Half-flat causal structures and integrable systems

Omid Makhmali
IMPAN, Warsaw

February 14, 2019

University of Troms \varnothing, Norway

An outline

- Causal structures: definition, motivation, and history

An outline

- Causal structures: definition, motivation, and history
- The equivalence problem and fundamental invariants

An outline

- Causal structures: definition, motivation, and history
- The equivalence problem and fundamental invariants
- Half-flat indefinite causal structures in dimension 4

An outline

- Causal structures: definition, motivation, and history
- The equivalence problem and fundamental invariants
- Half-flat indefinite causal structures in dimension 4
- Cayley structures

Definitions

The conformal class of a pseudo-Riem metric g on M^{n+1} is uniquely determined by its field of null cones

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in \mathbb{P} T M \mid g(v, v)=0\}
$$

Definitions

The conformal class of a pseudo-Riem metric g on M^{n+1} is uniquely determined by its field of null cones

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in \mathbb{P} T M \mid g(v, v)=0\}
$$

Assigning a null cone at each tangent space is the main ingredient for understanding causal properties of M.

Definitions

The conformal class of a pseudo-Riem metric g on M^{n+1} is uniquely determined by its field of null cones

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in \mathbb{P} T M \mid g(v, v)=0\}
$$

Assigning a null cone at each tangent space is the main ingredient for understanding causal properties of M.
Roughly speaking, if \mathcal{C}_{x} not quadratic, then \mathcal{C} is a field of proj hypersurfaces locally described by

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in T M \mid G(v)=0\}
$$

Definitions

The conformal class of a pseudo-Riem metric g on M^{n+1} is uniquely determined by its field of null cones

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in \mathbb{P} T M \mid g(v, v)=0\}
$$

Assigning a null cone at each tangent space is the main ingredient for understanding causal properties of M.
Roughly speaking, if \mathcal{C}_{x} not quadratic, then \mathcal{C} is a field of proj hypersurfaces locally described by

$$
\mathbb{P} T M \supset \mathcal{C}^{2 n}=\{[v] \in T M \mid G(v)=0\}
$$

If the projective 2 nd fund form of $\mathcal{C}_{x} \subset \mathbb{P} T_{x} M, \forall x \in M$ is non-degenerate everywhere one obtains a causal structure.

Definitions

The relation of causal str to conformal pseudo-Riem str is an analogue of what Finsler str are to Riem str:

Definitions

The relation of causal str to conformal pseudo-Riem str is an analogue of what Finsler str are to Riem str:
Pseudo-Riemannian metric on M^{n+1} is uniquely determined by its unit sphere bundle

$$
T M \supset \Sigma^{2 n+1}=\{v \in T M \mid g(v, v)=1\}
$$

Definitions

The relation of causal str to conformal pseudo-Riem str is an analogue of what Finsler str are to Riem str:
Pseudo-Riemannian metric on M^{n+1} is uniquely determined by its unit sphere bundle

$$
T M \supset \Sigma^{2 n+1}=\{v \in T M \mid g(v, v)=1\}
$$

Roughly speaking, if Σ_{x} not quadratic one has a (local) Finsler metric

$$
T M \supset \Sigma^{2 n+1}=\{v \in T M \mid F(v)=1\}
$$

assuming radial transversality and non-deg of the 2nd fund form of $\Sigma_{x} \subset T_{x} M, \forall x \in M$.

Definitions

Following Bryant's notion of generalized Finsler structures:

Definitions

Following Bryant's notion of generalized Finsler structures:
Definition A causal structure on M^{n+1} is denoted by $\left(M^{n+1}, \mathcal{C}^{2 n}\right)$ together with an immersion $\iota: \mathcal{C} \rightarrow \mathbb{P} T M$ where \mathcal{C} is a connected, smooth manifold of dimension $2 n$ and ι is an immersions satisfying

Definitions

Following Bryant's notion of generalized Finsler structures:
Definition A causal structure on M^{n+1} is denoted by $\left(M^{n+1}, \mathcal{C}^{2 n}\right)$ together with an immersion $\iota: \mathcal{C} \rightarrow \mathbb{P} T M$ where \mathcal{C} is a connected, smooth manifold of dimension $2 n$ and ι is an immersions satisfying

- The map $\pi \circ \iota: \mathcal{C} \rightarrow M$ is a submersion with connected fibers.
- In the fibration $\pi \circ \iota: \mathcal{C} \rightarrow M$, the fibers $\mathcal{C}_{x}^{n-1}:=(\pi \circ \iota)^{-1}(x)$ are mapped to immersed connected tangentially non-degenerate projective hypersurfaces via $\iota_{x}: \mathcal{C}_{x} \rightarrow \mathbb{P} T_{x} M$, i.e., they have non-deg projective 2 nd fund form everywhere.

Definitions

Following Bryant's notion of generalized Finsler structures:
Definition A causal structure on M^{n+1} is denoted by $\left(M^{n+1}, \mathcal{C}^{2 n}\right)$ together with an immersion $\iota: \mathcal{C} \rightarrow \mathbb{P} T M$ where \mathcal{C} is a connected, smooth manifold of dimension $2 n$ and ι is an immersions satisfying

- The map $\pi \circ \iota: \mathcal{C} \rightarrow M$ is a submersion with connected fibers.
- In the fibration $\pi \circ \iota: \mathcal{C} \rightarrow M$, the fibers $\mathcal{C}_{x}^{n-1}:=(\pi \circ \iota)^{-1}(x)$ are mapped to immersed connected tangentially non-degenerate projective hypersurfaces via $\iota_{x}: \mathcal{C}_{x} \rightarrow \mathbb{P} T_{x} M$, i.e., they have non-deg projective 2 nd fund form everywhere.

$$
\begin{aligned}
& (M, \mathcal{C}) \stackrel{\text { locally }}{\cong}(\tilde{M}, \tilde{\mathcal{C}}) \\
& \text { at } x \in M, \tilde{x} \in \tilde{M}
\end{aligned}
$$

Definitions

Following Bryant's notion of generalized Finsler structures:
Definition A causal structure on M^{n+1} is denoted by $\left(M^{n+1}, \mathcal{C}^{2 n}\right)$ together with an immersion $\iota: \mathcal{C} \rightarrow \mathbb{P} T M$ where \mathcal{C} is a connected, smooth manifold of dimension $2 n$ and ι is an immersions satisfying

- The map $\pi \circ \iota: \mathcal{C} \rightarrow M$ is a submersion with connected fibers.
- In the fibration $\pi \circ \iota: \mathcal{C} \rightarrow M$, the fibers $\mathcal{C}_{x}^{n-1}:=(\pi \circ \iota)^{-1}(x)$ are mapped to immersed connected tangentially non-degenerate projective hypersurfaces via $\iota_{x}: \mathcal{C}_{x} \rightarrow \mathbb{P} T_{x} M$, i.e., they have non-deg projective 2 nd fund form everywhere.

Remarks

- $\mathcal{C}^{2 n}$ is called the (projective) null cone bundle of the causal structure. We do not assume that its fibers are convex or closed in $\mathbb{P} T_{x} M$.

Remarks

- $\mathcal{C}^{2 n}$ is called the (projective) null cone bundle of the causal structure. We do not assume that its fibers are convex or closed in $\mathbb{P} T_{x} M$.
- Note that \mathcal{C} can be open and be immersed as an open hypersurface in $\mathbb{P} T M$.

Remarks

- $\mathcal{C}^{2 n}$ is called the (projective) null cone bundle of the causal structure. We do not assume that its fibers are convex or closed in $\mathbb{P} T_{x} M$.
- Note that \mathcal{C} can be open and be immersed as an open hypersurface in $\mathbb{P} T M$.
- For the local aspects of causal geometry ι can be assumed to be an embedding in a sufficiently small neighborhood of \mathcal{C}.

Definitions and examples

Locally a causal structure can be expressed as

$$
\mathcal{C} \supset U=\{(x,[y]) \in \mathbb{P} T M \mid L(x ; y)=0\} .
$$

$L: T M \rightarrow \mathbb{R}$ or \mathbb{C} satisfies

Definitions and examples

Locally a causal structure can be expressed as

$$
\mathcal{C} \supset U=\{(x,[y]) \in \mathbb{P} T M \mid L(x ; y)=0\} .
$$

$L: T M \rightarrow \mathbb{R}$ or \mathbb{C} satisfies

$$
\left\{\begin{array}{l}
L(x ; \lambda y)=\lambda^{r} L(x ; y) \text { for some } r \\
{\left[\frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}\right] \text { has max rank over } L=0 .}
\end{array}\right.
$$

Definitions and examples

Locally a causal structure can be expressed as

$$
\mathcal{C} \supset U=\{(x,[y]) \in \mathbb{P} T M \mid L(x ; y)=0\} .
$$

$L: T M \rightarrow \mathbb{R}$ or \mathbb{C} satisfies

$$
\left\{\begin{array}{l}
L(x ; \lambda y)=\lambda^{r} L(x ; y) \text { for some } r \\
{\left[\frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}\right] \text { has max rank over } L=0 .}
\end{array}\right.
$$

$L(x ; y), S(x ; y) L(x ; y) \longrightarrow$ same causal $\operatorname{str}(S$ nowhere vanishing.)

Definitions and examples

Locally a causal structure can be expressed as

$$
\mathcal{C} \supset U=\{(x,[y]) \in \mathbb{P} T M \mid L(x ; y)=0\} .
$$

$L: T M \rightarrow \mathbb{R}$ or \mathbb{C} satisfies

$$
\left\{\begin{array}{l}
L(x ; \lambda y)=\lambda^{r} L(x ; y) \text { for some } r \\
{\left[\frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}\right] \text { has max rank over } L=0 .}
\end{array}\right.
$$

$L(x ; y), S(x ; y) L(x ; y) \longrightarrow$ same causal $\operatorname{str}(S$ nowhere vanishing.)
Example : $L(x ; y)=\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-\left(y^{4}\right)^{2}:$ flat 4D causal structure.

Definitions and examples

Locally a causal structure can be expressed as

$$
\mathcal{C} \supset U=\{(x,[y]) \in \mathbb{P} T M \mid L(x ; y)=0\} .
$$

$L: T M \rightarrow \mathbb{R}$ or \mathbb{C} satisfies

$$
\left\{\begin{array}{l}
L(x ; \lambda y)=\lambda^{r} L(x ; y) \text { for some } r \\
{\left[\frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}\right] \text { has max rank over } L=0 .}
\end{array}\right.
$$

$L(x ; y), S(x ; y) L(x ; y) \longrightarrow$ same causal str (S nowhere vanishing.)
Example : $L(x ; y)=\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-\left(y^{4}\right)^{2}:$ flat 4D causal structure.

Example : $L(x ; y)=\frac{1}{3}\left(y^{2}\right)^{3}+y^{0} y^{3} y^{3}-y^{1} y^{2} y^{3}$:
Null cones are projectively equivalent to Cayley's cubic surface.

Definitions and examples

Definition: (M, \mathcal{C}) is called locally V-isotrivial if $\mathcal{C}_{x} \cong V \subset \mathbb{P}^{n}, \forall x \in M$

Definitions and examples

Definition : (M, \mathcal{C}) is called locally V-isotrivial if $\mathcal{C}_{x} \cong V \subset \mathbb{P}^{n}, \forall x \in M$ (M, \mathcal{C}) is called locally V-isotrivially flat if $(M, \mathcal{C}) \stackrel{\text { loc }}{\cong}(U, U \times V)$ where $V \subset \mathbb{P}^{n}$ is a projective hypersurface.

Definitions and examples

Definition : (M, \mathcal{C}) is called locally V-isotrivial if $\mathcal{C}_{x} \cong V \subset \mathbb{P}^{n}, \forall x \in M$ (M, \mathcal{C}) is called locally V-isotrivially flat if $(M, \mathcal{C}) \stackrel{\text { loc }}{\cong}(U, U \times V)$ where $V \subset \mathbb{P}^{n}$ is a projective hypersurface.
i.e., locally it can be expressed as

$$
\{(x ;[y]) \in \mathbb{P} T M \mid L(y)=0\}
$$

with $L(y)$ not depending on x.

Definitions and examples

Definition : (M, \mathcal{C}) is called locally V-isotrivial if $\mathcal{C}_{x} \cong V \subset \mathbb{P}^{n}, \forall x \in M$ (M, \mathcal{C}) is called locally V-isotrivially flat if $(M, \mathcal{C}) \stackrel{\text { loc }}{\cong}(U, U \times V)$ where $V \subset \mathbb{P}^{n}$ is a projective hypersurface.
i.e., locally it can be expressed as

$$
\{(x ;[y]) \in \mathbb{P} T M \mid L(y)=0\}
$$

with $L(y)$ not depending on x.

Being locally V-isotrivial is the causal analogue of being locally Minkowskian in Finsler geometry.

Definitions and examples

Definition : (M, \mathcal{C}) is called locally V-isotrivial if $\mathcal{C}_{x} \cong V \subset \mathbb{P}^{n}, \forall x \in M$ (M, \mathcal{C}) is called locally V-isotrivially flat if $(M, \mathcal{C}) \stackrel{\text { loc }}{\cong}(U, U \times V)$ where $V \subset \mathbb{P}^{n}$ is a projective hypersurface.
i.e., locally it can be expressed as

$$
\{(x ;[y]) \in \mathbb{P} T M \mid L(y)=0\}
$$

with $L(y)$ not depending on x.

Being locally V-isotrivial is the causal analogue of being locally Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth VMRTs are V-isotrivially flat.

Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to characterize geometric structures arising from certain classes of differential equations.

Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to characterize geometric structures arising from certain classes of differential equations.
$\left\{\begin{array}{l}\text { Contact equivalence class of } \\ y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)\end{array}\right\} \stackrel{\text { locally }}{\longleftrightarrow}$ Certain foliations of $J^{2}(\mathbb{R}, \mathbb{R})$

Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to characterize geometric structures arising from certain classes of differential equations.

$$
\left\{\begin{array}{l}
\text { Contact equivalence class of } \\
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)
\end{array}\right\} \stackrel{\text { locally }}{\longleftrightarrow} \text { Certain foliations of } J^{2}(\mathbb{R}, \mathbb{R})
$$

Theorem (Holland-Sparling following the works of Cartan, Chern, Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...)

$$
\left\{\begin{array}{l}
\text { contact equivalent classes } \\
\text { of } 3 \text { rd order ODEs }
\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}
\text { causal structures } \\
\left(M^{3}, \mathcal{C}^{4}\right)
\end{array}\right\}
$$

Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to characterize geometric structures arising from certain classes of differential equations.

$$
\left\{\begin{array}{l}
\text { Contact equivalence class of } \\
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)
\end{array}\right\} \stackrel{\text { locally }}{\longleftrightarrow} \text { Certain foliations of } J^{2}(\mathbb{R}, \mathbb{R})
$$

Theorem (Holland-Sparling following the works of Cartan, Chern, Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...)

$$
\left\{\begin{array}{l}
\text { contact equivalent classes } \\
\text { of } 3 \text { rd order ODEs }
\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}
\text { causal structures } \\
\left(M^{3}, \mathcal{C}^{4}\right)
\end{array}\right\}
$$

3-dimensional causal structures $\left(M^{3}, \mathcal{C}^{4}\right)$

$$
J^{1}(\mathbb{R}, \mathbb{R}) \cong \mathcal{K}^{3} \stackrel{\rho}{ } J^{2}(\mathbb{R}, \mathbb{R}) \cong \mathcal{C}^{4} \xrightarrow{\mu} M^{3} \cong \text { Space of solutions }
$$

Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to characterize geometric structures arising from certain classes of differential equations.

$$
\left\{\begin{array}{l}
\text { Contact equivalence class of } \\
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right)
\end{array}\right\} \stackrel{\text { locally }}{\longleftrightarrow} \text { Certain foliations of } J^{2}(\mathbb{R}, \mathbb{R})
$$

Theorem (Holland-Sparling following the works of Cartan, Chern, Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...)

$$
\left\{\begin{array}{l}
\text { contact equivalent classes } \\
\text { of } 3 \text { rd order ODEs }
\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}
\text { causal structures } \\
\left(M^{3}, \mathcal{C}^{4}\right)
\end{array}\right\}
$$

3-dimensional causal structures $\left(M^{3}, \mathcal{C}^{4}\right)$

$$
J^{1}(\mathbb{R}, \mathbb{R}) \cong \mathcal{K}^{3} \stackrel{\rho}{J^{2}}(\mathbb{R}, \mathbb{R}) \cong \mathcal{C}^{4} \xrightarrow{\mu} M^{3} \cong \text { Space of solutions }
$$

This picture can be generalized to higher dimensions.

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{rlll}
\mu_{*}^{-1}(0) \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{cll}
\mu_{*}^{-1}(0) \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\omega^{0}=\operatorname{Ann}(\mathcal{P}):=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right)
$$

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{cll}
\mu_{*}^{-1}(0) \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\begin{aligned}
\omega^{0}=\operatorname{Ann}(\mathcal{P}) & :=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right) \\
\left\{\omega^{0}, \cdots, \omega^{n-1}\right\} & =\operatorname{Ann}(\mathcal{J})
\end{aligned}
$$

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{cll}
\mu_{*}^{-1}(0) \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\begin{aligned}
& \omega^{0}=\operatorname{Ann}(\mathcal{P}):=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right) \\
&\left\{\omega^{0}, \cdots, \omega^{n-1}\right\}=\operatorname{Ann}(\mathcal{J}) \\
&\left\{\omega^{0}, \cdots, \omega^{n}\right\}=\operatorname{Ann}(\mathcal{V}),
\end{aligned}
$$

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{rlll}
\mu_{*}^{-1}(0) \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\begin{aligned}
& \omega^{0}=\operatorname{Ann}(\mathcal{P}):=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right) \\
& \left\{\omega^{0}, \cdots, \omega^{n-1}\right\}=\operatorname{Ann}(\mathcal{J}) \\
& \left\{\omega^{0}, \cdots, \omega^{n}\right\}=\operatorname{Ann}(\mathcal{V}) \\
& \text { with }\left\{\omega^{0}, \cdots, \omega^{n}, \theta_{1}, \cdots, \theta_{n-1}\right\}
\end{aligned}
$$

being a coframe on \mathcal{C}.

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{rlll}
\mu_{*}^{-1}(0) & \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\begin{aligned}
& \quad \omega^{0}=\operatorname{Ann}(\mathcal{P}):=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right) \\
& \left\{\omega^{0}, \cdots, \omega^{n-1}\right\}=\operatorname{Ann}(\mathcal{J}) \\
& \left\{\omega^{0}, \cdots, \omega^{n}\right\}=\operatorname{Ann}(\mathcal{V}) \\
& \text { with }\left\{\omega^{0}, \cdots, \omega^{n}, \theta_{1}, \cdots, \theta_{n-1}\right\}
\end{aligned}
$$

being a coframe on \mathcal{C}.

The equivalence problem: causal geometry

At $(x ;[y]) \in \mathcal{C}$, with $\mu: \mathcal{C}^{2 n} \rightarrow M^{n+1}, \mu^{-1}(x)=\mathcal{C}_{x}^{n-1}$ define

$$
\begin{array}{rlll}
\mu_{*}^{-1}(0) & \subset \mu_{*}^{-1}(\hat{y}) & \subset \mu_{*}^{-1}\left(\widehat{T}_{y} \mathcal{C}_{x}\right) & \subset T_{(x ;[y])} \mathcal{C} \\
\mathcal{V}^{n-1} \subset \mathcal{J}^{n} & \subset \mathcal{P}^{2 n-1} & \subset T_{(x ;[y])} \mathcal{C}
\end{array}
$$

Define ω^{0} the projective Hilbert form

$$
\begin{aligned}
& \quad \omega^{0}=\operatorname{Ann}(\mathcal{P}):=\operatorname{Ann}\left(T_{[y]} \mathcal{C}_{x}\right) \\
& \left\{\omega^{0}, \cdots, \omega^{n-1}\right\}=\operatorname{Ann}(\mathcal{J}) \\
& \left\{\omega^{0}, \cdots, \omega^{n}\right\}=\operatorname{Ann}(\mathcal{V}) \\
& \text { with }\left\{\omega^{0}, \cdots, \omega^{n}, \theta_{1}, \cdots, \theta_{n-1}\right\}
\end{aligned}
$$

being a coframe on \mathcal{C}.

Causal vs. Finsler

Finsler	Causal
Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1}$	(Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$
Loc. expressed as $F=1$	Loc. expressed as $L=0$

Causal vs. Finsler

Finsler	Causal
Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1}$ Loc. expressed as $F=1$	(Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$ Loc. expressed as $L=0$
Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i}$	Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y} \mathrm{~d} x^{i}$

Causal vs. Finsler

Finsler	Causal
Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1}$ Loc. expressed as $F=1$	(Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$ Loc. expressed as $L=0$
Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i}$	Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y^{2}} \mathrm{~d} x^{i}$
$\eta^{0}:$ contact form on $\Sigma^{2 n+1}$	$\omega^{0}:$ quasi-contact form on $\mathcal{C}^{2 n}$

Causal vs. Finsler

Finsler

Causal

Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1} \quad$ (Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$
Loc. expressed as $F=1 \quad$ Loc. expressed as $L=0$
Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i} \quad$ Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y^{i}} \mathrm{~d} x^{i}$

$\eta^{0}:$ contact form on $\Sigma^{2 n+1}$	$\omega^{0}:$ quasi-contact form on $\mathcal{C}^{2 n}$
$\mathrm{~d} \eta^{0}=-\zeta_{1} \wedge \eta^{1}-\cdots-\zeta_{n} \wedge \eta^{n}$,	$\mathrm{d} \omega^{0}=-\theta_{1} \wedge \omega^{1}-\cdots-\theta_{n-1} \wedge \omega^{n-1}$
$\eta^{0} \wedge\left(\mathrm{~d} \eta^{0}\right)^{n} \neq 0$	$-2 \phi_{0} \wedge \omega^{0}, \quad \omega^{0} \wedge\left(\mathrm{~d} \omega^{0}\right)^{n-1} \neq 0$

Causal vs. Finsler

Finsler

Causal

Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1} \quad$ (Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$
Loc. expressed as $F=1$ Loc. expressed as $L=0$

Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i} \quad$ Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y^{2}} \mathrm{~d} x^{i}$
$\eta^{0}:$ contact form on $\Sigma^{2 n+1} \quad \omega^{0}:$ quasi-contact form on $\mathcal{C}^{2 n}$
$\mathrm{d} \eta^{0}=-\zeta_{1} \wedge \eta^{1}-\cdots-\zeta_{n} \wedge \eta^{n}, \quad \mathrm{~d} \omega^{0}=-\theta_{1} \wedge \omega^{1}-\cdots-\theta_{n-1} \wedge \omega^{n-1}$
$\eta^{0} \wedge\left(\mathrm{~d} \eta^{0}\right)^{n} \neq 0 \quad-2 \phi_{0} \wedge \omega^{0}, \quad \omega^{0} \wedge\left(\mathrm{~d} \omega^{0}\right)^{n-1} \neq 0$
Geodesics: integral curves of the Reeb vector field

$$
\eta^{0}(\mathbf{u})=1, \mathrm{~d} \eta^{0}(\mathbf{u}, .)=0
$$

Null geodesics: integral curves of the characteristic line field

$$
\omega^{0}(\mathbf{v})=0, \mathrm{~d} \omega^{0}(\mathbf{v}, .)=0
$$

Causal vs. Finsler

Finsler

Causal

(Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$ Loc. expressed as $L=0$

Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i} \quad$ Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y^{i}} \mathrm{~d} x^{i}$
$\eta^{0}:$ contact form on $\Sigma^{2 n+1} \quad \omega^{0}:$ quasi-contact form on $\mathcal{C}^{2 n}$
$\mathrm{d} \eta^{0}=-\zeta_{1} \wedge \eta^{1}-\cdots-\zeta_{n} \wedge \eta^{n}, \quad \mathrm{~d} \omega^{0}=-\theta_{1} \wedge \omega^{1}-\cdots-\theta_{n-1} \wedge \omega^{n-1}$

$$
\begin{array}{l|l}
\eta^{0} \wedge\left(\mathrm{~d} \eta^{0}\right)^{n} \neq 0 & -2 \phi_{0} \wedge \omega^{0}, \quad \omega^{0} \wedge\left(\mathrm{~d} \omega^{0}\right)^{n-1} \neq 0 \\
\hline
\end{array}
$$

Geodesics: integral curves of
Null geodesics: integral curves of the Reeb vector field $\eta^{0}(\mathbf{u})=1, \mathrm{~d} \eta^{0}(\mathbf{u},)=$. the characteristic line field

$$
\omega^{0}(\mathbf{v})=0, \mathrm{~d} \omega^{0}(\mathbf{v}, .)=0
$$

$\Sigma_{x} \subset T_{x} M$ is Legendrian $\Sigma_{x}^{n}=\operatorname{Ker}\left\{\eta^{i}\right\}$
$\mathcal{C}_{x} \subset \mathbb{P} T_{x} M$ are quasi-Legendrian $\mathcal{C}_{x}^{n-1}=\operatorname{Ker}\left\{\omega^{i}\right\}$

Finsler

Causal

Indicatix bdle $\Sigma^{2 n+1} \rightarrow M^{n+1}$
Loc. expressed as $F=1$
(Proj.) null cone bdle $\mathcal{C}^{2 n} \rightarrow M^{n+1}$ Loc. expressed as $L=0$

Hilbert form $\eta^{0}=\frac{\partial F}{\partial y^{i}} \mathrm{~d} x^{i} \quad$ Pojective Hilbert form $\omega^{0}=\frac{\partial L}{\partial y^{i}} \mathrm{~d} x^{i}$
$\eta^{0}:$ contact form on $\Sigma^{2 n+1} \quad \omega^{0}:$ quasi-contact form on $\mathcal{C}^{2 n}$ $\mathrm{d} \eta^{0}=-\zeta_{1} \wedge \eta^{1}-\cdots-\zeta_{n} \wedge \eta^{n}, \quad \mathrm{~d} \omega^{0}=-\theta_{1} \wedge \omega^{1}-\cdots-\theta_{n-1} \wedge \omega^{n-1}$ $\eta^{0} \wedge\left(\mathrm{~d} \eta^{0}\right)^{n} \neq 0$ $-2 \phi_{0} \wedge \omega^{0}, \quad \omega^{0} \wedge\left(\mathrm{~d} \omega^{0}\right)^{n-1} \neq 0$
Geodesics: integral curves of the Reeb vector field $\eta^{0}(\mathbf{u})=1, \mathrm{~d} \eta^{0}(\mathbf{u},)=$.

Null geodesics: integral curves of the characteristic line field

$$
\omega^{0}(\mathbf{v})=0, \mathrm{~d} \omega^{0}(\mathbf{v}, .)=0
$$

$$
\Sigma_{x} \subset T_{x} M \text { is Legendrian }
$$ $\Sigma_{x}^{n}=\operatorname{Ker}\left\{\eta^{i}\right\}$

$\mathcal{C}_{x} \subset \mathbb{P} T_{x} M$ are quasi-Legendrian $\mathcal{C}_{x}^{n-1}=\operatorname{Ker}\left\{\omega^{i}\right\}$
$g=\left(\eta^{0}\right)^{2}+\delta_{i j} \eta^{i} \eta^{j}$
is well-def on Σ (osc. quadric)
is well-def on \mathcal{C} (osc. quadric)

Causal vs. Finsler

Finsler	Causal
Cartan's conn on Σ	reg. norm. Cartan conn on \mathcal{C}
	Parabolic geometry of type
	$\left(B_{n-1}, P_{12}\right),\left(D_{n}, P_{12}\right), n \geq 4$
$\left(D_{3}, P_{123}\right),\left(B_{2}, P_{12}\right)$	

Causal vs. Finsler

Finsler	Causal
Cartan's conn on Σ	reg. norm. Cartan conn on \mathcal{C}
	Parabolic geometry of type
	$\left(B_{n-1}, P_{12}\right),\left(D_{n}, P_{12}\right), n \geq 4$
	$\left(D_{3}, P_{123}\right),\left(B_{2}, P_{12}\right)$
Essential invariants	Essential invariants (Harmonic)
$I_{i j k}:$ centro-affine invariant of Σ_{x}	$F_{a b c}:$ Fubini cubic form of \mathcal{C}_{x}
$R_{i 0 j 0}:$ Flag curvature	$W_{\text {anbn }}:$ Weyl shadow flag curvature

Causal vs. Finsler

Finsler	Causal
Cartan's conn on Σ	reg. norm. Cartan conn on \mathcal{C}
	Parabolic geometry of type
	$\left(B_{n-1}, P_{12}\right),\left(D_{n}, P_{12}\right), n \geq 4$
	$\left(D_{3}, P_{123}\right),\left(B_{2}, P_{12}\right)$
Essential invariants	Essential invariants (Harmonic)
$I_{i j k}:$ centro-affine invariant of Σ_{x}	$F_{a b c}:$ Fubini cubic form of \mathcal{C}_{x}
$R_{i 0 j 0}:$ Flag curvature	$W_{a n b n}:$ Weyl shadow flag curvature
$I_{i j k}=0 \Rightarrow$ Riem. geom. on M	$F_{a b c}=0 \Rightarrow$ Conformal
	pseudo-Riem. geom. on M

Causal vs. Finsler

Finsler	Causal
Cartan's conn on Σ	reg. norm. Cartan conn on \mathcal{C}
	Parabolic geometry of type
	$\left(B_{n-1}, P_{12}\right),\left(D_{n}, P_{12}\right), n \geq 4$
	$\left(D_{3}, P_{123}\right),\left(B_{2}, P_{12}\right)$
Essential invariants	Essential invariants (Harmonic)
$I_{i j k}:$ centro-affine invariant of Σ_{x}	$F_{a b c}:$ Fubini cubic form of \mathcal{C}_{x}
$R_{i 0 j 0}:$ Flag curvature	$W_{\text {anbn }}:$ Weyl shadow flag curvature
$I_{i j k}=0 \Rightarrow$ Riem. geom. on M	$F_{a b c}=0 \Rightarrow$ Conformal
	pseudo-Riem. geom. on M
$R_{i 0 j 0}=0 \Rightarrow \beta$-int Segre	$W_{\text {anbn }}=0 \Rightarrow \beta$-int Lie contact
str on \mathcal{K} (space of geod)	str on \mathcal{K} (space of null geod)

Half-flatnesss in 4D conformal geometry
The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$ β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$ β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$
α-surface is a surface whose tangent space is a α-plane everywhere.

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$
β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$
α-surface is a surface whose tangent space is a α-plane everywhere. Penrose's observation:
halfflatness $\Longleftrightarrow \alpha$-integrability.

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$
β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$
α-surface is a surface whose tangent space is a α-plane everywhere. Penrose's observation:

$$
\text { halfflatness } \Longleftrightarrow \alpha \text {-integrability. }
$$

i.e., \exists a 3 -parameter family of surfaces (α-surfaces) such that at each point and through each α-plane at that point, there passes a unique surface tangent to that α-plane.

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$
β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$
α-surface is a surface whose tangent space is a α-plane everywhere. Penrose's observation:

$$
\text { halfflatness } \Longleftrightarrow \alpha \text {-integrability. }
$$

i.e., \exists a 3 -parameter family of surfaces (α-surfaces) such that at each point and through each α-plane at that point, there passes a unique surface tangent to that α-plane.

The lift of these surfaces foliate \mathcal{C} by 3 -folds.
In terms of the Weyl curvature, using hodge star operator

$$
W=W^{s d} \oplus W^{a s d}
$$

Half-flatnesss in 4D conformal geometry

The proj quadric $Q^{2} \subset \mathbb{P}^{3}$ given by $\omega^{0} \omega^{3}-\omega^{1} \omega^{2}=0$ is doubly ruled α-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{1}, \omega^{2}-\lambda \omega^{3}\right\}$
β-planes are $\operatorname{Ker}\left\{\omega^{0}-\lambda \omega^{2}, \omega^{1}-\lambda \omega^{3}\right\}$
α-surface is a surface whose tangent space is a α-plane everywhere. Penrose's observation:

$$
\text { halfflatness } \Longleftrightarrow \alpha \text {-integrability. }
$$

i.e., \exists a 3 -parameter family of surfaces (α-surfaces) such that at each point and through each α-plane at that point, there passes a unique surface tangent to that α-plane.

The lift of these surfaces foliate \mathcal{C} by 3 -folds.
In terms of the Weyl curvature, using hodge star operator

$$
W=W^{s d} \oplus W^{a s d}
$$

and half-flatness or self-duality is defined as $W^{\text {asd }}=0$.

Half-flatnesss in 4D causal geometry

Let us look at the structure equations

$$
\begin{aligned}
\mathrm{d} \omega^{0} & =\psi_{0} \wedge \omega^{0}-\theta^{1} \wedge \omega^{2}-\theta^{2} \wedge \omega^{1}, \\
\mathrm{~d} \omega^{1} & =-\gamma^{1} \wedge \omega^{0}-\psi_{1} \wedge \omega^{1}-\theta^{1} \wedge \omega^{3}+F_{2} \theta^{2} \wedge \omega^{2}+F_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \omega^{2} & \left.=-\gamma^{2} \wedge \omega^{0}\right)-\left(\psi_{0}+\psi_{2}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{3}+E_{2} \theta^{1} \wedge \omega^{1}+E_{1} \theta^{1} \wedge \omega^{0} \\
\mathrm{~d} \omega^{3} & =-\gamma^{1} \wedge \omega^{2}-\gamma^{2} \wedge \omega^{1}-\left(\psi_{1}+\psi_{2}\right) \wedge \omega^{3}+F_{0} \theta^{2} \wedge \omega^{0}+E_{0} \theta^{1} \wedge \omega^{0} \\
\mathrm{~d} \theta^{1} & =-\pi_{1} \wedge \omega^{0}-\pi_{3} \wedge \omega^{1}-\psi_{2} \wedge \theta^{1} \\
& +W_{4} \omega^{2} \wedge \omega^{3}+W_{3} \omega^{1} \wedge \omega^{2}+f_{2} \theta^{2} \wedge \omega^{2}+f_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \theta^{2} & =\pi_{2} \wedge \omega^{0}-\pi_{3} \wedge \omega^{2}-\left(\psi_{0}-\psi_{1}\right) \wedge \theta^{2} \\
& +V_{4} \omega^{1} \wedge \omega^{3}+V_{3} \omega^{1} \wedge \omega^{2}+e_{2} \theta^{1} \wedge \omega^{1}+e_{1} \theta^{1} \wedge \omega^{0}
\end{aligned}
$$

Half-flatnesss in 4D causal geometry

Let us look at the structure equations

$$
\begin{aligned}
\mathrm{d} \omega^{0} & =\psi_{0} \wedge \omega^{0}-\theta^{1} \wedge \omega^{2}-\theta^{2} \wedge \omega^{1}, \\
\mathrm{~d} \omega^{1} & =-\gamma^{1} \wedge \omega^{0}-\psi_{1} \wedge \omega^{1}-\theta^{1} \wedge \omega^{3}+F_{2} \theta^{2} \wedge \omega^{2}+F_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \omega^{2} & \left.=-\gamma^{2} \wedge \omega^{0}\right)-\left(\psi_{0}+\psi_{2}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{3}+E_{2} \theta^{1} \wedge \omega^{1}+E_{1} \theta^{1} \wedge \omega^{0} \\
\mathrm{~d} \omega^{3} & =-\gamma^{1} \wedge \omega^{2}-\gamma^{2} \wedge \omega^{1}-\left(\psi_{1}+\psi_{2}\right) \wedge \omega^{3}+F_{0} \theta^{2} \wedge \omega^{0}+E_{0} \theta^{1} \wedge \omega^{0}, \\
\mathrm{~d} \theta^{1} & =-\pi_{1} \wedge \omega^{0}-\pi_{3} \wedge \omega^{1}-\psi_{2} \wedge \theta^{1} \\
& +W_{4} \omega^{2} \wedge \omega^{3}+W_{3} \omega^{1} \wedge \omega^{2}+f_{2} \theta^{2} \wedge \omega^{2}+f_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \theta^{2} & =\pi_{2} \wedge \omega^{0}-\pi_{3} \wedge \omega^{2}-\left(\psi_{0}-\psi_{1}\right) \wedge \theta^{2} \\
& +V_{4} \omega^{1} \wedge \omega^{3}+V_{3} \omega^{1} \wedge \omega^{2}+e_{2} \theta^{1} \wedge \omega^{1}+e_{1} \theta^{1} \wedge \omega^{0}
\end{aligned}
$$

Conditions that guarantees a foliation of \mathcal{C} by 3 -folds are $E_{2}=V_{4}=0$.

Half-flatnesss in 4D causal geometry

Let us look at the structure equations

$$
\begin{aligned}
\mathrm{d} \omega^{0} & =\psi_{0} \wedge \omega^{0}-\theta^{1} \wedge \omega^{2}-\theta^{2} \wedge \omega^{1}, \\
\mathrm{~d} \omega^{1} & =-\gamma^{1} \wedge \omega^{0}-\psi_{1} \wedge \omega^{1}-\theta^{1} \wedge \omega^{3}+F_{2} \theta^{2} \wedge \omega^{2}+F_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \omega^{2} & \left.=-\gamma^{2} \wedge \omega^{0}\right)-\left(\psi_{0}+\psi_{2}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{3}+E_{2} \theta^{1} \wedge \omega^{1}+E_{1} \theta^{1} \wedge \omega^{0} \\
\mathrm{~d} \omega^{3} & =-\gamma^{1} \wedge \omega^{2}-\gamma^{2} \wedge \omega^{1}-\left(\psi_{1}+\psi_{2}\right) \wedge \omega^{3}+F_{0} \theta^{2} \wedge \omega^{0}+E_{0} \theta^{1} \wedge \omega^{0}, \\
\mathrm{~d} \theta^{1} & =-\pi_{1} \wedge \omega^{0}-\pi_{3} \wedge \omega^{1}-\psi_{2} \wedge \theta^{1} \\
& +W_{4} \omega^{2} \wedge \omega^{3}+W_{3} \omega^{1} \wedge \omega^{2}+f_{2} \theta^{2} \wedge \omega^{2}+f_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \theta^{2} & =\pi_{2} \wedge \omega^{0}-\pi_{3} \wedge \omega^{2}-\left(\psi_{0}-\psi_{1}\right) \wedge \theta^{2} \\
& +V_{4} \omega^{1} \wedge \omega^{3}+V_{3} \omega^{1} \wedge \omega^{2}+e_{2} \theta^{1} \wedge \omega^{1}+e_{1} \theta^{1} \wedge \omega^{0}
\end{aligned}
$$

Conditions that guarantees a foliation of \mathcal{C} by 3 -folds are $E_{2}=V_{4}=0$. The condition $E_{2} F_{2}=0$ implies the null cones are ruled.

Half-flatnesss in 4D causal geometry

Let us look at the structure equations

$$
\begin{aligned}
\mathrm{d} \omega^{0} & =\psi_{0} \wedge \omega^{0}-\theta^{1} \wedge \omega^{2}-\theta^{2} \wedge \omega^{1}, \\
\mathrm{~d} \omega^{1} & =-\gamma^{1} \wedge \omega^{0}-\psi_{1} \wedge \omega^{1}-\theta^{1} \wedge \omega^{3}+F_{2} \theta^{2} \wedge \omega^{2}+F_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \omega^{2} & \left.=-\gamma^{2} \wedge \omega^{0}\right)-\left(\psi_{0}+\psi_{2}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{3}+E_{2} \theta^{1} \wedge \omega^{1}+E_{1} \theta^{1} \wedge \omega^{0} \\
\mathrm{~d} \omega^{3} & =-\gamma^{1} \wedge \omega^{2}-\gamma^{2} \wedge \omega^{1}-\left(\psi_{1}+\psi_{2}\right) \wedge \omega^{3}+F_{0} \theta^{2} \wedge \omega^{0}+E_{0} \theta^{1} \wedge \omega^{0}, \\
\mathrm{~d} \theta^{1} & =-\pi_{1} \wedge \omega^{0}-\pi_{3} \wedge \omega^{1}-\psi_{2} \wedge \theta^{1} \\
& +W_{4} \omega^{2} \wedge \omega^{3}+W_{3} \omega^{1} \wedge \omega^{2}+f_{2} \theta^{2} \wedge \omega^{2}+f_{1} \theta^{2} \wedge \omega^{0} \\
\mathrm{~d} \theta^{2} & =\pi_{2} \wedge \omega^{0}-\pi_{3} \wedge \omega^{2}-\left(\psi_{0}-\psi_{1}\right) \wedge \theta^{2} \\
& +V_{4} \omega^{1} \wedge \omega^{3}+V_{3} \omega^{1} \wedge \omega^{2}+e_{2} \theta^{1} \wedge \omega^{1}+e_{1} \theta^{1} \wedge \omega^{0}
\end{aligned}
$$

Conditions that guarantees a foliation of \mathcal{C} by 3 -folds are $E_{2}=V_{4}=0$. The condition $E_{2} F_{2}=0$ implies the null cones are ruled. If $E_{2}=F_{2}=0$, then W_{4} and V_{4} generate $W^{\text {sd }}$ and $W^{\text {asd }}$.

Double fibrations

For 4D indefinite self-dual causal structure:

$$
\begin{aligned}
& T^{3} \hookrightarrow E_{2}, V_{4}=0 \quad \mathcal{C}^{6} \xrightarrow[E_{2}, F_{2}=0]{ } M^{4} \\
& \text { path geom } \longleftarrow \text { causal } \longrightarrow \text { conformal }
\end{aligned}
$$

Double fibrations

For 4D indefinite self-dual causal structure:

$$
\begin{gathered}
T^{3} \longleftarrow E_{2}, V_{4}=0 \\
\mathcal{C}^{6} \xrightarrow[E_{2}, F_{2}=0]{ } M^{4} \\
\text { path geom causal } \longleftrightarrow \text { conformal }
\end{gathered}
$$

If $F_{2}=E_{2}=V_{4}=0$, then (\mathcal{C}, M) gives a half-flat conformal strucure and T is equipped with a torsion-free path geometry

Double fibrations

For 4D indefinite self-dual causal structure:

$$
\begin{gathered}
T^{3} \longleftarrow E_{2}, V_{4}=0 \\
\mathcal{C}^{6} \xrightarrow[E_{2}, F_{2}=0]{ } M^{4} \\
\text { path geom causal } \longleftrightarrow \text { conformal }
\end{gathered}
$$

If $F_{2}=E_{2}=V_{4}=0$, then (\mathcal{C}, M) gives a half-flat conformal strucure and T is equipped with a torsion-free path geometry

If $E_{2}=W_{4}=V_{4}=0$ then T has a projective str.
Theorem
indefinite half-flat causal on $M^{4} \Longleftrightarrow$ path geom. on T^{3}

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Are there any integrable β-planes of g ?

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Are there any integrable β-planes of g ?
Let $\left\{\omega^{3}-\lambda \omega^{1}=0, \omega^{2}-\lambda \omega^{0}=0\right\}$ be an integrable β-plane.

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Are there any integrable β-planes of g ?
Let $\left\{\omega^{3}-\lambda \omega^{1}=0, \omega^{2}-\lambda \omega^{0}=0\right\}$ be an integrable β-plane.
Taking d:

$$
\begin{gathered}
\mathrm{d} \lambda \equiv \lambda^{2} \theta^{1}+\lambda \psi_{2}-\gamma^{2} \bmod \omega^{0}, \omega^{1} \\
d^{2}(\lambda)=0 \Rightarrow F_{2} \lambda^{2}+2 F_{1} \lambda+F_{0}=0
\end{gathered}
$$

where $\frac{\partial}{\partial \theta^{1}} F_{i}=i F_{i-1}$.

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Are there any integrable β-planes of g ?
Let $\left\{\omega^{3}-\lambda \omega^{1}=0, \omega^{2}-\lambda \omega^{0}=0\right\}$ be an integrable β-plane.
Taking d:

$$
\begin{gathered}
\mathrm{d} \lambda \equiv \lambda^{2} \theta^{1}+\lambda \psi_{2}-\gamma^{2} \bmod \omega^{0}, \omega^{1} \\
d^{2}(\lambda)=0 \Rightarrow F_{2} \lambda^{2}+2 F_{1} \lambda+F_{0}=0
\end{gathered}
$$

where $\frac{\partial}{\partial \theta^{1}} F_{i}=i F_{i-1}$. The condition $d\left(F_{2} \lambda^{2}+2 F_{1} \lambda+F_{3}\right)=0$ implies

$$
\begin{gathered}
W_{4} \lambda^{4}+4 W_{3} \lambda^{3}+6 W_{2} \lambda^{2}+4 W_{1} \lambda+W_{0}=0, \quad \frac{\partial}{\partial \theta^{\mathrm{I}}} W_{i}=i W_{i-1} \\
f_{3} \lambda^{3}+3 f_{2} \lambda^{2}+3 f_{1} \lambda+f_{0}=0, \quad f_{3}=\frac{\partial}{\partial \omega^{3}} F_{2}, \frac{\partial}{\partial \theta^{\mathrm{I}}} f_{i}=i f_{i-1}
\end{gathered}
$$

Principal null planes

When $E_{2}=V_{4}=0$ then $\left\{\omega^{0}, \omega^{2}, \theta^{2}\right\}$ is integrable.
The ruling planes $\left\{\omega^{0}=0, \omega^{2}=0\right\}$, are the α-planes for the deg metric

$$
g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}
$$

Are there any integrable β-planes of g ?
Let $\left\{\omega^{3}-\lambda \omega^{1}=0, \omega^{2}-\lambda \omega^{0}=0\right\}$ be an integrable β-plane. Taking d:

$$
\begin{aligned}
& \mathrm{d} \lambda \equiv \lambda^{2} \theta^{1}+\lambda \psi_{2}-\gamma^{2} \bmod \omega^{0}, \omega^{1} . \\
& d^{2}(\lambda)=0 \Rightarrow F_{2} \lambda^{2}+2 F_{1} \lambda+F_{0}=0
\end{aligned}
$$

where $\frac{\partial}{\partial \theta^{1}} F_{i}=i F_{i-1}$. The condition $d\left(F_{2} \lambda^{2}+2 F_{1} \lambda+F_{3}\right)=0$ implies

$$
\begin{gathered}
W_{4} \lambda^{4}+4 W_{3} \lambda^{3}+6 W_{2} \lambda^{2}+4 W_{1} \lambda+W_{0}=0, \quad \frac{\partial}{\partial \theta^{\mathrm{I}}} W_{i}=i W_{i-1} \\
f_{3} \lambda^{3}+3 f_{2} \lambda^{2}+3 f_{1} \lambda+f_{0}=0, \quad f_{3}=\frac{\partial}{\partial \omega^{3}} F_{2}, \frac{\partial}{\partial \theta^{\mathrm{I}}} f_{i}=i f_{i-1}
\end{gathered}
$$

Thus quartic polynomial in conformal geometry is replaced by three polynomials in the causal setting

Submaximal indefinite 4D causal str

Theorem : The submaximal 4D causal str of indefinite signature that does not descend to a conformal structure is V-isotrivially flat where V is the Cayley cubic and its infinitesimal symmetry algebra is 8 -dimensional and solvable.

Submaximal indefinite 4D causal str

Theorem : The submaximal 4D causal str of indefinite signature that does not descend to a conformal structure is V-isotrivially flat where V is the Cayley cubic and its infinitesimal symmetry algebra is 8 -dimensional and solvable.

Note that classically the Cayley cubic is associated to pair of ODEs:

$$
z_{1}^{\prime \prime}=z_{2}, \quad z_{2}^{\prime \prime}=0
$$

It appears that this pair is point equivalent to Egorov projective structure.

Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is projectively equivalent to the Cayley cubic.

Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is projectively equivalent to the Cayley cubic.
A Cayley structure on M can be introduced via the cubic form

$$
\rho=\frac{1}{3}\left(\omega^{2}\right)^{3}+\omega^{0} \omega^{3} \omega^{3}-\omega^{1} \omega^{2} \omega^{3}
$$

Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is projectively equivalent to the Cayley cubic.
A Cayley structure on M can be introduced via the cubic form

$$
\rho=\frac{1}{3}\left(\omega^{2}\right)^{3}+\omega^{0} \omega^{3} \omega^{3}-\omega^{1} \omega^{2} \omega^{3}
$$

The 4D structure group preserving $[\rho]$ is given by

$$
\left(\begin{array}{cccc}
\mathbf{f}_{\mathbf{0}} & \mathbf{u} & \mathbf{v} & \frac{1}{\mathbf{f}_{\mathbf{0}}} \mathbf{u v}-\frac{1}{3 \mathbf{f}_{\mathbf{0}}{ }^{2}} \mathbf{u}^{3} \\
0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}} & \mathbf{u} \mathbf{f}_{\mathbf{1}} & \mathbf{v} \mathbf{f}_{\mathbf{1}} \\
0 & 0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}}{ }^{2} & \mathbf{u} \mathbf{f}_{\mathbf{1}}{ }^{2} \\
0 & 0 & 0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}}{ }^{3}
\end{array}\right)
$$

Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is projectively equivalent to the Cayley cubic.
A Cayley structure on M can be introduced via the cubic form

$$
\rho=\frac{1}{3}\left(\omega^{2}\right)^{3}+\omega^{0} \omega^{3} \omega^{3}-\omega^{1} \omega^{2} \omega^{3}
$$

The 4D structure group preserving $[\rho]$ is given by

$$
\left(\begin{array}{cccc}
\mathbf{f}_{\mathbf{0}} & \mathbf{u} & \mathbf{v} & \frac{1}{\mathbf{f}_{0}} \mathbf{u v}-\frac{1}{3 \mathbf{f}_{\mathbf{0}}{ }^{2}} \mathbf{u}^{3} \\
0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}} & \mathbf{u} \mathbf{f}_{\mathbf{1}} & \mathbf{v} \mathbf{f}_{\mathbf{1}} \\
0 & 0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}}{ }^{2} & \mathbf{u} \mathbf{f}_{\mathbf{1}}{ }^{2} \\
0 & 0 & 0 & \mathbf{f}_{\mathbf{0}} \mathbf{f}_{\mathbf{1}}{ }^{3}
\end{array}\right)
$$

Thus, any Cayley structure is equipped with an invariant flag given by

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

$$
\begin{aligned}
\mathrm{d} \omega^{0}= & -\phi_{0} \wedge \omega^{0}-\theta^{2} \wedge \omega^{1}-\theta^{1} \wedge \omega^{2} \\
\mathrm{~d} \omega^{1}= & -\left(\phi_{0}+\phi_{1}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{2}-\theta^{1} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{2}= & -\left(\phi_{0}+2 \phi_{1}\right) \wedge \omega^{2}-\theta^{2} \wedge \omega^{3}+c a_{6} \omega^{0} \wedge \omega^{1}+a_{2} \omega^{0} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{3}= & -\left(\phi_{0}+3 \phi_{1}\right) \wedge \omega^{3}+a_{6} \omega^{0} \wedge \omega^{2}+a_{4} \omega^{0} \wedge \omega^{3} \\
& +a_{5} \omega^{1} \wedge \omega^{2}+a_{3} \omega^{1} \wedge \omega^{3}+a_{1} \omega^{2} \wedge \omega^{3}
\end{aligned}
$$

Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

$$
\begin{aligned}
\mathrm{d} \omega^{0}= & -\phi_{0} \wedge \omega^{0}-\theta^{2} \wedge \omega^{1}-\theta^{1} \wedge \omega^{2} \\
\mathrm{~d} \omega^{1}= & -\left(\phi_{0}+\phi_{1}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{2}-\theta^{1} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{2}= & -\left(\phi_{0}+2 \phi_{1}\right) \wedge \omega^{2}-\theta^{2} \wedge \omega^{3}+c a_{6} \omega^{0} \wedge \omega^{1}+a_{2} \omega^{0} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{3}= & -\left(\phi_{0}+3 \phi_{1}\right) \wedge \omega^{3}+a_{6} \omega^{0} \wedge \omega^{2}+a_{4} \omega^{0} \wedge \omega^{3} \\
& +a_{5} \omega^{1} \wedge \omega^{2}+a_{3} \omega^{1} \wedge \omega^{3}+a_{1} \omega^{2} \wedge \omega^{3}
\end{aligned}
$$

The fundamental invariants are a_{1} and W_{4}.

Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

$$
\begin{aligned}
\mathrm{d} \omega^{0}= & -\phi_{0} \wedge \omega^{0}-\theta^{2} \wedge \omega^{1}-\theta^{1} \wedge \omega^{2} \\
\mathrm{~d} \omega^{1}= & -\left(\phi_{0}+\phi_{1}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{2}-\theta^{1} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{2}= & -\left(\phi_{0}+2 \phi_{1}\right) \wedge \omega^{2}-\theta^{2} \wedge \omega^{3}+c a_{6} \omega^{0} \wedge \omega^{1}+a_{2} \omega^{0} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{3}= & -\left(\phi_{0}+3 \phi_{1}\right) \wedge \omega^{3}+a_{6} \omega^{0} \wedge \omega^{2}+a_{4} \omega^{0} \wedge \omega^{3} \\
& +a_{5} \omega^{1} \wedge \omega^{2}+a_{3} \omega^{1} \wedge \omega^{3}+a_{1} \omega^{2} \wedge \omega^{3}
\end{aligned}
$$

The fundamental invariants are a_{1} and W_{4}. If $a_{1}=0$, one obtains a class of path geometries depending on 6 functions of 2 variables.

Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

$$
\begin{aligned}
\mathrm{d} \omega^{0}= & -\phi_{0} \wedge \omega^{0}-\theta^{2} \wedge \omega^{1}-\theta^{1} \wedge \omega^{2} \\
\mathrm{~d} \omega^{1}= & -\left(\phi_{0}+\phi_{1}\right) \wedge \omega^{1}-\theta^{2} \wedge \omega^{2}-\theta^{1} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{2}= & -\left(\phi_{0}+2 \phi_{1}\right) \wedge \omega^{2}-\theta^{2} \wedge \omega^{3}+c a_{6} \omega^{0} \wedge \omega^{1}+a_{2} \omega^{0} \wedge \omega^{3}, \\
\mathrm{~d} \omega^{3}= & -\left(\phi_{0}+3 \phi_{1}\right) \wedge \omega^{3}+a_{6} \omega^{0} \wedge \omega^{2}+a_{4} \omega^{0} \wedge \omega^{3} \\
& +a_{5} \omega^{1} \wedge \omega^{2}+a_{3} \omega^{1} \wedge \omega^{3}+a_{1} \omega^{2} \wedge \omega^{3}
\end{aligned}
$$

The fundamental invariants are a_{1} and W_{4}.
If $a_{1}=0$, one obtains a class of path geometries depending on 6 functions of 2 variables.
If $W_{4}=0$, one obtains a class of projective structures depending on 2 constants.

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

(1) Each of the 3-parameter family of surfaces carry a flat projective structure.

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

(1) Each of the 3-parameter family of surfaces carry a flat projective structure.
(2) $a_{6}=0 \rightarrow$ then P_{2} is a principal null plane and is integrable (A null foliation) and has a projective structure.

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

(1) Each of the 3-parameter family of surfaces carry a flat projective structure.
(2) $a_{6}=0 \rightarrow$ then P_{2} is a principal null plane and is integrable (A null foliation) and has a projective structure.
(3) $a_{6}=a_{5}=0+$ another diff cond \rightarrow The 2D quotient space of integral surface of P_{2}

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

(1) Each of the 3-parameter family of surfaces carry a flat projective structure.
(2) $a_{6}=0 \rightarrow$ then P_{2} is a principal null plane and is integrable (A null foliation) and has a projective structure.
(3) $a_{6}=a_{5}=0+$ another diff cond \rightarrow The 2D quotient space of integral surface of P_{2}
(1) $a_{5} \neq 0+$ another diff cond \rightarrow Association of a contact equivalence class of 3rd order scalar ODE.

Half-flat Cayley str: A zoo of geometric structures

Vanishing of a_{i} implies integrability of P_{2}, P_{3} in

$$
P_{3}=\left\{\omega^{3}=0\right\} \supset P_{2}=\left\{\omega^{3}=\omega^{2}=0\right\} \supset P_{1}=\left\{\omega^{3}=\omega^{2}=\omega^{1}=0\right\}
$$

(1) Each of the 3-parameter family of surfaces carry a flat projective structure.
(2) $a_{6}=0 \rightarrow$ then P_{2} is a principal null plane and is integrable (A null foliation) and has a projective structure.
(3) $a_{6}=a_{5}=0+$ another diff cond \rightarrow The 2D quotient space of integral surface of P_{2}
(1) $a_{5} \neq 0+$ another diff cond \rightarrow Association of a contact equivalence class of 3 rd order scalar ODE.
(6) $a_{6}=0, a_{5} \neq 0+$ another diff cond \rightarrow Association of a point equivalence class of 3 rd order scalar ODE.

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.
The conformal metric $[g]$ is given by $g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}$

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.
The conformal metric $[g]$ is given by $g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}$ where

$$
\begin{aligned}
& \omega^{0}=\mathrm{d} z^{2} \\
& \omega^{1}=\mathrm{d} p^{2}-\left(\partial_{p^{1}} F_{2} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{2} \mathrm{~d} z^{2}\right) \\
& \omega^{2}=\mathrm{d} z^{1} \\
& \omega^{3}=\mathrm{d} p^{1}-\left(\partial_{p^{1}} F_{1} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{1} \mathrm{~d} z^{2}\right)
\end{aligned}
$$

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.
The conformal metric $[g]$ is given by $g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}$ where

$$
\begin{aligned}
& \omega^{0}=\mathrm{d} z^{2} \\
& \omega^{1}=\mathrm{d} p^{2}-\left(\partial_{p^{1}} F_{2} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{2} \mathrm{~d} z^{2}\right) \\
& \omega^{2}=\mathrm{d} z^{1} \\
& \omega^{3}=\mathrm{d} p^{1}-\left(\partial_{p^{1}} F_{1} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{1} \mathrm{~d} z^{2}\right)
\end{aligned}
$$

The 4 -fold J has a conformal structure with α-planes given by

$$
V_{1}=\lambda \frac{\partial}{\partial \omega^{0}}+\frac{\partial}{\partial \omega^{1}}, V_{2}=\lambda \frac{\partial}{\partial \omega^{2}}+\frac{\partial}{\partial \omega^{3}}
$$

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.
The conformal metric $[g]$ is given by $g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}$ where

$$
\begin{aligned}
& \omega^{0}=\mathrm{d} z^{2} \\
& \omega^{1}=\mathrm{d} p^{2}-\left(\partial_{p^{1}} F_{2} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{2} \mathrm{~d} z^{2}\right) \\
& \omega^{2}=\mathrm{d} z^{1} \\
& \omega^{3}=\mathrm{d} p^{1}-\left(\partial_{p^{1}} F_{1} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{1} \mathrm{~d} z^{2}\right)
\end{aligned}
$$

The 4 -fold J has a conformal structure with α-planes given by

$$
V_{1}=\lambda \frac{\partial}{\partial \omega^{0}}+\frac{\partial}{\partial \omega^{1}}, V_{2}=\lambda \frac{\partial}{\partial \omega^{2}}+\frac{\partial}{\partial \omega^{3}}
$$

By half-flatness the lift α-surfaces foliate the circle bundle $N=\mathbb{P}^{1} \times M$ of α-planes.

DFK construction of a Lax pair

A torsion-free pair of ODEs $z_{i}^{\prime \prime}=F_{i}\left(t, z, z^{\prime}\right)$, defines a half-flat conformal structure on its solution space. Dunajski, Ferapontov and Kruglikov gave the following construction of a Lax pair for them Let $J \subset J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ be a slice at $t=0$.
The conformal metric $[g]$ is given by $g=\omega^{0} \omega^{3}-\omega^{1} \omega^{2}$ where

$$
\begin{aligned}
& \omega^{0}=\mathrm{d} z^{2} \\
& \omega^{1}=\mathrm{d} p^{2}-\left(\partial_{p^{1}} F_{2} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{2} \mathrm{~d} z^{2}\right) \\
& \omega^{2}=\mathrm{d} z^{1} \\
& \omega^{3}=\mathrm{d} p^{1}-\left(\partial_{p^{1}} F_{1} \mathrm{~d} z^{1}+\partial_{p^{2}} F_{1} \mathrm{~d} z^{2}\right)
\end{aligned}
$$

The 4 -fold J has a conformal structure with α-planes given by

$$
V_{1}=\lambda \frac{\partial}{\partial \omega^{0}}+\frac{\partial}{\partial \omega^{1}}, V_{2}=\lambda \frac{\partial}{\partial \omega^{2}}+\frac{\partial}{\partial \omega^{3}}
$$

By half-flatness the lift α-surfaces foliate the circle bundle $N=\mathbb{P}^{1} \times M$ of α-planes.
The lift of $\left\{V_{1}, V_{2}\right\}$ to N is ambiguous up to $\frac{\partial}{\partial \lambda}$.

DFK construction of a Lax pair

Define $Z_{1}=V_{1}+m \frac{\partial}{\partial \lambda}, Z_{2}=V_{2}+n \frac{\partial}{\partial \lambda}$.

DFK construction of a Lax pair

Define $Z_{1}=V_{1}+m \frac{\partial}{\partial \lambda}, Z_{2}=V_{2}+n \frac{\partial}{\partial \lambda}$.
Determine m, n from $\left[Z_{1}, Z_{2}\right] \equiv 0$ modulo $\left\{\frac{\partial}{\partial \omega^{0}}, \frac{\partial}{\partial \omega^{2}}, \frac{\partial}{\partial \lambda}\right\}$

DFK construction of a Lax pair

Define $Z_{1}=V_{1}+m \frac{\partial}{\partial \lambda}, Z_{2}=V_{2}+n \frac{\partial}{\partial \lambda}$.
Determine m, n from $\left[Z_{1}, Z_{2}\right] \equiv 0$ modulo $\left\{\frac{\partial}{\partial \omega^{0}}, \frac{\partial}{\partial \omega^{2}}, \frac{\partial}{\partial \lambda}\right\}$
$\left[Z_{1}, Z_{2}\right] \equiv 0$ modulo $\frac{\partial}{\partial \omega^{\omega}}, \frac{\partial}{\partial \omega^{2}}$ gives two PDEs of order 3 in four variables which is involutive. The solutions depend on 6 functions of 3 variables.

Half-flat Cayley str: characterizing Fel's torsion
Given a pair $\left(z^{i}\right)^{\prime \prime}=F^{i}(t, z, z)$, let $\mathrm{D}_{t}=\partial_{t}+p^{i} \partial_{z^{i}}+F^{i} \partial_{p^{i}}$, and $\mathcal{D}=\operatorname{span}\left\{\partial_{p^{1}}, \partial_{p^{2}}\right\}$.

Half-flat Cayley str: characterizing Fel's torsion
Given a pair $\left(z^{i}\right)^{\prime \prime}=F^{i}(t, z, z)$, let $\mathrm{D}_{t}=\partial_{t}+p^{i} \partial_{z^{i}}+F^{i} \partial_{p^{i}}$, and $\mathcal{D}=\operatorname{span}\left\{\partial_{p^{1}}, \partial_{p^{2}}\right\}$.
Given $X \in \operatorname{span}\left\{\mathrm{D}_{t}\right\}$, a frame $\mathbf{V}=\left(V_{1}, V_{2}\right)$ for \mathcal{D} is called normal if

$$
\begin{equation*}
\operatorname{ad}_{X}^{2} \mathbf{V}+\mathbf{T}^{X} \mathbf{V} \equiv 0 \bmod \mathrm{D}_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where \mathbf{T}^{X} is the torsion wrt this frame.

Half-flat Cayley str: characterizing Fel's torsion

Given a pair $\left(z^{i}\right)^{\prime \prime}=F^{i}\left(t, z, z^{\prime}\right)$, let $\mathrm{D}_{t}=\partial_{t}+p^{i} \partial_{z^{i}}+F^{i} \partial_{p^{i}}$, and $\mathcal{D}=\operatorname{span}\left\{\partial_{p^{1}}, \partial_{p^{2}}\right\}$.
Given $X \in \operatorname{span}\left\{\mathrm{D}_{t}\right\}$, a frame $\mathbf{V}=\left(V_{1}, V_{2}\right)$ for \mathcal{D} is called normal if

$$
\begin{equation*}
\operatorname{ad}_{X}^{2} \mathbf{V}+\mathbf{T}^{X} \mathbf{V} \equiv 0 \bmod \mathrm{D}_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where \mathbf{T}^{X} is the torsion wrt this frame.
Theorem: There is a one to one correspondence between 3-dimensional path geometries arising from half-flat Cayley structures and point equivalence classes of pairs of second order ODEs satisfying

$$
\operatorname{rank} \mathbf{T}^{X}=1, \quad \nabla_{X} \mathbf{T}^{X}=\phi \mathbf{T}^{X}, \quad \hat{\mathbb{S}}\left(\mathbf{T}^{X}\right)=0
$$

for some function ϕ on $J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$.

Half-flat Cayley str: characterizing Fel's torsion

Given a pair $\left(z^{i}\right)^{\prime \prime}=F^{i}\left(t, z, z^{\prime}\right)$, let $\mathrm{D}_{t}=\partial_{t}+p^{i} \partial_{z^{i}}+F^{i} \partial_{p^{i}}$, and $\mathcal{D}=\operatorname{span}\left\{\partial_{p^{1}}, \partial_{p^{2}}\right\}$.
Given $X \in \operatorname{span}\left\{\mathrm{D}_{t}\right\}$, a frame $\mathbf{V}=\left(V_{1}, V_{2}\right)$ for \mathcal{D} is called normal if

$$
\begin{equation*}
\operatorname{ad}_{X}^{2} \mathbf{V}+\mathbf{T}^{X} \mathbf{V} \equiv 0 \bmod \mathrm{D}_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where \mathbf{T}^{X} is the torsion wrt this frame.
Theorem: There is a one to one correspondence between 3-dimensional path geometries arising from half-flat Cayley structures and point equivalence classes of pairs of second order ODEs satisfying

$$
\operatorname{rank} \mathbf{T}^{X}=1, \quad \nabla_{X} \mathbf{T}^{X}=\phi \mathbf{T}^{X}, \quad \hat{\mathbb{S}}\left(\mathbf{T}^{X}\right)=0
$$

for some function ϕ on $J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$.
As a result $\mathbf{T}^{X}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ in some normal frame.

Half-flat Cayley str: characterizing Fel's torsion

Given a pair $\left(z^{i}\right)^{\prime \prime}=F^{i}\left(t, z, z^{\prime}\right)$, let $\mathrm{D}_{t}=\partial_{t}+p^{i} \partial_{z^{i}}+F^{i} \partial_{p^{i}}$, and $\mathcal{D}=\operatorname{span}\left\{\partial_{p^{1}}, \partial_{p^{2}}\right\}$.
Given $X \in \operatorname{span}\left\{\mathrm{D}_{t}\right\}$, a frame $\mathbf{V}=\left(V_{1}, V_{2}\right)$ for \mathcal{D} is called normal if

$$
\begin{equation*}
\operatorname{ad}_{X}^{2} \mathbf{V}+\mathbf{T}^{X} \mathbf{V} \equiv 0 \bmod \mathrm{D}_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where \mathbf{T}^{X} is the torsion wrt this frame.
Theorem : There is a one to one correspondence between 3-dimensional path geometries arising from half-flat Cayley structures and point equivalence classes of pairs of second order ODEs satisfying

$$
\operatorname{rank} \mathbf{T}^{X}=1, \quad \nabla_{X} \mathbf{T}^{X}=\phi \mathbf{T}^{X}, \quad \hat{\mathbb{S}}\left(\mathbf{T}^{X}\right)=0
$$

for some function ϕ on $J^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right)$.
As a result $\mathbf{T}^{X}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ in some normal frame. The above ODE gives

$$
V_{1}=A_{1}+\lambda B_{1}, \quad V_{2}=A_{2}+\lambda B_{2}+\frac{\lambda^{2}}{2} A_{1}+\frac{\lambda^{3}}{6} B_{1}
$$

for some vector fields $A_{1}, A_{2}, B_{1}, B_{2}$ such that $\operatorname{ad}_{X} A_{i}=\operatorname{ad}_{X} B_{i}=0$.

Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at $t=0$.

Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at $t=0$. Let

$$
\begin{aligned}
& Y_{1}=\partial_{p^{i}}, \quad Y_{2}=\partial_{p^{2}}, \\
& Z_{1}=\partial_{z^{1}}+\frac{1}{2}\left(\partial_{p^{1}} F_{1} \partial_{p^{1}}+\partial_{p^{1}} F_{2} \partial_{p^{2}}\right), \\
& Z_{2}=\partial_{z^{2}}+\frac{1}{2}\left(\partial_{p^{2}} F_{1} \partial_{p^{1}}+\partial_{p^{2}} F_{2} \partial_{p^{2}}\right),
\end{aligned}
$$

Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at $t=0$. Let

$$
\begin{aligned}
& Y_{1}=\partial_{p^{i}}, \quad Y_{2}=\partial_{p^{2}}, \\
& Z_{1}=\partial_{z^{1}}+\frac{1}{2}\left(\partial_{p^{1}} F_{1} \partial_{p^{1}}+\partial_{p^{1}} F_{2} \partial_{p^{2}}\right), \\
& Z_{2}=\partial_{z^{2}}+\frac{1}{2}\left(\partial_{p^{2}} F_{1} \partial_{p^{1}}+\partial_{p^{2}} F_{2} \partial_{p^{2}}\right),
\end{aligned}
$$

Find a normal frame (V_{1}, V_{2}) for ruling lines with $V_{1} \in \operatorname{Ker} \mathbf{T}$ i.e.,

$$
\begin{gathered}
V_{1}=Y_{2}+E Y_{1}+\lambda\left(Z_{2}+E Z_{1}\right) \bmod \mathrm{D}_{t} \\
V_{2}=Y_{1}+\lambda Z_{1}+\frac{\lambda^{2}}{2}\left(Y_{2}+E Y_{1}\right)+\frac{\lambda^{3}}{6}\left(Z_{2}+E Z_{1}\right) \bmod \mathrm{D}_{t}
\end{gathered}
$$

Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at $t=0$. Let

$$
\begin{aligned}
& Y_{1}=\partial_{p^{i}}, \quad Y_{2}=\partial_{p^{2}}, \\
& Z_{1}=\partial_{z^{1}}+\frac{1}{2}\left(\partial_{p^{1}} F_{1} \partial_{p^{1}}+\partial_{p^{1}} F_{2} \partial_{p^{2}}\right), \\
& Z_{2}=\partial_{z^{2}}+\frac{1}{2}\left(\partial_{p^{2}} F_{1} \partial_{p^{1}}+\partial_{p^{2}} F_{2} \partial_{p^{2}}\right),
\end{aligned}
$$

Find a normal frame (V_{1}, V_{2}) for ruling lines with $V_{1} \in \operatorname{Ker} \mathbf{T}$ i.e.,

$$
\begin{gathered}
V_{1}=Y_{2}+E Y_{1}+\lambda\left(Z_{2}+E Z_{1}\right) \bmod \mathrm{D}_{t} \\
V_{2}=Y_{1}+\lambda Z_{1}+\frac{\lambda^{2}}{2}\left(Y_{2}+E Y_{1}\right)+\frac{\lambda^{3}}{6}\left(Z_{2}+E Z_{1}\right) \bmod \mathrm{D}_{t}
\end{gathered}
$$

Following the conformal case, we find the functions m, n and finally they result in 7 equations of order 3 in 3 functions E, F^{1}, F^{2} which is not involutive!

Future directions

- Integrating structure equations to give explicit examples of Cayley structures
- The moduli space of rational curves with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(2)$ in a 3 -fold is equipped with a cubic form which gives Cayley cubic when restricted to certain hyperplane.
- Examples of uniruled manifolds for which the VMRTs give a Cayley structure.
- An alternative description of Cayley structures in terms of a pair of PDEs of finite type by passing to its space of null geodesics.
- Many of our discussion extends to a larger class of half-flat V-isotrivial causal structures.

Thank you for your attention!

