D is called normal if
ad2

XV + TXV ≡ 0 mod Dt (2)
where TX is the torsion wrt this frame.
Theorem : There is a one to one correspondence between
3-dimensional path geometries arising from half-flat Cayley structures
and point equivalence classes of pairs of second order ODEs satisfying

rank TX = 1, ∇XTX = ϕTX, Ŝ(TX) = 0,
for some function ϕ on J1(R,R2).

As a result TX =

(
0 0
1 0

)
in some normal frame. The above ODE gives

V1 = A1 + λB1, V2 = A2 + λB2 +
λ2

2 A1 +
λ3

6 B1,

for some vector fields A1,A2,B1,B2 such that adXAi = adXBi = 0.
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for some function ϕ on J1(R,R2).

As a result TX =

(
0 0
1 0

)
in some normal frame. The above ODE gives

V1 = A1 + λB1, V2 = A2 + λB2 +
λ2

2 A1 +
λ3

6 B1,

for some vector fields A1,A2,B1,B2 such that adXAi = adXBi = 0.
Omid Makhmali Half-flat causal structures and integrable systems 23 / 26



Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at t = 0.

Let

Y1 = ∂pi , Y2 = ∂p2 ,

Z1 = ∂z1 + 1
2(∂p1F1∂p1 + ∂p1F2∂p2),

Z2 = ∂z2 + 1
2(∂p2F1∂p1 + ∂p2F2∂p2),

Find a normal frame (V1,V2) for ruling lines with V1 ∈ KerT i.e.,

V1 = Y2 + EY1 + λ(Z2 + EZ1) mod Dt

V2 = Y1 + λZ1 +
λ2

2 (Y2 + EY1) +
λ3

6 (Z2 + EZ1) mod Dt

Following the conformal case, we find the functions m,n and finally
they result in 7 equations of order 3 in 3 functions E,F1,F2 which is
not involutive!
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Future directions

Integrating structure equations to give explicit examples of Cayley
structures
The moduli space of rational curves with normal bundle
O(1)⊕O(2) in a 3-fold is equipped with a cubic form which gives
Cayley cubic when restricted to certain hyperplane.
Examples of uniruled manifolds for which the VMRTs give a
Cayley structure.
An alternative description of Cayley structures in terms of a pair
of PDEs of finite type by passing to its space of null geodesics.
Many of our discussion extends to a larger class of half-flat
V-isotrivial causal structures.
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Thank you for your attention!
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