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Half-flat indefinite causal structures in dimension 4
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Definitions

The conformal class of a pseudo-Riem metric g on M™*! is uniquely
determined by its field of null cones

PTM > C* = {[v] € PTM | g(v,v) = 0}
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Definitions

The conformal class of a pseudo-Riem metric g on M is uniquely
determined by its field of null cones

PTM > C* = {[v] € PTM | g(v,v) = 0}

Assigning a null cone at each tangent space is the main ingredient for
understanding causal properties of M.

Roughly speaking, if C; not quadratic, then C is a field of proj
hypersurfaces locally described by

PTM > C*" = {[v] € TM | G(v) = 0}.

If the projective 2nd fund form of C, C PT, M, Yx € M is
non-degenerate everywhere one obtains a causal structure.
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Definitions

The relation of causal str to conformal pseudo-Riem str is an analogue
of what Finsler str are to Riem str:

Pseudo-Riemannian metric on M"*! is uniquely determined by its unit
sphere bundle

TM D X" = {ve TM| g(v,v) = 1}
Roughly speaking, if ¥, not quadratic one has a (local) Finsler metric
TM D $*" = {ye TM | F(v) = 1}

assuming radial transversality and non-deg of the 2nd fund form of
¥, C T, M, Vx € M.
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Definitions

Following Bryant’s notion of generalized Finsler structures:

Definition A causal structure on M™ ! is denoted by (M"™+1 C%")
together with an immersion ¢ : C — PTM where C is a connected,
smooth manifold of dimension 2n and ¢ is an immersions satisfying

@ The map mot:C — M is a submersion with connected fibers.

o In the fibration 7ot : C — M, the fibers C?~! := (w0 1)~ 1(z) are
mapped to immersed connected tangentially non-degenerate
projective hypersurfaces via ¢y : C; — PT,M, i.e., they have
non-deg projective 2nd fund form everywhere.

logglly ~ o~ C|ULC~|U
(M,C) = (M,C) L= ¢(x)
atzre Mze M i L i $:(Cy) = C~¢(y)
if 3diffeo p: U— U Vye U

where z€ UC M,z € Uc M U ¢ U
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Remarks

o C?"is called the(projective) null cone bundle of the causal
structure. We do not assume that its fibers are convex or closed in
PT,M.
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Remarks

o C?"is called the(projective) null cone bundle of the causal

structure. We do not assume that its fibers are convex or closed in
PT,M.

o Note that C can be open and be immersed as an open hypersurface
in PTM.

e For the local aspects of causal geometry ¢ can be assumed to be an
embedding in a sufficiently small neighborhood of C.
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Definitions and examples

Locally a causal structure can be expressed as
C 2 U= {(zy]) € PTM|L(z; y) = O}.

L: TM — R or C satisfies
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Definitions and examples
Locally a causal structure can be expressed as

C 2 U= {(zy]) € PTM|L(z; y) = O}.
L: TM — R or C satisfies

L(x; A\y) = \"L(z; y) for some r
0L
oyt oy

] has max rank over L = 0.
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L: TM — R or C satisfies

L(z; A\y) = A"L(z; y) for some r
0L
oyt oy

] has max rank over L = 0.

L(zy), S(z; y) L(x; y) — same causal str (S nowhere vanishing.)

Example : L(z;y) = (y")* + (¢¥)* + (v*)* — (y*)? : flat 4D causal

structure.
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Definitions and examples
Locally a causal structure can be expressed as

C > U={(z[y) € PTM|L(z; y) = 0}.
L: TM — R or C satisfies

L(z; A\y) = A"L(z; y) for some r
0L
oyt oy

] has max rank over L = 0.

L(zy), S(z; y) L(x; y) — same causal str (S nowhere vanishing.)

Example : L(z;y) = (y")* + (¢¥)* + (v*)* — (y*)? : flat 4D causal
structure.

Example : L(z;y) = %(y2)3 + P22 — Py

Null cones are projectively equivalent to Cayley’s cubic surface.
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Definitions and examples

Definition : (M,C) is called locally V-isotrivial if C, = V C P", Vo € M

L
(M,C) is called locally V-isotrivially flat if (M,C) = (U, Ux V) where
V C P" is a projective hypersurface.
i.e., locally it can be expressed as

{(z[y) e PTM | L(y) = 0}

with L(y) not depending on z.

Being locally V-isotrivial is the causal analogue of being locally
Minkowskian in Finsler geometry.

Theorem (Hwang, 2013) Causal structures arising from smooth
VMRTs are V-isotrivially flat.
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Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to
characterize geometric structures arising from certain classes of
differential equations.
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{Contact equivalence class of } locally Certain foliations of J? (R,R)
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Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to

characterize geometric structures arising from certain classes of
differential equations.

Contact equivalence class of
" b ,V , 2% Certain foliations of F(R,R)
= f(CL‘ v, 3/ )

Theorem (Holland-Sparling following the works of Cartan, Chern,
Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...)

contact equivalent classes | ;_; |[causal structures
—
of 3rd order ODEs (M3,Ch
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Initial motivation: Geometrization of DEs

This program, pioneered by Cartan and Chern, was aimed to
characterize geometric structures arising from certain classes of
differential equations.

Contact equivalence class of
" b . 2% Certain foliations of F(R,R)
= f(CL‘ v, 3/ )

Theorem (Holland-Sparling following the works of Cartan, Chern,

Sato-Yashikawa, Newman-Kozameh, Nurowski-Godlinski,...)

contact equivalent classes | ;_; |[causal structures
—
of 3rd order ODEs (M3,Ch

3-dimensional causal structures (M3,C*)

JHR,R) = K3 P J(R,R) = c* LGy VL~ Space of solutions

This picture can be generalized to higher dimensions.
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The equivalence problem: causal geometry
At (z;[y]) € C, with p: C?" — M™ p=Y(z) = CP! define

P 0) i@ curNT,CL) C Ty C
yrlegr  cpt C Tiay)C
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The equivalence problem: causal geometry
At (z;[y]) € C, with p: C?" — M™ p=Y(z) = CP! define

1w 0) Cut () Cu (1) C Ty C
yrtcgn cpinl C T(x;[y])c
Define w° the projective Hilbert

form

w” = Ann(P) := Ann(T},;Cy)
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The equivalence problem: causal geometry
At (z;[y]) € C, with p: C?" — M™ p=Y(z) = CP! define

P 0) i@ curNT,CL) C Ty C
yrlegr  cpt C Tiay)C

Define w° the projective Hilbert
form

w® = Ann(P) := Ann( T1Cx)
{0 -, w" 1} = Ann(7)
{w°, -, w"} = Ann(V),
with {0+, w", 01, ,0p_1}

being a coframe on C.
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The equivalence problem: causal geometry
At (z;[y]) € C, with p: C?" — M™ p=Y(z) = CP! define

P 0) i@ curNT,CL) C Ty C
yrlegr  cpt C Tiay)C

Define w° the projective Hilbert
form

C. CT,M

w” = Ann(P) := Ann(T},;Cy)
{0 -, w" 1} = Ann(7)

.\\f[ylcl = Ty@
{0, W = Amn(v), N
with {w07... 7wn’017..- 7(971_1} ﬁy]C1=KerOf

being a coframe on C.
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P 0) i@ curNT,CL) C Ty C
yrlegr  cpt C Tiay)C

Define w° the projective Hilbert
form

C. CT,M

w” = Ann(P) := Ann(T},;Cy)
{0 -, w" 1} = Ann(7)

.\\f[ylcl = Ty@
{0, W = Amn(v), N
with {w07... 7wn’017..- 7(971_1} ﬁy]C1=KerOf

being a coframe on C.

Omid Makhmali

Half-flat causal structures and integrable systems

10 / 26



Causal vs. Finsler

Finsler Causal

Indicatix bdle 2"t — M1 | (Proj.) null cone bdle C?" — M"+!
Loc. expressed as F'=1 Loc. expressed as L =10
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Causal vs. Finsler

Finsler Causal

Indicatix bdle 2"t — M1 | (Proj.) null cone bdle C?" — M"+!

Loc. expressed as F'=1 Loc. expressed as L =10
Hilbert form n° aF dx POJectlve Hilbert form w° aL da:'
n" : contact form on 22”+1 : quasi-contact form on C2"
AP = —Ciant — = Canr”, dwo = w0y e ]
1° A (dn°)" # 0 —2¢0Aw’, WO (dw)"t £ 0
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Causal vs. Finsler

Finsler

Causal

Indicatix bdle 32"+ — pmtl
Loc. expressed as FF'=1

(Proj.) null cone bdle C?" — M™+!
Loc. expressed as L =10

Hilbert form n° = g—;;dxi POJectlve Hilbert form w° BL d:c
n" : contact form on 3?7+ : quasi-contact form on C2"
dn’ = —CGiant —- - = Cunn, dwo = —Orwh— =0, AW

7O A (dn®)™ # 0 —2po AW’ WO (dw”)" L #£0

Geodesics: integral curves of
the Reeb vector field
n°(w) = 1,dp°(w,.) = 0

Null geodesics: integral curves of
the characteristic line field
W(v) =0,duw’(v,.) =0
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Finsler
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Loc. expressed as FF'=1

(Proj.) null cone bdle C?" — M™+!

Loc. expressed as L =10

Hilbert form n° BF dx POJectlve Hilbert form w° BL da:'
n" : contact form on 22"‘“ : quasi-contact form on C2"
dn’ = —CGiant —- - = Cunn, dwo = —Orwh— =0, AW

7O A (dn®)™ # 0 —2¢poAw?, wWOA (dw®)" "t #£0
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the Reeb vector field
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the characteristic line field
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¥, C Ty M is Legendrian
27 = Ker{n'}

C, C PT,M are quasi-Legendrian
Crl = Ker{w’}
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Finsler
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Indicatix bdle 32"+ — pmtl
Loc. expressed as FF'=1

(Proj.) null cone bdle C?" — M™+!

Loc. expressed as L =10
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Geodesics: integral curves of
the Reeb vector field
n°(w) = 1,dp°(w,.) = 0

Null geodesics: integral curves of
the characteristic line field
W(v) =0,duw’(v,.) =0

¥, C Ty M is Legendrian
27 = Ker{n'}

C, C PT,M are quasi-Legendrian
Crl = Ker{w’}

9= (1")% + oym"p
is well-def on ¥ (osc. quadric

(9] = 209%™ + £qpww?]
is well-def on C (osc. quadric
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Causal vs. Finsler

Finsler Causal

Cartan’s conn on X reg. norm. Cartan conn on C

Parabolic geometry of type

(Bn-1, P12), (Dn, P12),n > 4
(D3, P123), (Ba, P12)
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Cartan’s conn on X

reg. norm. Cartan conn on C
Parabolic geometry of type
(Bn-1, P12), (Dp, P12),n > 4

(D3, P123), (B, P12)

Essential invariants
Liji, - centro-affine invariant of ¥,
Rijo : Flag curvature

Essential invariants (Harmonic)
Fupe : Fubini cubic form of C,
Wanbn : Weyl shadow flag curvature
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Essential invariants
Liji, - centro-affine invariant of ¥,
Rijo : Flag curvature

Essential invariants (Harmonic)
Fupe : Fubini cubic form of C,
Wanbn : Weyl shadow flag curvature
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Fupe = 0 = Conformal
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Causal vs. Finsler

Finsler

Causal

Cartan’s conn on X

reg. norm. Cartan conn on C
Parabolic geometry of type
(Bn-1, P12), (Dp, P12),n > 4

(D3, P123), (B, P12)

Essential invariants
Liji, - centro-affine invariant of ¥,
Rijo : Flag curvature

Essential invariants (Harmonic)
Fupe : Fubini cubic form of C,
Wanbn : Weyl shadow flag curvature

Lijr = 0 = Riem. geom. on M

Fupe = 0 = Conformal
pseudo-Riem. geom. on M

Ripjo = 0 = B-int Segre
str on K (space of geod)

Wanbn = 0 = [-int Lie contact
str on K (space of null geod)
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Half-flatnesss in 4D conformal geometry
The proj quadric > C P3 given by w'w? — w'w? = 0 is doubly ruled
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a-surface is a surface whose tangent space is a a-plane everywhere.
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a-planes are Ker{w® — M\t w? — \w?}

B-planes are Ker{w® — M\w? w! — Aw?}

a-surface is a surface whose tangent space is a a-plane everywhere.
Penrose’s observation:

halfflatness <= a—integrability.
i.e., 3 a 3-parameter family of surfaces (a-surfaces) such that at each

point and through each a-plane at that point, there passes a unique
surface tangent to that a-plane.

Omid Makhmali Half-flat causal structures and integrable systems 13 / 26



Half-flatnesss in 4D conformal geometry

The proj quadric > C P3 given by w'w? — w'w? = 0 is doubly ruled
a-planes are Ker{w® — M\t w? — \w?}

B-planes are Ker{w® — M\w? w! — Aw?}

a-surface is a surface whose tangent space is a a-plane everywhere.
Penrose’s observation:

halfflatness <= a—integrability.
i.e., 3 a 3-parameter family of surfaces (a-surfaces) such that at each

point and through each a-plane at that point, there passes a unique
surface tangent to that a-plane.

The lift of these surfaces foliate C by 3-folds.
In terms of the Weyl curvature, using hodge star operator

W= e we
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Half-flatnesss in 4D conformal geometry

The proj quadric > C P3 given by w'w? — w'w? = 0 is doubly ruled
a-planes are Ker{w® — M\t w? — \w?}

B-planes are Ker{w® — M\w? w! — Aw?}

a-surface is a surface whose tangent space is a a-plane everywhere.
Penrose’s observation:

halfflatness <= a—integrability.

i.e., 3 a 3-parameter family of surfaces (a-surfaces) such that at each
point and through each a-plane at that point, there passes a unique
surface tangent to that a-plane.

The lift of these surfaces foliate C by 3-folds.
In terms of the Weyl curvature, using hodge star operator

W= e we

and half-flatness or self-duality is defined as W*? = 0.
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Half-flatnesss in 4D causal geometry

Let us look at the structure equations

dw® = Yorw® — 0t Aw? — 02 AW,
dw! = —fyl/\wo—'tpl/\wl —91/\w3+F202/\w2+F102/\w0
dw? = =42 A w®) — (Yo + o) Awt — 02 Aw? + Enft nw! + B0t AW
dw? = —fyl/\w2—fyzAwl—(1p1—|—¢2)/\w3+F092/\w0+E001/\w0,
det = —7r1/\w0—773/\w1—1/12/\91

+ Waw? Awd + Wgwl/\w2 —|—f5202/\w2 —|—f192/\w0
d6? = A w® — 3 A w? — (Yo — Y1) A 62

+ Vaw' nw? + ngl Aw? 4+ 0 Aw! + e 0t AW
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Half-flatnesss in 4D causal geometry

Let us look at the structure equations

dw® = Yorw® — 0t Aw? — 02 AW,
dw! = —fyl/\wo—wl/\wl —91/\w3+F292/\w2+F102/\w0
dw? = =42 A w®) — (Yo + o) Awt — 02 Aw? + Enft nw! + B0t AW
dw? = —fyl/\w2—fyzAwl—(1p1—|—¢2)/\w3+F092/\w0+E001/\w0,
det = —7r1/\w0—773/\w1—1/12/\91

+ Waw? Awd + Wg»,cul/\w2 —|—f5202/\w2 —|—f102/\w0
d6? = A w® — 3 A w? — (Yo — Y1) A 62

+ Vaw' nw? + nglAwQ—i— 0 A wh + 10 A WP

Conditions that guarantees a foliation of C by 3-folds are Fy = V4 = 0.
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Half-flatnesss in 4D causal geometry

Let us look at the structure equations

dw® = Yorw® — 0t Aw? — 02 AW,
dw! = —fyl/\wo—wl/\wl —91/\w3+F292/\w2+F102/\w0
dw? = =42 A w®) — (Yo + o) Awt — 02 Aw? + Enft nw! + B0t AW
dw? = —fyl/\w2—fyzAwl—(zpl—|—¢2)Aw3+F092/\w0+E001/\w0,
det = —7r1/\w0—773/\w1—1/J2/\91

+ Waw? Awd + Wg»,wl/\w2 —|—f5202/\w2 —|—f102/\w0
d6? = A w® — 3 A w? — (Yo — Y1) A 62

+ Vaw' nw? + nglAwQ—i— 0 A wh + 10 A WP

Conditions that guarantees a foliation of C by 3-folds are Fy = V4 = 0.
The condition FsFs = 0 implies the null cones are ruled.
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Half-flatnesss in 4D causal geometry

Let us look at the structure equations

dw® = Yorw® — 0t Aw? — 02 AW,
dw! = —fyl/\wo—wl/\wl —91/\w3+F292/\w2+F102/\w0
dw? = =42 A w®) — (Yo + o) Awt — 02 Aw? + Enft nw! + B0t AW
dw? = —fyl/\w2—fyzAwl—(zpl—|—¢2)/\w3+F092/\w0+E001/\w0,
det = —7r1/\w0—773/\w1—1/J2/\01

+ Waw? Awd + Wg»,wl/\w2 —|—f5202/\w2 —|—f102/\w0
d6? = A w® — 3 A w? — (Yo — Y1) A 62

+ Vaw' nw? + nglAwQ—i— 0 A wh + 10 A WP

Conditions that guarantees a foliation of C by 3-folds are Fy = V4 = 0.
The condition FsFs = 0 implies the null cones are ruled.
If F5 = F5 =0, then W, and Vj generate Wed and Wese,
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Double fibrations

For 4D indefinite self-dual causal structure:

T ct M
E2aV4:0 EQ,FQZO

conformal

causal

path geom
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Double fibrations

For 4D indefinite self-dual causal structure:

78 ct M

path geom

causal

conformal

If Fo = Ey = V4 =0, then (C, M) gives a half-flat conformal strucure
and T is equipped with a torsion-free path geometry

Omid Makhmali

Half-flat causal structures and integrable systems 15 / 26



Double fibrations

For 4D indefinite self-dual causal structure:

T ct M
By, V4 =0 FEo, F5 =0

path geom

causal conformal

If Fo = Ey = V4 =0, then (C, M) gives a half-flat conformal strucure
and T is equipped with a torsion-free path geometry

If B5 = Wy = V4 =0 then T has a projective str.

Theorem

indefinite half-flat causal on M* <= path geom. on T°
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?

Are there any integrable S-planes of ¢?
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?

Are there any integrable -planes of g7
Let {w? — Aw! = 0,w? — Aw® = 0} be an integrable 3-plane.
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?

Are there any integrable S-planes of ¢?

Let {w? — Aw! = 0,w? — Aw® = 0} be an integrable 3-plane.
Taking d:

d\ = 2201 + Mo — 4% mod W w?.
PN =0= BN+ 2R A+ Fy =0
where %Fl = iFifl.
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?

Are there any integrable S-planes of ¢?

Let {w? — Aw! = 0,w? — Aw® = 0} be an integrable 3-plane.
Taking d:

d\ = 2201 + Mo — 4% mod W w?.
PN =0= RN+ 2PN+ Fp =0
where %Fi = iF;_1.The condition d(Fa\? +2F 1\ + F3) = 0 implies
WAt + AWN? + 6 WA + AWIA+ Wy =0, 59 Wy = iWiq

BX 43N+ 3+ fo =0, fs = 35 B, rfi = i
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Principal null planes
When Ep = V4 = 0 then {w° w?, 02} is integrable.
The ruling planes {w” = 0,w? = 0}, are the a-planes for the deg metric

9= — wle?

Are there any integrable S-planes of ¢?
Let {w? — Aw! = 0,w? — Aw® = 0} be an integrable 3-plane.
Taking d:

d\ = 2201 + Mo — 4% mod W w?.
PN =0= RN+ 2PN+ Fp =0
where %Fi = iF;_1.The condition d(Fa\? +2F 1\ + F3) = 0 implies
WAt + AWN? + 6 WA + AWIA+ Wy =0, 59 Wy = iWiq

BX 43N+ 3+ fo =0, fs = 35 B, rfi = i

Thus quartic polynomial in conformal geometry is replaced by three
polynomials in the causal setting

Omid Makhmali Half-flat causal structures and integrable systems 16 / 26



Submaximal indefinite 4D causal str

Theorem : The submaximal 4D causal str of indefinite signature that
does not descend to a conformal structure is V-isotrivially flat where V'
is the Cayley cubic and its infinitesimal symmetry algebra is
8-dimensional and solvable.
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Submaximal indefinite 4D causal str

Theorem : The submaximal 4D causal str of indefinite signature that
does not descend to a conformal structure is V-isotrivially flat where V'
is the Cayley cubic and its infinitesimal symmetry algebra is
8-dimensional and solvable.

Note that classically the Cayley cubic is associated to pair of ODEs:
2,/1/ = 22, Zg =0.

It appears that this pair is point equivalent to Egorov projective
structure.
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Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is
projectively equivalent to the Cayley cubic.
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Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is
projectively equivalent to the Cayley cubic.

A Cayley structure on M can be introduced via the cubic form

p:%( )+w0w3w3 1w2w3

Omid Makhmali

Half-flat causal structures and integrable systems

18 / 26



Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is
projectively equivalent to the Cayley cubic.
A Cayley structure on M can be introduced via the cubic form

p= %(w2)3 + w0w3w3 _ w1w2w3

The 4D structure group preserving [p] is given by

fo u v %uv - ﬁug
0 fofy ufy v i
0 0 fofy? uf;?
0 0 0 fo 12
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Cayley structures

A Cayley structure is a V-isotrivial causal structure where V is
projectively equivalent to the Cayley cubic.
A Cayley structure on M can be introduced via the cubic form

p= %(w2)3 + WOw3w3 _ w1w2w3

The 4D structure group preserving [p] is given by

fo u v %uv - ﬁug
0 fofy ufy v i
0 0 fofy? uf;?
0 0 0 fo 12

Thus, any Cayley structure is equipped with an invariant flag given by

Ps={=0}0P={t=w?=0}D P ={=w?=w'=0}
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Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

dw® = —gonw® — 02 nw! — 0t A w?,
dw' = — (o + ¢1) Aw! — % aw? — 01 A W3,
dw? = —(¢0+2¢1)/\w2—62/\w3+ca6w0/\w1+a2w0/\w3,
dwd = — (¢o + 361) A w® + agw® A w? + agw® AW
+ a5w1 Aw? + agwl Awd + a1w2 Awd
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Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

dw® = —gonw® — 02 nw! — 0t A w?,
dw' = — (o + ¢1) Aw! — % aw? — 01 A W3,
dw? = —(¢0+2¢1)/\w2—62/\w3+ca6w0/\w1+a2w0/\w3,
dwd = — (¢o + 361) A w® + agw® A w? + agw® AW
+ a5w1 Aw? + agwl Awd + a1w2 Awd

The fundamental invariants are a; and Wjy.
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Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

dw® = —gonw® — 02 nw! — 0t A w?,
dw' = — (o + ¢1) Aw! — % aw? — 01 A W3,
dw? = —(¢0+2¢1)/\w2—92/\w3+ca6w0/\w1+a2w0/\w3,
dwd = — (¢o + 361) A w® + agw® A w? + agw® AW
+ a5w1 Aw? + agwl Awd + a1w2 Awd

The fundamental invariants are a; and Wjy.
If a; = 0, one obtains a class of path geometries depending on 6
functions of 2 variables.
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Half-flat Cayley structures

The first order structure equations for half-flat Cayley structures is

dw® = —ponw® — 02 nw! — 0 Aw?,
dw' = — (o + ¢1) Aw! — % aw? — 01 A W3,
dw? = —(¢0+2¢1)/\w2—92/\w3+ca6w0/\w1+a2w0/\w3,
dw® = — (¢o + 301) A w? + agw® A w? + agw® A w?
+ a5w1 Aw? + agwl Awd + a1w2 Awd

The fundamental invariants are a; and Wjy.

If a; = 0, one obtains a class of path geometries depending on 6
functions of 2 variables.

If W4 =0, one obtains a class of projective structures depending on 2
constants.
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}

@ Each of the 3-parameter family of surfaces carry a flat projective
structure.
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}

@ Each of the 3-parameter family of surfaces carry a flat projective
structure.

@ ag = 0 — then P; is a principal null plane and is integrable (A null
foliation) and has a projective structure.
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}

@ Each of the 3-parameter family of surfaces carry a flat projective
structure.

@ ag = 0 — then P; is a principal null plane and is integrable (A null
foliation) and has a projective structure.

@ ag = a5 = 0 + another diff cond — The 2D quotient space of
integral surface of Po
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}

@ Each of the 3-parameter family of surfaces carry a flat projective
structure.

@ ag = 0 — then P; is a principal null plane and is integrable (A null
foliation) and has a projective structure.

@ ag = a5 = 0 + another diff cond — The 2D quotient space of
integral surface of Po

@ a5 # 0 + another diff cond — Association of a contact equivalence
class of 3rd order scalar ODE.
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Half-flat Cayley str: A zoo of geometric structures
Vanishing of a; implies integrability of Ps, P3 in

Ps={?=0}DoP={?=w?=0}DP ={w®=w?=w!=0}

@ Each of the 3-parameter family of surfaces carry a flat projective
structure.

@ ag = 0 — then P; is a principal null plane and is integrable (A null
foliation) and has a projective structure.

@ ag = a5 = 0 + another diff cond — The 2D quotient space of
integral surface of Po

@ a5 # 0 + another diff cond — Association of a contact equivalence
class of 3rd order scalar ODE.

@ a5 =0, a5 # 0 4+ another diff cond — Association of a point
equivalence class of 3rd order scalar ODE.
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat

conformal structure on its solution space. Dunajski, Ferapontov and
Kruglikov gave the following construction of a Lax pair for them
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat

conformal structure on its solution space. Dunajski, Ferapontov and

Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and

Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.

The conformal metric [g] is given by g = w%w3 — wlw?
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and

Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.

The conformal metric [g] is given by g = w3 — wlw?

w where
wd = d2
w' =dp® — (0,1 Fad?' + 0,2 Fad?)
w? =dzt

WS = dpl — (8p1 F1d21 + 8p2F1d22)
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and

Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.

The conformal metric [g] is given by g = w3 — wlw?

w where
wd = d2
w' =dp® — (0,1 Fad?' + 0,2 Fad?)
w? =dzt

WS = dpl — (8p1 F1d21 + 8p2F1d22)
The 4-fold J has a conformal structure with a-planes given by

— )9 4 0 —)\0_ 4 9
Vi= )\80.)0 + Owl’ Vo= )\sz + Ow3
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and
Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.

The conformal metric [g] is given by g = w%w? — wlw?where

W = d2?
wl = dp2 — (8p1 ngzl + 6p2F2d22)
w? =dzt

w3 = dpl — (8p1 F1d21 + 6p2F1d22)
The 4-fold J has a conformal structure with a-planes given by
Vo= dgta + e, Vo= Al +

By half-flatness the lift a-surfaces foliate the circle bundle N = P! x M
of a-planes.
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DFK construction of a Lax pair

A torsion-free pair of ODEs 2/ = Fy(t, z,7), defines a half-flat
conformal structure on its solution space. Dunajski, Ferapontov and

Kruglikov gave the following construction of a Lax pair for them
Let JC JY(R,R?) be a slice at t = 0.

The conformal metric [g] is given by g = w%w? — wlw?where

W = d2?
wl = dp2 — (8p1 ngzl + 6p2F2d22)
w? =dzt

WS = dpl — (8p1 F1d21 + (9szle2)
The 4-fold J has a conformal structure with a-planes given by

— )9 4 0 —)\0_ 4 9
Vi= )\80.)0 + Owl’ Vo= )\sz + Ow3

By half-flatness the lift a-surfaces foliate the circle bundle N = P! x M
of a-planes.

The lift of { Vi, Va} to N is ambiguous up to %.
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DFK construction of a Lax pair

Define 71 = V1 + m%,Zg = Vo + n%.
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DFK construction of a Lax pair

Define 71 = V1 + m%,Zg = Vo + n%.

Determine m, n from [Z;, Z3] = 0 modulo {8%0, %, %}
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DFK construction of a Lax pair

Define 71 = V5 + m%,Zz =Vo+ n%.
Determine m, n from [Z;, Z3] = 0 modulo {8%0, %2, %}

[Z1,Z5] =0 modulo 0, a +%5 gives two PDEs of order 3 in four variables
which is involutive. The solutions depend on 6 functions of 3 variables.
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Half-flat Cayley str: characterizing Fel’s torsion
Given a pair (2')" = F'(,2,7), let Dy = 8, + p'0, + F'0,,,
and D = span{9,1, 0,2 }.
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Half-flat Cayley str: characterizing Fel’s torsion

Given a pair (2')" = F'(,2,7), let Dy = 8, + p'0, + F'0,,,
and D = span{9,1, 0,2 }.

Given X € span{D;}, a frame V = ( V1, V3) for D is called normal if
ad3V +TXV =0 mod Dy

where T is the torsion wrt this frame.

(2)
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Half-flat Cayley str: characterizing Fel’s torsion

Given a pair (2')" = F'(t,2,7), let Dy = 0; + p'0, + F'0,,

and D = span{9,1, 0,2 }.

Given X € span{D;}, a frame V = ( V1, V3) for D is called normal if
ad3V +T*V =0 mod D (2)

where T is the torsion wrt this frame.

Theorem : There is a one to one correspondence between
3-dimensional path geometries arising from half-flat Cayley structures
and point equivalence classes of pairs of second order ODEs satisfying

rankTX =1,  VxT¥=¢T%  §(T¥ =0,

for some function ¢ on J}(R,RR?).
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Given X € span{D;}, a frame V = ( V1, V3) for D is called normal if
ad3V +T*V =0 mod D (2)

where T is the torsion wrt this frame.

Theorem : There is a one to one correspondence between
3-dimensional path geometries arising from half-flat Cayley structures
and point equivalence classes of pairs of second order ODEs satisfying

rankTX =1,  VxT¥=¢T%  §(T¥ =0,
for some function ¢ on J}(R,RR?).

As a result TX = ((1] 8) in some normal frame.
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Half-flat Cayley str: characterizing Fel’s torsion

Given a pair (2')" = F'(t,2,7), let Dy = 0; + p'0, + F'0,,

and D = span{9,1, 0,2 }.

Given X € span{D;}, a frame V = ( V1, V3) for D is called normal if
ad3V +T*V =0 mod D (2)

where T is the torsion wrt this frame.

Theorem : There is a one to one correspondence between
3-dimensional path geometries arising from half-flat Cayley structures
and point equivalence classes of pairs of second order ODEs satisfying

rankTX =1,  VxT¥=¢T%  §(T¥ =0,

for some function ¢ on J}(R,RR?).

As a result TX = ((1] 8) in some normal frame. The above ODE gives
A2 A3
Vi= A1+ ABy, V2:A2+)\B2+?A1+€B17

for some vector fields A1, Ao, By, By such that adxA; = adxB; = 0.
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Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at ¢t = 0.

Omid Makhmali Half-flat causal structures and integrable systems 24 / 26



Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at ¢ = 0.Let

Yi =0, Ya=0dp,
Zy =0, + %(8P1F18p1 + 8p1 Fgapz),

Joy = 8z2 + %(8p2F18p1 + 3p2F26p2),
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Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at t = 0.Let
Y1 =0y, Y2=20p,
Zy =0, + %(8P1F18p1 + 8p1 Fgapz),
Joy = 8z2 + %(8P2F16p1 + 8p2F26p2),

Find a normal frame (V7, V2) for ruling lines with V; € KerT i.e.,

Vi=Yy+ EY] + )\(ZQ + EZI) mod Dy

A2 3
Vo=Y1+ 21+ ?(YQ + EY)) + F(ZQ + EZ;) mod Dy
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Half-flat Cayley str: A Lax pair

As in the conformal case take a slice at ¢ = 0.Let
Y1 =0y, Y2=20p,
Zy =0, + %(BplFlapl + 8p1 Fgapz),
Joy = 8z2 + %(6p2F18p1 + 8p2F26p2),

Find a normal frame (V7, V2) for ruling lines with V; € KerT i.e.,

Vi=Yy+ EY] + )\(ZQ + EZI) mod Dy

A2 3
Vo=Y14+ A2+ ?(YQ + EY)) + F(ZQ + EZ;) mod Dy

Following the conformal case, we find the functions m, n and finally

they result in 7 equations of order 3 in 3 functions E, F!, F? which is
not involutive!
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Future directions

Integrating structure equations to give explicit examples of Cayley
structures

@ The moduli space of rational curves with normal bundle
O(1) ® O(2) in a 3-fold is equipped with a cubic form which gives
Cayley cubic when restricted to certain hyperplane.

e Examples of uniruled manifolds for which the VMRTs give a
Cayley structure.

o An alternative description of Cayley structures in terms of a pair
of PDEs of finite type by passing to its space of null geodesics.

e Many of our discussion extends to a larger class of half-flat
V-isotrivial causal structures.
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Thank you for your attention!
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