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Notation
� R real numbers

� V vector space

� C
R V is the complexi�cation of the R-vector space V

� �i (V ) the skew-symmetric i-form on a vector space V

� Si (V ) the symmetric i-form on a vector space V

� M;N manifolds

� f :M �! N a smooth map

� f � : C1 (N) �! C1 (M)

� �2 (f �) �(X; Y ) is the pullback of the 2-form �; �2 (f �) �(X;Y ) = �(fX; fY )

� T �x (M) cotangent space of M at the point x

� Tx (M) tangent space of M at the point x

� T � (M) =
S
T �x (M) the total space of the cotangent bundle

� T (M) =
S
Tx (M) the total space of the cotangent bundle

� � �M : T � (M) �!M the cotangent bundle of M

� �M : T (M) �!M the tangent bundle of M

� �i (� �M) the i-th exterior power of the cotangent bundle of M

� �i (�M) the i-th exterior power of the tangent bundle of M

� 
i (M) the module of sections of �i (� �M)

� Di (M) the module of sections of �i (�M)
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Chapter 1

Introduction

In this thesis we will investigate a system of two non-linear �rst-order PDE�s of Jacobi

type. The PDE system will have the form:

8<: a1 + b1
@h1
@x1
� c1 @h1@x2

� d1 @h2@x2
+ e1

@h2
@x1
+ f1

�
@h1
@x1

@h2
@x2
� @h1

@x2

@h2
@x1

�
= 0

a2 + b2
@h1
@x1
� c2 @h1@x2

� d2 @h2@x2
+ e2

@h2
@x1
+ f2

�
@h1
@x1

@h2
@x2
� @h1

@x2

@h2
@x1

�
= 0

; (�)

where x1; x2 are the independent variables, h1; h2 are the unknown functions and ai; :::; fi

are functions of x1; x2; h1; h2:

The system consists of two quasi-linear �rst-order PDE�s, together with the two non-

linear terms @h1
@x1

@h2
@x2
� @h1

@x2

@h2
@x1
:

The term @h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

is the Jacobian-determinant of h = (h1; h2); with respect

to x1; x2, and thereby, the name "system of Jacobi type".

From now on we will refer to the PDE system as the Jacobi PDE system.

By adding the Jacobi terms to the quasi-linear system, we get a class of PDE systems

which is invariant with respect to coordinate transformations. In other words, if we take

a Jacobi PDE system and apply any coordinate transformations, we will still have a

Jacobi PDE system.

To illustrate this, we apply a hodograph transformation to the Cauchy-Riemann sys-

tem.

5



Let x1; x2 be the independent variables, and h1; h2 the unknown functions. Then the

Cauchy-Riemann system is given by:8<: @h2
@x1
� @h1

@x2
= 0

@h1
@x1
+ @h2

@x2
= 0

:

The hodograph transformation � which we will perform, is simply changing one of the

dependant variables with one of the independent variables:

(x1; x2; u1; u2)
�7! (x1; u1; x2; u2) :

One can check that after the hodograph transformation �; the Cauchy-Riemann system

will have the form: 8<: @~h1
@~x2

@~h2
@~x1
� @~h1

@~x1

@~h2
@~x2

= 1

@~h1
@~x1
� @~h2

@~x2
= 0

:

Clearly, it is not a quasi-linear PDE system, but a Jacobi PDE system.

As we can see, the class of quasi-linear PDE systems is not closed with respect to

transformation of known and unknown variables.

The logical scheme of this thesis is given by the following diagram:

Explanation to the �gure:

Di (h) = 0 in the diagram is the two PDE�s (i = 1; 2) in the Jacobi PDE system.

� � �2 (� �M) � is a 2-dimensional subbundle in the bundle of di¤erential 2-forms.

A is a smooth �eld of operators on M:

1) The top line: Di (h) = 0() � � �2 (� �M) ; illustrates that the Jacobi PDE system

can equally be represented as a 2-dimensional subbundle in the bundle of di¤erential 2-

forms. This equivalence is described in chapter (2) :
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2) The right line: � � �2 (� �M)() A 2 �M 
 � �M ; illustrates that the 2-dimensional

subbundle � in the bundle of di¤erential 2-forms, can equally be represented as a smooth

�eld A of operators on M: The implication from left to right is described in chapter (4),

while the implication from right to left is described in chapter (5).

3) The left line Di (h) = 0() A 2 �M 
 � �M ; is a direct consequence of 1) and 2).

These relations will enable us to make a pointwise classi�cation of Jacobi PDE sys-

tems. The classi�cation is invariant with respect to coordinate transformations.

The classi�cation is di¤erent from the standard classi�cation of elliptic, hyperbolic

and parabolic types, and depends on all of the functions ai; :::; fi:

The main result in this thesis is a necessary and su¢ cient criterion for when an elliptic

or hyperbolic Jacobi PDE system can be transformed into the Cauchy-Riemann system

or the Wave system.

Not only do we give the criterion, this thesis also provides a constructive way of

�nding it for a given Jacobi PDE system.

All the structures dealt with in this thesis are smooth, and if not stated otherwise,

they should be regarded as smooth.
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Chapter 2

Jacobi PDE system

2.1 Representation of the Jacobi PDE system by two

di¤erential 2-forms

In this section we will discuss a representation of the Jacobi PDE system. We will show

how to represent the system by a 2-dimensional subbundle in the bundle of di¤erential

2-forms over a 4-dimensional manifold. This description will enable us to make pointwise

classi�cation of the Jacobi PDE system, which is the preface of our analysis of the Jacobi

PDE system. The classi�cation will be described in the next chapter.

Let us consider the arithmetic space R4 with coordinates (x1; x2; u1; u2).

Let h be a smooth map from R2 to R2; such that:

h : R2 �! R2;

(x1; x2) 7�! (h1(x1; x2); h2(x1; x2)) :

The graph of h determines a two-dimensional submanifold Lh in R4 :

graph(h) = Lh � R2 � R2;

Lh =
�
(x1; x2; u1; u1) 2 R4j u1 = h1(x1; x2) and u2 = h2(x1; x2)

	
:
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Notation 2.1 In order to simplify the expressions, we will make the following assump-

tions:

x = (x1; x2) ; u = (u1; u1) and h = (h1(x1; x2); h2(x1; x2)) :

We have the following important observation [Ly2]: any smooth 2-form ! 2 
2 (R4)

determines the �rst order non-linear di¤erential operator �! : C
1 (R2;R2) �! 
2(R2);

in the following way:

h 7�! �!(h) = !jgraph(h):

To �nd the coordinate form of this operator, let us assume that ! is given by:

! = a(x; u)dx1 ^ dx2 + b(x; u)du1 ^ dx2 + c(x; u)du1 ^ dx1

+d(x; u)du2 ^ dx1 + e(x; u)du2 ^ dx2 + f(x; u)du1 ^ du2 :

Then we get:

�! : h 7! a(x; h)dx1 ^ dx2 + b(x; h)
@h1
@x1

dx1 ^ dx2 + c(x; h)
@h1
@x2

dx2 ^ dx1

+d(x; h)
@h2
@x2

dx2 ^ dx1 + e(x; h)
@h2
@x1

dx1 ^ dx2

+f (x; h)

�
@h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

�
dx1 ^ dx2:

We also note that �! is C1 (R4)-linear in the !-argument.

In other words, the di¤erential equation:

D (h) = a+ b
@h1
@x1

� c@h1
@x2

� d@h2
@x2

+

e
@h2
@x1

+ f

�
@h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

�
= 0;
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can be represented by the 2-form ! :

! = a(x; u)dx1 ^ dx2 + b(x; u)du1 ^ dx2 + c(x; u)du1 ^ dx1

+d(x; u)du2 ^ dx1 + e(x; u)du2 ^ dx2 + f(x; u)du1 ^ du2 ;

in the sense that:

D (h) = 0() !jLh = 0:

So, to any system D1 (h) = 0, D2 (h) = 0, we may use the correspondence above,

and get two 2-forms !1 and !2; such that h satis�es the above equations if and only

if !1jLh = 0 and !2jLh = 0: Clearly, we are allowed to take linear combinations of the

equations (D1 (h) = 0; D2 (h) = 0) ; with coe¢ cients being smooth functions, in a non-

degenerate way, without altering the system.8<: a11D1 (h) + a12D2 (h) = 0

a21D1 (h) + a22D2 (h) = 0

9=;()

8<: �!1 = a11!1 + a12!2

�!2 = a21!1 + a22!2

9=; ; where jaijj 2 C1(R4);
such that det jjaijjj 6= 0:

Hence, for a system D1 (h) = 0, D2 (h) = 0; one can identify a smooth �eld of 2-

dimensional subspaces � : x 2 M 7�! �(x) � �2 (T �xR4) ; where �(x) is generated

by !1;x and !2;x: Or, in other words, with a 2-dimensional subbundle � in the bundle

�2
�
� �R4
�
:

The construction above gives rise to the following de�nitions:

De�nition 2.2 Any smooth �eld � of 2-dimensional planes:

� :M �! �2(T �M);

x 7�! �(x) � �2(T �xM);

on any 4-dimensional manifold M; will be called a Jacobi PDE system on 2-dimensional

submanifold of M:
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De�nition 2.3 A 2-dimensional submanifold L �M; will be called a solution of �; if:

!xjTxL = 0 for any x 2 L ; and for any !x 2 �(x):

De�nition 2.4 Let � be a Jacobi PDE system. Then at a point x, the plane �(x) =

h!1;x; !2;xi ; will be called a Jacobi plane.

De�nition 2.5 Let V be a 4-dimensional vector space. Then a plane � will be called a

Jacobi plane.

The plane �(x) � �2(T �xM); we call a Jacobi plane at the point x:

In other words, the Jacobi PDE system is a smooth family of Jacobi planes.

So, we managed to give a description of the Jacobi PDE system, namely to that of a

2-dimensional subbundle in �2 (� �M) :

This completes the upper equivalence in the triangle.

2.1.1 Symmetries and conservation laws for the Jacobi PDE

systems

Let � � �2 (� �M) be a Jacobi PDE system.

De�nition 2.6 By a symmetry of the Jacobi PDE system, we mean a di¤eomorphism

F :M �!M; such that �2 (F �) : � �! �: That is:

�2F � (!1) = a11!1 + a12!2;

�2F � (!2) = a21!1 + a22!2;

for some aij 2 C1 (M) ; and any basis !1; !2 on �:

Proposition 2.7 If F is a symmetry of �; and L is a solution of �; then F (L) is a

solution of �:
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Proof. Since L is a solution, we know that: !1jL = 0 and !2jL = 0 :

�2F � (!1) jL = �2F � (!1jL) = 0;

and so,

�2F � (!1) jL = a11!1jF (L) + a12!2jF (L) = 0:

Similarly, we get:

�2F � (!2) jL = �2F � (!2jL) = 0

and so,

�2F � (!2) jL = a21!1jF (L) + a22!2jF (L) = 0:

Thus, we conclude that F (L) is a solution of �; if F is a symmetry of �:

De�nition 2.8 An in�nitesimal symmetry of the Jacobi PDE system � = h!1; !2i ;

is a smooth vector �eld X 2 D (M) ; such that:

LX (!1) = a11!1 + a12!2;

LX (!2) = a21!1 + a22!2;

for some aij 2 C1 (M) :

Here LX (!) is the Lie derivative of ! along the vector �eld X:

Remark 2.9 Let Ft be a 1-parametric group of symmetries, then X =
dF �t
dt
jt=0 is a

in�nitesimal symmetry.

Proposition 2.10 Let X 2 D (M) be an in�nitesimal symmetry, and let Ft be the cor-

responding 1-parametric group. Then Ft is a symmetry of �, for any t:

Proof. Denote �2F �t (!1) = !1t and �
2F �t (!2) = !2t:

Since:
d

dt
F �t (�) jt=t0 = F �t0 (LX (�)) ;

12



we get: 8<: d!1t
dt
= �2F �t (Lx!1) = F

�
t (a11)!1t + F

�
t (a12)!2t

d!2t
dt
= �2F �t (Lx!2) = F

�
t (a21)!1t + F

�
t (a22)!2t

:

Denote F �t (aij) = Aij (t) ; then:8<: d!1t
dt
= A11 (t)!1t + A12 (t)!2t

d!2t
dt
= A21 (t)!1t + A22 (t)!2t

:

Hence:
d!t
dt

= A (t)!t; (2.1)

where jjAij (t) jj = A (t) and !t =

0@ !1t

!2t

1A :
Equation (2:1) ; is a homogenous two dimensional linear ODE system, with the initial

conditions !10 = !1 and !20 = !2:

Let us consider an auxiliary ODE system:8<: dx1
dt
= A11 (t)x1 + A12 (t)x2

dx2
dt
= A21 (t)x1 + A22 (t)x2

:

Denote the fundamental matrix by Tt of the auxiliary ODE system, in the sense that:24 x1 (t)
x2 (t)

35 = Tt
24 x1 (0)
x2 (0)

35 ;
where:

Tt =

24 B11 (t) B12 (t)

B21 (t) B22 (t)

35 :
Then: 8<: !1t = B11 (t)!1 +B12 (t)!2

!2t = B21 (t)!1 +B22 (t)!2
;

13



is the only solution of (2:1) :

Since:

�2F �t (!1) = !1t = B11 (t)!1 +B12 (t)!2;

�2F �t (!2) = !2t = B21 (t)!1 +B22 (t)!2;

Ft is a symmetry for all t�s:

De�nition 2.11 By a conservation-law for the Jacobi PDE system � = h!1; !2i, we

mean a di¤erential 1-form � 2 
1 (M) ; such that:

d� = a!1 + b!2;

for some a; b 2 C1 (M) :

Let � be a conservation law, and let L be a solution of �. Assume that D � L is a

domain in L; and @D is the boundary of D:

Then:

d�jL = 0:

Due to Stokes theorem, we know that:

Z
D
d� =

Z
@D
�;

and so: Z
@D
� = 0:
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2.2 Examples

2.2.1 Cauchy-Riemann system

In this example we will take the Cauchy-Riemann system, and �nd its corresponding

forms by the method described in section (2:1) :

@h2
@x1

� @h1
@x2

= 0() !1 = dx1 ^ du1 + dx2 ^ du2;

@h1
@x1

+
@h2
@x2

= 0() !2 = du1 ^ dx2 � du2 ^ dx1:

Due to de�nition (2:11) ;we see that � = u1dx1 + u2dx2 and �
0 = u1dx2 + u2du1 are

conservation laws for the Cauchy-Riemann system, since d� = !1 and d�
0 = !2:

Among the simplest examples of symmetries F : M �! M of the Cauchy-Riemann

system, we have translations:

(x1; x2; u1; u1)
F (a;b;c;d)7�! (x1 + a; x2 + b; u1 + c; u1 + d) :

One can easily see that:

�2F � (!1) = d (u1 + c) ^ d (x1 + a) + d (u2 + b) ^ d (x2 + b) = !1;

�2F � (!2) = d (u1 + c) ^ d (x2 + b)� d (u2 + b) ^ d (x1 + a) = !2:

Note that !1 is the standard symplectic structure on a R4.

The Hamiltonian vector �eld XH is derived by:

iXH!1 = dH:

Hence:

XH =
@H

@u1

@

@x1
+
@H

@u2

@

@x2
� @H

@x1

@

@u1
� @H

@x2

@

@u2
:

Theorem 2.12 The Hamiltonian vector �eld XH is an in�nitesimal symmetry for the
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Cauchy-Riemann system if and only if:

@2H

@x1@x1
+

@2H

@x2@x2
= 0; (2.2)

@2H

@u2@u2
+

@2H

@u1@u1
= 0;

@2H

@u2@x1
+

@2H

@x2@u1
= � @2H

@u1@x2
� @2H

@x1@u2
;

@2H

@x2@u2
� @2H

@u1@x1
= � @2H

@u2@x2
+

@2H

@x1@u1
:

Proof. Its well known that the Hamiltonian vector �elds preserve the standard

symplectic structure, that is:

LXH!1 = 0:

Note that:

iXHdui = �
@H

@xi
and iXHdxi =

@H

@ui
:

Let us calculate:

LXH!2 =

= LXH (du1 ^ dx2 � du2 ^ dx1)

= LXH (du1) ^ dx2 + du1 ^ LXH (dx2)� LXH (du2) ^ dx1 � du2 ^ LXH (dx1)

= �d
�
@H

@x1

�
^ dx2 + du1 ^ d

�
@H

@u2

�
+ d

�
@H

@x2

�
^ dx1 � du2 ^ d

�
@H

@u1

�
:

Hence, if we write:

LXH!2 = a!1 + b!2;

we �nd that a =
�

@2H
@u2@x1

+ @2H
@x2@u1

�
and b =

�
@2H
@x2@u2

� @2H
@u1@x1

�
; and conditions (2:2) are

satis�ed.
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2.2.2 The symplectic Monge-Ampère equations

The symplectic Monge-Ampère equations have the following form:

â+b
@2'

@x21
�d@

2'

@x22
�c @2'

@x2@x1
+e

@2'

@x1@x2
+�a

@'

@x1
+~a

@'

@x2
+f

�
@2'

@x21

@2'

@x22
� @2'

@x2@x1

@2'

@x1@x2

�
= 0;

(i)

where â; ::; f are smooth functions of x and @'
@x
:

We reduce the symplectic Monge-Ampère equation into a Jacobi PDE system, by

the following substitution: h1 = @'
@x1

; h2 = @'
@x2

and @h1
@x2

= @h2
@x1

as the compatibility

condition.

After the substitution, we get the Jacobi system:

@h2
@x1

� @h1
@x2

= 0;

a+ b
@h1
@x1

� c@h1
@x2

� d@h2
@x2

+ e
@h2
@x1

+ f

�
@h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

�
= 0; (ii)

where a = â+ �ah1 + ~ah2 and a; ::; b are smooth functions of x; h:

The corresponding 2-forms are:

!1 = dx1 ^ du1 + dx2 ^ du2;

!2 = a(x; u)dx1 ^ dx2 + b(x; u)du1 ^ dx2

+c(x; u)du1 ^ dx1 + d(x; u)du2 ^ dx1

+e(x; u)du2 ^ dx2 + f(x; u)du1 ^ du2 :

Theorem 2.13 If we have a Jacobi PDE system with a conservation law � 2 
1 (M) ;

such that d� is a non-degenerated 2-form , then locally it can be written as the symplectic

Monge-Ampère equation (i).

Proof. The non-degenerated 2-form d�; determines a symplectic structure on M:

Due to Darboux theorem, locally there exists a canonical coordinate system for d�; say
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(x1; x2; u1; u2) ; such that:

d� = dx1 ^ du1 + dx2 ^ du2:

Let !0 be a 2-form, such that h!0; d�i is a local basis for �: Then !0 has the same form as

!2 in the example above. Hence the Jacobi PDE system (�!0 (h) = 0;�d� (h) = 0), can

be written as the symplectic Monge-Ampère equation (i).
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Chapter 3

Classi�cation of Jacobi planes

In this chapter we will classify Jacobi planes � � �2 (V �) ; dimV = 4 with respect to the

group GL (V ) of linear transformations of V:

3.1 Symmetric bilinear form on the Jacobi planes

Let 
 2 �4 (V �) be a volume form:

De�ne a symmetric bilinear form q on � by:

q : �
 � �! R;

(�; �) 7�! � ^ � = q(�; �)
;

where �; � 2 �:

Let us �nd a coordinate expression for q:

Assume that e1; e2; e3; e4 is a basis in V; and let us �x the volume form 
 = e�1 ^ e�2 ^

e�3 ^ e�4:

Then the quadratic form q is represented by the matrix:

Q =

24 q(!1; !1) q(!1; !2)

q(!2; !1) q(!2; !2)

35 :
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To �nd Q, we will assume that !i are given as:

!i = aie
�
1 ^ e�2 + bie�3 ^ e�2 + cie�3 ^ e�1 + die�4 ^ e�1 + eie�4 ^ e�2 + fie�3 ^ e�4:

Thus,

Q =

24 2f1a1 � 2e1c1 + 2b1d1 f1a2 + d1b2 � e1c2 + b1d2 � c1e2 + a1f2
f1a2 + d1b2 � e1c2 + b1d2 � c1e2 + a1f2 2f2a2 � 2e2c2 + 2b2d2

35 :
Denote 2f1a1 � 2e1c1 + 2b1d1 by A, f1a2 + d1b2 � e1c2 + b1d2 � c1e2 + a1f2 by B,

2f2a2 � 2e2c2 + 2b2d2 by C and detQ by K.

Note that if we change 
 to �
, where � 2 R; then Q changes to ��1Q: This means

that we know Q up to multiplier. We also notice that if we change basis in �; and let P

be the transition matrix, then Q will change the following way:

Q �! P TQP; then

detQ �! detQ (detP )2 :

Therefore, sign detQ is an invariant of Jacobi planes with respect to GL (V ).

Denote sign detQ by " (�) :

3.2 Types of Jacobi planes

3.2.1 Elliptic Jacobi planes

De�nition 3.1 We say that � � �2 (V �) is an elliptic plane if qj� is a non-degenerated

determined form.

De�nition 3.2 Let � be a Jacobi PDE system. We will say that a Jacobi PDE system

is elliptic at the point x, or simply that x is an elliptic point, if the Jacobi plane �(x) =

h!1;x; !2;xi is elliptic.
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Proposition 3.3 Let qj� be a non-degenerated determined form, then:

sign detQ > 0:

Proof. Due to Sylvester�s theorem, we may assume that the matrix of the bilinear

form q is diagonal, say:

Q =

24 a11 0

0 a22

35 :
Then q is a non-degenerated determined form, if and only if:

a11a22 > 0:

Hence,

sign detQ > 0:

Theorem 3.4 The following two statements are equivalent:

1) � = h!1; !2i � �2 (V �) is an elliptic plane.

2) There exist a basis h�1; �2i on �; such that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = �2 ^ �2 6= 0:

Proof. Let f!1; !2g be a basis on �, and we use the notation from Section (3:1).

Note that A 6= 0 and K 6= 0:

Take:
�1 =

1p
K!1;

�2 = �B
K!1 +

A
K!2;
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in this basis we get that:

Q =

24 A
K 0

0 A
K

35 :
Therefore, in the basis f�1; �2g on �; we have the following relations:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = �2 ^ �2:

3.2.2 Hyperbolic Jacobi planes

De�nition 3.5 We say that � � �2 (V �) is a hyperbolic plane if qj� is a non-

degenerated sign undetermined form.

De�nition 3.6 Let � be a Jacobi PDE system. We will say that a Jacobi PDE system

is hyperbolic at the point x, or simply that x is a hyperbolic point, if the Jacobi plane

�(x) = h!1;x; !2;xi is hyperbolic.

In a similar way as for proposition (3:3) and theorem (3:8) ; we obtain the following:

Proposition 3.7 Let qj� be a non-degenerated sign undetermined form, then:

sign detQ < 0:

Theorem 3.8 The following two statements are equivalent:

1) � = h!1; !2i � �2 (V �) is a hyperbolic plane.

2) There exist a basis h�1; �2i on �; such that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = ��2 ^ �2 6= 0:
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Remark 3.9 For both the elliptic and the hyperbolic plane we may do the following basis

change:

�1 =
1p
jKj
!1

�2 = �B
K!1 +

A
K!2

:

Then we get:

�1 ^ �2 = 0 , (3.1)

�1 ^ �1 sign(K) = �2 ^ �2:

From now on we will refer to such a basis as an orthogonal basis.

3.2.3 Parabolic Jacobi planes

De�nition 3.10 We say that � � �2 (V �) is a parabolic plane if qj� is a degenerated

non-zero form.

De�nition 3.11 We will say that a Jacobi PDE system is parabolic at the point x, or

simply that x is a parabolic point, if the Jacobi plane �(x) = h!1;x; !2;xi is parabolic.

With a similar analysis as above one can derive the following:

Proposition 3.12 Let qj� be a degenerated non-zero form, then:

sign detQ = 0:

Theorem 3.13 The following two statements are equivalent:

1) � = h!1; !2i � �2 (V �) is a parabolic plane.

2) There exist a basis h�1; �2i on �; such that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = 0 and �2 ^ �2 6= 0:
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3.2.4 Degenerated Jacobi planes

De�nition 3.14 We say that � � �2 (V �) is a degenerated plane if qj� = 0:

De�nition 3.15 We will say that a Jacobi PDE system is degenerated at the point x,

or simply that x is a degenerated point, if the Jacobi plane �(x) = h!1;x; !2;xi is degen-

erated.

3.3 Classi�cation of elliptic Jacobi planes

In this section, we will classify Jacobi planes with respect to GL (V ) :

Let (V;
) be a 4-dimensional symplectic vector space, where 
 is the symplectic

structure on V:

De�nition 3.16 For any � 2 �2(V �); we de�ne the Pfa¢ an, Pf (�) 2 R, of the form

� in the following way:

� ^ � = Pf (�) 
 ^ 
:

We call � an e¤ective form if:

� ^ 
 = 0:

Theorem 3.17 [LRC] : Any e¤ective non-degenerated 2-form �; on the four dimensional

symplectic vector space V; may be transformed, by means of symplectic transformations,

to one of the following:

elliptic type:

� = � (e�1 ^ f �2 � e�2 ^ f �1 ) ; � =
p
Pf (�) and Pf (�) > 0;

hyperbolic type:

� = � (e�1 ^ f �1 � e�2 ^ f �2 ) ; � =
p
�Pf (�) and Pf (�) < 0;
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parabolic type:

� = e�1 ^ f �2 ; and Pf (�) = 0:

Let � be an elliptic plane.

Then due to theorem (3:4) ; there exists a basis f�1; �2g on �; such that:

�1 ^ �2 = 0;

and:

�1 ^ �1 = �2 ^ �2 6= 0:

Since both �1 and �2 are non-degenerated, we may choose �1 to be a symplectic form

on V; and �2 to be an e¤ective form, and Pf (�2) = 1:

Denote �1 by 
 and �2 by �:

Due to theorem (3:17) ; there exist a basis fe1; e2; f1; f2g on V; such that:

� = e�1 ^ f �2 � e�2 ^ f �1 ;


 = e�1 ^ f �1 + e�2 ^ f �2 ;

since Pf (�) = 1:

Let us call the basis fe1; e2; f1; f2g ; the canonical basis for V:

We call the forms � and 
 for the normal forms for �:

Let� and�0 be two elliptic Jacobi planes, then there is a canonical basis fe1; e2; f1; f2g

for �; and a canonical basis fe01; e02; f 01; f 02g for �0:

Thus, the linear operator T : V �! V , which acts like:

e1 7�! e01;

e2 7�! e02;

f1 7�! f 01;

f2 7�! f 02;

25



transforms � to �0:

The results above give rise to the following theorem:

Theorem 3.18 1.

2. Any two elliptic Jacobi planes �;�0 � �2 (V �) ; are equivalent with respect to

GL (V ).

3. For any elliptic Jacobi plane �; there exist a canonical basis fe1; e2; f1; f2g on V;

such that:

� = e�1 ^ f �2 � e�2 ^ f �1 ;


 = e�1 ^ f �1 + e�2 ^ f �2 ;

where � and 
 are the normal forms for �:

3.4 Classi�cation of hyperbolic Jacobi planes

With a similar analysis as in section (3:3) ; we get:

Theorem 3.19 1. Any two hyperbolic Jacobi planes �;�0 � �2 (V �) ; are equivalent

with respect to GL (V ).

2. For any hyperbolic Jacobi plane �, there exist a canonical basis fe1; e2; f1; f2g on

V; such that:

� = e�1 ^ f �1 � e�2 ^ f �2 ;


 = e�1 ^ f �1 + e�2 ^ f �2 ;

where � and 
 are the normal forms for �:
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3.5 Classi�cation of parabolic Jacobi planes

With a similar analysis as in section (3:3) ; we get:

Theorem 3.20 1. Any two parabolic Jacobi planes �;�0 � �2 (V �) ; are equivalent

with respect to GL (V ).

2. For any parabolic Jacobi plane �; there exist a canonical basis fe1; e2; f1; f2g on V;

such that:

� = e�1 ^ f �2 ;


 = e�1 ^ f �1 + e�2 ^ f �2 ;

where � and 
 are the normal forms for �:

3.6 Classi�cation of degenerated Jacobi planes

One can easily show with some linear algebra, that the following holds:

Theorem 3.21 1. Any two degenerated Jacobi planes �;�0 � �2 (V �) ; are equivalent

with respect to GL (V ).

2. For any degenerated Jacobi plane �; there exist a canonical basis fe1; e2; f1; f2g on

V; such that:

!1 = e�1 ^ f �2 ;

!2 = e�1 ^ f �1 ;

where !1 and !2 are the normal forms for �:
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3.6.1 Invariants of elliptic and hyperbolic Jacobi PDE systems

As a result of the classi�cations, we obtain the following theorems.

Theorem 3.22 1. " (�) is the only invariant for non-degenerated Jacobi planes with

respect to GL (V ).

2. " (�) = sign(2e1e2c1c2+2e1b1c2d2�4e1b2c1d2+2e1b2c2d1+2e2b1c1d2�4e2b1c2d1+2

e2b2c1d1 + 2e1a1c2f2 � 4e1a2c1f2 + 2e1a2c2f1 + 2e2a1c1f2 � 4e2a1c2f1 + 2e2a2c1f1 +

2b1b2d1d2�2a1b1d2f2�2a1b2d1f2+4a1b2d2f1+4a2b1d1f2�2a2b1d2f1�2a2b2d1f1+

2a1a2f1f2 � e21c22 � e22c21 � b21d22 � b22d21 � a21f 22 � a22f 21 ):

3.6.2 Application to symmetries

Since we found the orthogonal basis f�1; �2g ; we will review the de�nitions for symme-

tries.

Assume that ��1 (h) = 0;��2 (h) = 0 is a Jacobi PDE system, and that f�1; �2g is an

orthogonal basis. Further on we assume that all of the Jacobi planes � = h�1; �2i ; are

either elliptic or hyperbolic.

Proposition 3.23 Let F :M �!M be a symmetry for the Jacobi PDE system �, and

�2F � (�1) = a11�1 + a12�2;

�2F � (�2) = a21�1 + a22�2;

for some aij 2 C1 (M) :

Then:

a221 + " (�) a
2
22 = " (�) a

2
11 + a

2
12 and a11a21 + " (�) a12a22 = 0:
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Proof. Since f�1; �2g is an orthogonal basis, we know that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1" (�) = �2 ^ �2:

Further on we notice that:

�4F � (�2 ^ �2) = " (�)�4F � (�1 ^ �1) :

Hence:

a221�1 ^ �1 + " (�) a222�1 ^ �1 = " (�)
�
a211�1 ^ �1 + " (�) a212�1 ^ �1

�
;

and therefore:

a221 + " (�) a
2
22 = " (�) a

2
11 + a

2
12:

Since �1 ^ �2 = 0; we get:

�4F � (�1 ^ �2) = 0;

and so:

a11a21�1 ^ �1 + a12a22�2 ^ �2 = 0;

and:

a11a21 + " (�) a12a22 = 0:

From the proposition above, we derive the following two corollaries:

Corollary 3.24 If the Jacobi PDE system � is elliptic, then the matrix jjaijjj is a con-

formal orthogonal matrix with respect to the elliptic (standard) metric.

Corollary 3.25 If the Jacobi PDE system � is hyperbolic, then the matrix jjaijjj is a

conformal orthogonal matrix with respect to the hyperbolic metric.
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Proposition 3.26 Let X 2 D (M) be an in�nitesimal symmetry of the Jacobi PDE

system �; and:

LX (�1) = a11�1 + a12�2;

LX (�2) = a21�1 + a22�2;

for some aij 2 C1 (M) :

Then:

a11 = a22

a12 = �" (�) a21:

Proof. Since f�1; �2g is an orthogonal basis, we know that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1" (�) = �2 ^ �2:

Due to the Leibniz-rule, we get:

LX (�1 ^ �2) = LX (�1) ^ �2 + �1 ^ LX (�2) = 0:

Therefore:

0 = a12�2 ^ �2 + a21�1 ^ �1;

and so:

�" (�) a12 = a21:

By the linearity of the Lie derivative, we get that:

LX (�2 ^ �2) = " (�)LX (�1 ^ �1) :
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Hence:

a22�2 ^ �2 = " (�) a11�1 ^ �1;

and so:

a22 = a11:

3.7 Examples

To show how this works, we will take a few PDE�s, and classify them according to the

de�nitions above.

3.7.1 Cauchy-Riemann equations

Take the Cauchy-Riemann system:

@h2
@x1

� @h1
@x2

= 0;

@h1
@x1

+
@h2
@x2

= 0:

Comparing this with the Jacobi PDE system (�); we get that: c1 = 1; e1 = 1; b2 = 1 and

d2 = �1:

We calculate :

" (�) = sign (�4e1c1b2d2) = sign (4) > 0:

This means that the system is elliptic at any point.
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3.7.2 A hyperbolic PDE system

Let us consider the following PDE system, and analyze it:

h2
@h1
@x1

� @h1
@x2

+
1

h1 � h2
= 0;

h1
@h2
@x1

� @h2
@x2

+
1

h2 � h1
= 0;

where h1 and h2 are the unknown smooth functions of the independent variables x1 and

x2: (This system was presented to me by Professor E. Ferapontov during a conference in

Opava in the Autumn 2001.)

" (�) = sign
�
� (u2 � u1)2

�
< 0:

Since u2 � u1 6= 0; we conclude that the system is hyperbolic at any point.

3.7.3 The symplectic Monge-Ampère equations

Nowwe shall analyze the symplectic Monge-Ampère equations (i) ; given in example(2:2:2) :

With the same substitution as in example(2:2:2) ; we obtain the system:

0 =
@h2
@x1

� @h1
@x2

;

0 = a+ b
@h1
@x1

� c@h1
@x2

� d@h2
@x2

+ e
@h2
@x1

+ f

�
@h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

�
;

where a = â+ �ah1 + ~ah2; and �nd:

" (�) = sign
�
�4 (af + bd)� (c� e)2

�
:

Summing up the results above, we get the following proposition:
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Proposition 3.27 The symplectic Monge-Ampère equations:

â+b
@2'

@x21
�d@

2'

@x22
�c @2'

@x2@x1
+e

@2'

@x1@x2
+�a

@'

@x1
+~a

@'

@x2
+f

�
@2'

@x21

@2'

@x22
� @2'

@x2@x1

@2'

@x1@x2

�
= 0;

have the following classi�cations:

� elliptic, whenever �4 ((â+ �ah1 + ~ah2) f + bd) > (c� e)2 ;

� hyperbolic, whenever �4 ((â+ �ah1 + ~ah2) f + bd) < (c� e)2 ;

� parabolic, whenever �4 ((â+ �ah1 + ~ah2) f + bd) = (c� e)2 :

Second order quasi-linear equation

As the last example, we will analyze a second order quasi-linear equation with ' as the

unknown function. The equation is given by:

a (x1; x2)
@2'

@x21
+ 2b (x1; x2)

@2'

@x1@x2
+ c (x1; x2)

@2'

@x22
= e

�
x1; x2;

@'

@x1
;
@'

@x2

�
;

where a; b; c are smooth functions of the independent variables x1; x2; and e is a

smooth function of x1; x2;
@'
@x1
; @'
@x2
. This is a special case of the symplectic Monge-Ampère

equation classi�ed above, and therefore we derive the following corollary:

Corollary 3.28 The second order quasi-linear equations given above, have the classi�-

cations:

� elliptic, if ac� b2 > 0;

� hyperbolic, if ac� b2 < 0;

� parabolic, if ac� b2 = 0:
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Chapter 4

Operator representation of Jacobi

planes

In this chapter we will �nd another description of the Jacobi planes. From now on we

will only consider elliptic and hyperbolic planes.

4.1 Preliminaries

Let V be a vector space, and ! 2 �2(V �) a 2-form. Then ! determines a linear operator

~! : V �! V � in the following way:

X 7�! !(X; �):

If ! is a non-degenerated form, then ~! is a linear isomorphism.

Let f!1; !2g ; !i 2 �2(V �) be an oriented basis, and !1 be a non-degenerated 2-form.

Denote the oriented basis f!1; !2g by b, and the basis f!2; !1g with the opposite

orientation is denoted by b0:

We de�ne the operator Ab : V �! V; by:
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V
~!2 - V�

V

~! 1

-

A
b

-

Due to the diagram, it is clear that:

Ab = ~!
�1
1 � ~!2:

Alternatively, Ab : V �! V is an operator such that:

!2(X;Y ) = !1(AbX; Y );

holds for all X; Y 2 V:

Note that if !1 and !2 both are non-degenerated 2-forms, then:

Ab0 = A
�1
b = ~!�12 � ~!1: (4.1)

4.2 Operator representation for elliptic Jacobi planes

Let � � �2 (V �) be an elliptic Jacobi plane.

Hence, we know from previous analysis that there exist an orthogonal basis f�1; �2g

on �; and both �1 and �2 are non-degenerated.

Further on we may choose �1 to be a symplectic form on V; and �2 to be an e¤ective

form, such that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = �2 ^ �2:
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Let (V;
) be a 4-dimensional symplectic vector space, where 
 is the symplectic

structure on V:

Assume that b0 = f
; �g :

Theorem 4.1 [Ly1] : For any e¤ective non-degenerated 2-form � on the four dimen-

sional symplectic vector space V; the following holds:

A2b0 = �Pf (�) :

Hence, for an ordered orthogonal basis b = f�1; �2g ; we get:

A2b = �1,

if � is elliptic.

Note that:

A�1b = �Ab:

Hence, for the basis b0 with the opposite orientation, we get that:

Ab0 = �Ab and A2b0 = �1:

Let T : V �! V be a linear operator on the vector space V .

The pair (V; T ) ; is called a complex structure, if T satis�es the condition T 2 = �1:

De�nition 4.2 We will call a transformation from the orthogonal basis
n
�̂1; �̂2

o
to an

orthogonal basis f�1; �2g ; an elliptic similitude, if there exist t and �; such that:

�1 = t cos(�)�̂1 � t sin(�)�̂2;

�2 = t sin(�)�̂1 + t cos(�)�̂2:

Theorem 4.3 Let V be a real vector space and � � �2 (V �) be an oriented Jacobi elliptic
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plane with an ordered orthogonal basis b = f�1; �2g : The operator Ab does not depend on

the choice of ordered orthogonal basis in �:

Proof. Let Âb̂ be a complex structure to the corresponding orthogonal basis
n
�̂1; �̂2

o
;

andAb the complex structure corresponding to the orthogonal basis f�1; �2g, and
D
�̂1; �̂2

E
=

h�1; �2i = �:We must then show that if we do an elliptic similitude to the basis f�1; �2g ;

the complex structure Ab is equal to the complex structure Âb̂:

The complex structure Ab; is de�ned by:

�2(X;Y ) = �1(AbX; Y ):

Note that:

�̂2(X; Y ) = �̂1(Âb̂X; Y )() �̂1(X; Y ) = ��̂2(Âb̂X; Y ):

Let the elliptic similitude be given by:

�1 = t cos(�)�̂1 � t sin(�)�̂2;

�2 = t sin(�)�̂1 + t cos(�)�̂2:

Inserting this into �2(X; Y ) = �1(AbX; Y ); we get:

sin(�)�̂1(X;Y ) + cos(�)�̂2(X;Y ) = cos(�)�̂1(AbX; Y )� sin(�)�̂2(AbX; Y )

�̂1((sin(�)� cos(�)Ab)X;Y ) = ��̂2((cos(�) + sin(�)Ab)X; Y ):

Substitution:

X = (sin(�) + cos(�)Ab) X̂:
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Further on we notice that:

(cos(�) + sin(�)Ab) (sin(�) + cos(�)Ab) = Ab and

(sin(�)� cos(�)Ab) (sin(�) + cos(�)Ab) = 1:

Thus, we get:

�̂1(X̂; Y ) = ��̂2(AbX̂; Y ):

What we noticed early on in the proof is that:

�̂1(X; Y ) = ��̂2(Âb̂X;Y ):

Therefore:

Ab = Âb̂:

Since Ab does not depend on the choice of oriented orthogonal basis in �; we will

denote the operator Ab by A�:

Theorem 4.4 Any oriented elliptic Jacobi plane �, determines a complex structure

(V;A�).

4.2.1 Elliptic Jacobi PDE systems represented by smooth �elds

of operators

Finally, we sum up all of the results in the previous section to make the link from a

smooth �eld of two-dimensional planes �(x) in �2(T �xM); to a smooth �eld of operators

Ax on TxM . This is done in the theorem below.

A smooth �eld of endomorphisms Ax : TxM �! TxM on a manifold M is called an

almost product complex structure on M , if A2x = �1 for all x 2M .
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Theorem 4.5 Let � be an elliptic Jacobi PDE system with �xed orientation of all the

Jacobi planes �(x). Then the smooth �eld of two-dimensional planes �(x) in �2(T �xM);

determines an almost complex structure on M:

4.3 Operator representation for hyperbolic Jacobi

planes

Let � � �2 (V �) be a hyperbolic Jacobi plane.

Hence we know from previous analysis that there exists an orthogonal basis f�1; �2g

on �; and both �1 and �2 are non-degenerated. Further on we may choose �1 to be a

symplectic form on V; and �2 to be an e¤ective form, such that:

�1 ^ �2 = �2 ^ �1 = 0 and �1 ^ �1 = ��2 ^ �2:

Then due to theorem (4:1) ; we get that for an oriented orthogonal basis b = f�1; �2g:

A2b = 1;

if � is hyperbolic.

Let B : V �! V be a linear operator on the vector space V .

The pair (V;B) ; is a product structure, if B satisfy the condition B2 = 1:

De�nition 4.6 We will call a transformation from the orthogonal basis
n
�̂1; �̂2

o
to an

orthogonal basis f�1; �2g ; a hyperbolic similitude, if there exist t and �; such that:

�1 = t cosh(�)�̂1 + t sinh(�)�̂2;

�2 = t sinh(�)�̂1 + t cosh(�)�̂2:

Theorem 4.7 Let V be a real vector space, and � � �2 (V �) be a hyperbolic Jacobi plane
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with a orthogonal basis b = f�1; �2g : The operator Ab does not depend on the choice of

orthogonal basis in �; and orientation of �:

Proof. Let Âb̂ be a product structure corresponding to the oriented orthogonal basisn
�̂1; �̂2

o
; and Ab the product structure corresponding to the oriented orthogonal basis

f�1; �2g, and
D
�̂1; �̂2

E
= h�1; �2i = �: We will show that if we do a hyperbolic similitude

to the basis f�1; �2g ; then Ab is equal Âb̂:

The product structure Ab, is de�ned by:

�2(X;Y ) = �1(AbX; Y ):

Note that:

�̂2(X; Y ) = �̂1(Ab̂X; Y )() �̂2(Ab̂X; Y ) = �̂1(X;Y ):

Let the hyperbolic similitude be given by:

�1 = t cosh(�)�̂1 + t sinh(�)�̂2

�2 = t sinh(�)�̂1 + t cosh(�)�̂2
:

Inserting this into �2(X; Y ) = �1(AbX; Y ); we get:

�
t sinh(�)�̂1 + t cosh(�)�̂2

�
(X;Y ) =

�
t cosh(�)�̂1 + t sinh(�)�̂2

�
(AbX; Y )

�̂1((sinh(�)� cosh(�)Ab)X;Y ) = �̂2((� cosh(�) + sinh(�)Ab)X;Y ):

Substitution:

X = (cosh(�) + sinh(�)Ab) X̂; and we notice that:

(sinh(�)� cosh(�)Ab) (cosh(�) + sinh(�)Ab) = Ab;

(� cosh(�) + sinh(�)Ab) (cosh(�) + sinh(�)Ab) = 1:
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Thus, we get that:

�̂1(AbX̂; Y ) = �̂2(X̂; Y );

�̂1(Ab̂X;Y ) = �̂2(X; Y ):

Hence:

Ab = Ab̂:

The operator Ab does not depend on the choice of orientation of �; since:

Ab = A
�1
b and A�1b = Ab0 ;

therefore:

Ab0 = Ab:

Since Ab does not depend on the choice of basis in �; we will denote the operator Ab

by A�:

In section (5.1), we will prove that dimker(1�A�) = 2 for hyperbolic Jacobi planes.

This motivates the following de�nition:

De�nition 4.8 Let B : V �! V be a linear operator on the vector space V . The pair

(V;B) ; will be called a symmetric product structure if B satisfy the condition B2 = 1;

and dimker(1�B) = dimker(1 +B):

Therefore, we sum up the results in this section by the following theorem:

Theorem 4.9 Any hyperbolic Jacobi plane � , determines a symmetric product structure

(V;A�) :

41



4.3.1 Hyperbolic Jacobi PDE systems represented by smooth

�elds of operators

Due to the results in the previous section, we make the link from a smooth �eld of two-

dimensional planes �(x) in �2(T �xM); to a smooth �eld of operators Ax on TxM . This

is done in the theorem below.

A smooth �eld of endomorphisms Bx : TxM �! TxM on a manifold M; is called a

symmetric almost product structure onM; if B2x = 1 for all x 2M; and dimker(1�

Bx) = dimker(1 +Bx).

Theorem 4.10 Let � be a hyperbolic Jacobi PDE system. Then the smooth �eld of two-

dimensional planes �(x) in �2(T �xM); determines a symmetric almost product structure

Ax : TxM �! TxM on M:

4.4 Matrix representation for operators A�

Theorem 4.11 Let � be a Jacobi PDE system:

8<: a1 + b1
@h1
@x1
� c1 @h1@x2

� d1 @h2@x2
+ e1

@h2
@x1
+ f1

�
@h1
@x1

@h2
@x2
� @h1

@x2

@h2
@x1

�
= 0

a2 + b2
@h1
@x1
� c2 @h1@x2

� d2 @h2@x2
+ e2

@h2
@x1
+ f2

�
@h1
@x1

@h2
@x2
� @h1

@x2

@h2
@x1

�
= 0

;

that are either elliptic or hyperbolic. The matrix jjAxjj of the operator �eld A in the

standard basis
�

@
@x1
; @
@x2
; @
@u1
; @
@u2

�
; is given as:

jjAxjj =
p
j K j
K

26666664
�1 2e2b1 � 2e1b2 2b2f1 � 2b1f2 2e2f1 � 2e1f2

2c2d1 � 2c1d2 �2 2c1f2 � 2c2f1 2d1f2 � 2d2f1
2a2d1 � 2a1d2 2e1a2 � 2e2a1 �3 2e2d1 � 2e1d2
2a1c2 � 2a2c1 2a1b2 � 2a2b1 2b1c2 � 2b2c1 �4

37777775 ; (��)
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where:

�1 = e2c1 � e1c2 + b1d2 � b2d1 � a1f2 + a2f1;

�2 = e1c2 � e2c1 � b1d2 + b2d1 � a1f2 + a2f1;

�3 = e2c1 � e1c2 � b1d2 + b2d1 + a1f2 � a2f1;

�4 = e1c2 � e2c1 + b1d2 � b2d1 + a1f2 � a2f1;

K = detQ:

Proof. Let �(x) = h!1;x; !2;xi :

Then:

Ax = ~�
�1
1;x � ~�2;x;

and we �nd the matrix of the operator Ax denoted by jjAxjj; if we �nd jj~�
�1
1;xjj and jj~�2;xjj;

since:

jjAxjj = jj~�
�1
1;xjj � jj~�2;xjj;

where jj~��11;xjj and jj~�2;xjj are the matrix representations of the operators ~�
�1
1;x and ~�2;x.

The easiest way to �nd, say jj~�2;xjj; is to use the following relation:

�2(X; Y ) = X
T jj~�2;xjjY:

As we know from the orthogonalization, �2;x is equal to �B
K!1;x+

A
K!2;x; and we derive

the following table:

�2;x(#;�!) e1 e2 e3 e4

e1 0 (Aa2�Ba1)
K

�(Ac2�Bc1)
K

�(Ad2�Bd1)
K

e2
�(Aa2�Ba1)

K 0 �(Ab2�Bb1)
K

�(Ae2�Be1)
K

e3
(Ac2�Bc1)

K
(Ab2�Bb1)

K 0 (Af2�Bf1)
K

e4
(Ad2�Bd1)

K
(Ae2�Be1)

K
�(Af2�Bf1)

K 0

:
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From this table we can now construct jj~�2;xjj :

jj~�2;xjj =
A
K

26666664
0 a2 �c2 �d2
�a2 0 �b2 �e2
c2 b2 0 f2

d2 e2 �f2 0

37777775�
B
K

26666664
0 a1 �c1 �d1
�a1 0 �b1 �e1
c1 b1 0 f1

d1 e1 �f1 0

37777775 :

With the same procedure as above we are able to �nd the matrix representation jj~�1;xjj

of the operator ~�1;x:

jj~�1;xjj =
1p
j K j

26666664
0 a1 �c1 �d1
�a1 0 �b1 �e1
c1 b1 0 f1

d1 e1 �f1 0

37777775 :

To make calculations more visible, we do the following substitution:

�1;x = â1e
�
1 ^ e�2 + b̂1e�3 ^ e�2 + ĉ1e�3 ^ e�1 + d̂1e�4 ^ e�1 + ê1e�4 ^ e�2 + f̂1e�3 ^ e�4;

�2;x = â2e
�
1 ^ e�2 + b̂2e�3 ^ e�2 + ĉ2e�3 ^ e�1 + d̂2e�4 ^ e�1 + ê2e�4 ^ e�2 + f̂2e�3 ^ e�4;

where â1 = a1p
jKj
; ::; f̂1 =

f1p
jKj
and â2 =

(Aa2�Ba1)
K ; ::; f̂2 =

(Af2�Bf1)
K :

With these substitutions, we get that:

jj~�1;xjj =

26666664
0 â1 �ĉ1 �d̂1
�â1 0 �b̂1 �ê1
ĉ1 b̂1 0 f̂1

d̂1 ê1 �f̂1 0

37777775 and jj~�2;xjj =

26666664
0 â2 �ĉ2 �d̂2
�â2 0 �b̂2 �ê2
ĉ2 b̂2 0 f̂2

d̂2 ê2 �f̂2 0

37777775 :

Thus, we �nd the expression for jjAxjj :
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jjAxjj = jj~�
�1
1;xjj � jj~�2;xjj =

1

�0

26666664
~a2 ~f1 � ~e1~c2 +~b1 ~d2 b̂1ê2 � ê1b̂2 f̂1b̂2 � b̂1f̂2 f̂1ê2 � ê1f̂2
d̂1ĉ2 � ĉ1d̂2 ~a2 ~f1 � ~e2~c1 +~b2 ~d1 ĉ1f̂2 � f̂1ĉ2 d̂1f̂2 � f̂1d̂2
d̂1â2 � â1d̂2 ê1â2 � â1ê2 ~a1 ~f2 � ~e1~c2 +~b2 ~d1 d̂1ê2 � ê1d̂2
â1ĉ2 � ĉ1â2 â1b̂2 � b̂1â2 b̂1ĉ2 � ĉ1b̂2 ~a1 ~f2 � ~e2~c1 +~b1 ~d2

37777775 ;

where �0 = â1f̂1 � ĉ1ê1 + d̂1b̂1:

4.5 Examples

We will illustrate how to �nd the matrices for some types of Jacobi PDE�s, with a few

examples.

In all of the examples, we have given the matrixes in the basis
�

@
@x1
; @
@x2
; @
@u1
; @
@u2

�
:

4.5.1 The symplectic Monge-Ampère equations

Let us take the symplectic Monge-Ampère equations which we classi�ed in example

(3:7:3):

â+b
@2'

@x21
�d@

2'

@x22
�c @2'

@x2@x1
+e

@2'

@x1@x2
+�a

@'

@x1
+~a

@'

@x2
+f

�
@2'

@x21

@2'

@x22
� @2'

@x2@x1

@2'

@x1@x2

�
= 0:

With the same substitutions as in example (3:7:3) ; we obtain the system:

0 =
@h2
@x1

� @h1
@x2

;

0 = a+ b
@h1
@x1

� c@h1
@x2

� d@h2
@x2

+ e
@h2
@x1

+ f

�
@h1
@x1

@h2
@x2

� @h1
@x2

@h2
@x1

�
;

where a = â+ �ah1 + ~ah2.
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Comparing this with the Jacobi PDE system (�), we get that:

c1 = 1; e1 = 1; a2 = a; b2 = b; c2 = c; d2 = d; e2 = e and f2 = f:

With this information we can �nd det (Q) ; which is equal K :

K = �4 (af + bd)� (c� e)2 :

Thus, we get the matrices of Ax, by inserting the information into the formula (��) :

jjAxjj =
 p

j K j
K

!
26666664
e� c �2b 0 �2f

�2d c� e 2f 0

0 2a e� c �2d

�2a 0 �2b c� e

37777775 :

To verify the calculations, we calculate jjA2xjj; and get that:

jjA2xjj = � sign (K) 1;

which is what we could expect, since the symplectic Monge-Ampère equations are:

� elliptic, if K > 0 then jjA2xjj = �1;

� hyperbolic, if K < 0 then jjA2xjj = 1:

Laplace equation

Let us consider the Laplace equation:

@2'

@x21
+
@2'

@x22
= 0;

and �nd its matrices jjAxjj.
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This is clearly a special case of the symplectic Monge-Ampère equations above.

Thus, by inspection we get that:

b = 1, d = �1 and K = 4:

Hence:

jjAxjj =

26666664
0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

37777775 :

Wave equation

Let us, as a second special case of the symplectic Monge-Ampère equations, analyze the

Wave equation:
@2'

@x21
� @

2'

@x22
= 0:

By inspection we get that:

b = 1; d = 1 and K = �4:

Thus:

jjAxjj =

26666664
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

37777775 :

Von Karman equation

Von Karman equation in the transonic approximation of gas dynamics, has the form:

@'

@x1

@2'

@2x1
� @2'

@2x2
= 0;

where ' = ' (x1; x2) is the velocity potential.
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By inspection we get that:

b =
@'

@x1
= u1; d = 1 and K = �4u1;

and so we will have to assume that u1 6= 0; in order to have K 6= 0:

The Von Karman equation has the following classi�cation:

� elliptic, if u1 < 0;

� hyperbolic, if u1 > 0:

Thus, we get the matrix jjAxjj :

jjAxjj =
 p

j u1 j
u1

!
26666664
0 u1 0 0

1 0 0 0

0 0 0 1

0 0 u1 0

37777775 ;

and jjA2xjj = sign (u1) 1:

4.5.2 A hyperbolic PDE system

Let us consider the system of Example (3:7:2) :

I : h2
@h1
@x1

� @h1
@x2

+
1

h1 � h2
= 0;

II : h1
@h2
@x1

� @h2
@x2

+
1

h2 � h1
= 0:

As we remember, this system was hyperbolic at any point, since:

K = � (u2 � u1)2 :

A little problem occurs when we calculate Q: It turns out that A = 0; so we can
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not apply our results directly. We have assumed that A 6= 0 when we constructed the

orthogonal basis from which we make the operator Ax. The solution to this problem, is

simply to consider the system fI + II; Ig.

Hence we get:

b1 = h2 ; c1 = 1; d1 = 1; e1 = u1; a2 =
�1

u2 � u1
; b2 = u2 ; c2 = 1;

and:

Q =

24 2 (u2 � u1) u2 � u1
u2 � u1 0

35 :
Clearly A 6= 0; and with comparison with (��) ; we get:

jjAxjj =
p
j K j
K

26666664
�u2 � u1 �2u1u2 0 0

2 u2 + u1 0 0

�2
u2�u1

�2u1
u2�u1 u2 � u1 0

2
u2�u1

2u2
u2�u1 0 u1 � u2

37777775 ;

and jjA2xjj = 1:
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Chapter 5

From operators to Jacobi planes

To complete the triangle from the introduction, we show that if we start o¤with a complex

structure or a symmetric product structure, we are able to �nd its corresponding elliptic

or hyperbolic two-dimensional plane � in �2(V �):

For simplicity, we make the following changes in our notation �2 = ! , �1 = 
.

We introduce the operator �2 (A�) on �2 (V �):

�2 (A�) : �2 (V �) �! �2 (V �) ;

�(�; �) 7�! �(A�; A�):

Proposition 5.1 The two 2-forms 
 and !; are eigenvectors of the operator �2 (A�) ;

that is:

�2 (A�) (
) = " (�)
;

�2 (A�) (!) = " (�)!:

Proof. Since:

!(X; Y ) = 
(AX; Y );
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and we deduce that:

�2 (A�) (
)(AX; Y ) = 
(A2X;AY ) = 
(" (�)X;AY )

= " (�)
(X;AY ) = �" (�)
(AY;X)

= �" (�)!(Y;X) = " (�)!(X; Y ) = " (�)
(AX; Y ):

Hence:

�2 (A�) (
) = " (�)
:

In a similar way, we get:

�2 (A�) (!)(AX; Y ) = !(A2X;AY ) = " (�)!(X;AY )

= " (�)
(AX;AY ) = �" (�)
(AY;AX)

= �" (�)
(AY;AX) = �" (�)!(Y;AX) = " (�)!(AX; Y ):

Therefore:

�2 (A�) (!) = " (�)!:

5.1 Symmetric product structures

Let (V;A) be a symmetric product structure, and V a four-dimensional symplectic vector

space.

Note that:

A2 = 1, 1

2
(1� A)1

2
(1 + A) = 0:

Moreover 1
2
(1+A) and 1

2
(1�A) are projectors in V; and denote the projector 1

2
(1+A)
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by P+; and the projector 12(1� A) by P�; and imP+ = V+; imP� = V�; that is:

P+ : V �! V+;

P 2+ = P+;
and

P� : V �! V�;

P 2� = P�
:

Let X be a vector from V; since1 = P+ + P�; then X = P+X + P�X; and we will

denote P+X by X+; and P�X by X�:

Clearly:

P+ (Y ) = P+ (AY ) and P� (X) = P� (�AX) ;

for Y =2 V� and X =2 V+:

Proposition 5.2 The product structure (V;A) ; produces a splitting of the four dimen-

sional vector space V into V+ � V�.

Proof. The projectors P+ and P� produce a splitting of V into V+ � V�; since:

i) imP+ = V+ and imP� = V�;

ii) 1 = P+ + P�;

iii) P+ � P� = P� � P+ = 0:

Proposition 5.3 The vector space V+ is skew-orthogonal on V� with respect to 
 and

!: That is:


(X�; Y+) = 0 and !(X�; Y+) = 0:

Proof. First we see that:

!(X; Y ) = 
(AX; Y )() !(AX; Y ) = 
(X; Y ):
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Since Y and AY go to the same element in V+ , and X and �AX go to the same

element in V�; we derive that:


(X�; Y+) = 
(�AX�; AY+) = �!(A2X�; AY+) = !(AY+; X�) = �
(X�; Y+):

Hence:


(X�; Y+) = 0:

And similarly for !(X�; Y+) :

!(X�; Y+) = !(�AX�; AY+) = �!(AX�; AY+) = �
(X�; AY+) = �!(X�; Y+);

so:

!(X�; Y+) = 0:

Proposition 5.4 Any hyperbolic Jacobi plane �; determines a symmetric product struc-

ture (V;A).

Proof. We have already shown that it determines a product structure (V;A), so we

shall only show that:

dim(V+) = dim(V�):

The only two cases we will have to investigate are when, dim(V+) = 1,dim(V�) = 3;

and dim(V+) = 0,dim(V�) = 4:

Assume that dim(V+) = 1 and dim(V�) = 3:

Then, due to proposition (5.3), we know that 
(V+; V�) = 0 and 
(V+; V+) = 0;

since V+ is one-dimensional. This implies that 
 is a degenerated form, which is a

contradiction.

Assume that dim(V+) = 0 and dim(V�) = 4; then A has to be equal �1:
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Since !(X; Y ) = 
(AX; Y ); we get that ! = �
; which is a contradiction, since !

and 
 do not generate a plane.

So:

dim(V+) = dim(V�) = 2:

Note that
jV� and
jV+ are non-degenerated, and !jV� and !jV+ are non-degenerated.

We will show that there exists a basis on V = he1;e2; f1; f2i ; such that the forms


; ! 2 �2 (V �) can be written as:


 = e�1 ^ f �1 + e�2 ^ f �2 and ! = e�1 ^ f �1 � e�2 ^ f �2 :

Choose e1 2 V+. Since 
(X; Y )jV+ is non-degenerated, there exists an ~f1 2 V+; such

that 
(e1; ~f1) 6= 0.

Then we choose f1 =
~f1


(e1; ~f1)
, and get that:


(e1; f1) = 1:

We apply the similar procedure for V�:

Choose e2 2 V� . Since 
(X; Y )jV� is non-degenerated, there exists an ~f2 2 V�; such

that 
(e2; ~f2) 6= 0: Then we choose f2 =
~f2


(e2; ~f2)
, and get that:


(e2; f2) = 1:

From this we derive the following:


(e1; f1) = 1

= 
(Ae1; f1) since e1 2 V+

= !(e1; f1)

!(e1; f1) = 1:
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And similarly:


(e2; f2) = 1

= 
(�Ae2; f2) since e2 2 V�

= �!(e2; f2)

!(e2; f2) = �1:

The result of this procedure is:


 = e�1 ^ f �1 + e�2 ^ f �2 ;

! = e�1 ^ f �1 � e�2 ^ f �2 ;

and:
A : V �! V

e1 7�! e1

e2 7�! �e2
f1 7�! f1

f2 7�! �f2

:

Therefore, if we know the decomposition of V = V+�V�; then we can construct 
; !

and A on the form above.

Let B : V �! V be an operator. We introduce the operator iB as an inner derivation

on �2 (V �) ; by:

iB : �2 (V �) �! �2 (V �) ;

�(�; �) 7�! �(B�; �) + �(�; B�):

Proposition 5.5 Let (V;A) be the symmetric product structure derived from a hyperbolic

Jacobi plane � = h!;
i, then:

iA! = 2
;
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and:

iA
 = 2!:

Proof. When we compute iA!(X;Y ); we get that:

iA!(X;Y ) = !(AX; Y ) + !(X;AY ) = 
(A
2X; Y )� 
(A2Y;X) = 2
(X; Y ):

And for iA
(X; Y ); we get that:

iA
(X; Y ) = 
(AX; Y ) + 
(X;AY ) = !(X; Y )� !(Y;X) = 2!(X; Y ):

Theorem 5.6 The image of iA on the space �2(V �) is the plane � = h!;
i � �2(V �):

The spectrum of iA is f�2; 0; 0; 0; 0; 2g : Moreover, 
+! is an eigenvector for the eigen-

value 2; and 
� ! is an eigenvector for the eigenvalue �2.

Proof. Take fe�1 ^ f �1 ; e�2 ^ f �1 ; e�2 ^ e�1; f�2 ^ e�1; f�2 ^ f �1 ; e�2 ^ f �2g as a basis for �2(V �) :

iA : �2(V �) �! �2(V �)

e�1 ^ f �1 7�! 2e�1 ^ f �1
e�2 ^ f �1 7�! 0

e�2 ^ e�1 7�! 0

f �2 ^ e�1 7�! 0

f �2 ^ f �1 7�! 0

e�2 ^ f �2 7�! �2e�2 ^ f �2

:

Let 
; ! be the normal forms given by:


 = e�1 ^ f �1 + e�2 ^ f �2 and ! = e�1 ^ f �1 � e�2 ^ f �2 :

Clearly f
 + !;
� !; e�2 ^ f �1 ; e�2 ^ e�1; f�2 ^ e�1; f�2 ^ f �1g is also a basis for �2(V �):
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Due to the proposition (5.5), we know that iA(
) = 2! and iA(!) = 2
: So we get:

iA(
 + !) = 2(
 + !);

iA(
� !) = �2(
� !):

5.2 Complex structures

Let V be a real vector space. The tensor product V C = V 
RC is a complex vector space

called the complexi�cation of V .

Every element in the complex vector space V C can be written uniquely as a sum

v + iv0 with v; v0 2 V .

Using the real direct sum decomposition, we get the following canonical isomorphism:

V 
R C =V � iV;

since V 
R C = hv 
R 1; v 
R ii :

Let V be a real vector space with a linear operator A : V �! V; then AC (the

complexi�cation of A) is a C-linear operator on V C; and it acts like:

AC : V C �! V C;

AC (v 
R �) = A (v)
R �;

where � 2 C:

Let (A; V ) be a complex structure and A2 = �1.

When we make the complexi�cation A; V and of A2 = �1; we get:

�
AC; V C

�
and

�
AC
�2
= �1:
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Since V is a four dimensional real vector space, then V C is a four-dimensional complex

vector space.

Note that: �
AC
�2
= �1() 1

2
(1� iAC)1

2
(1 + iAC) = 0:

Moreover, 1
2
(1+ iAC) and 1

2
(1� iAC) are projectors in V C; and denote the projector

1
2
(1 + iAC) by P+; and the projector 1

2
(1 � iAC) by P� and imP+ = V C+ ; imP� = V C� ;

that is:
P+ : V

C �! V C+ ;

(P+)
2 = P+;

and
P� : V

C �! V C� ;

(P�)
2 = P�:

:

Let X be a vector from V C; and since:

1 = P+ + P�;

then X = P+X + P�X; and we will denote P+X by X+ and P�X by X�:

Proposition 5.7 The complex structure (V;A) ; produces a splitting of complexi�cation

of V C :

V C = V C+ � V C� :

Proof. We will prove this in the same way as we did for the hyperbolic case.

The projectors P+ and P� produces a splitting of V C into V C+ � V C� ; since:

i) imP+ = V
C
+ and imP� = V C� ;

ii) 1 = P+ + P�;

iii) P+ � P� = P� � P+ = 0:
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We also note that:

ACX+ = �iX+;

ACX� = iX�;

since:

�
AC
� 1
2
(1 + iAC) =

1

2
(�i+ AC) = �i1

2
(1 + iAC);�

AC
� 1
2
(1� iAC) =

1

2
(i+ AC) = i

1

2
(1� iAC):

Proposition 5.8 For any non-zero vectors Y =2 V C+ and X =2 V C� ; we have that:

V C� = hP� (Y ) ; P�
�
ACY

�
i;

V C+ = hP+ (X) ; P+
�
ACX

�
i:

Proof. All we need to show, is that P+ (X) 6= P+
�
ACX

�
and P� (Y ) 6= P�

�
ACY

�
:

Proof by contradiction:

Assume that:

P�
�
ACY

�
= P� (Y )

iP� (Y ) = P� (Y ) :

Let P� (Y ) be equal to v 
R (x+ iy) ; hence:

i (v 
R x+ iy) = (v 
R x+ iy)

v 
R (�y + xi) = v 
R (x+ iy) :

Therefore x = �y and x = y; which is a contradiction unless x = y = 0:

In a similar way we can show that P+ (X) 6= P+
�
ACX

�
:
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Let � 2 �2(V �) be a real valued 2-form. We de�ne the complexi�cation of � by

�C 2 �2(V C�) :

�C : V C � V C �! C;

�C (v 
R �; u
R �) = � (v; u)��:

In a similar way as we did for the symmetric product structure, we derive the following:

Proposition 5.9 The vector space V C+ is skew-orthogonal on V
C
� ; with respect to 


C and

!C: That is:


C(X�; Y+) = 0 and !C(X�; Y+) = 0:

Note that 
CjV C� and 
CjV C+ are non-degenerated, and !
CjV C� and !CjV C+ are non-

degenerated.

Theorem 5.10 There exists a basis on V C = he1;e2; f1; f2i ; such that the forms 
C; !C 2

�2
�
V C�

�
can be written as:


C = e�1 ^ f �1 + e�2 ^ f �2 and !C = ie�2 ^ f �2 � ie�1 ^ f �1 ;

and we will call them the normal forms for the plane �C =



C; !C

�
:

Proof. Choose e1 2 V C+ . Since 
CjV C+ is non-degenerated, there exists an ~f1 2 V C+ ,

such that 
C(e1; ~f1) 6= 0:

Therefore we choose f1 =
~f1


(e1; ~f1)
; and 
C(e1; f1) = 1

Choose e2 2 V C� . Since 
CjV C� is non-degenerated, there exists an ~f2 2 V C� ; such that


C(e2; ~f2) 6= 0:

Therefore we choose f2 =
~f2


(e2; ~f2)
; and 
C(e2; f2) = 1:

As we have shown �iX+ = A
CX+ ; iX� = A

CX� and:


C(X;Y ) = �!C(ACX; Y ):
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Hence:


C(e1; f1) = 1

= �!C(Ae1; f1) since e1 2 V+

= i!C(e1; f1):

Which means that:

!C(e1; f1) = �i:

In a similar way we get:

!C(e2; f2) = i:

The result of this is:


C = e�1 ^ f �1 + e�2 ^ f �2 ;

!C = ie�2 ^ f �2 � ie�1 ^ f �1 ;

and:
AC : V C �! V C

e1 7�! �ie1
e2 7�! ie2

f1 7�! �if1
f2 7�! if2

:

Therefore, if we know the decomposition of V C = V C+ � V C� ; then we can construct


C; !C and AC on the form above.

Let B : V �! V be an R-linear operator, and � 2 �2 (V �) a 2-form. We introduce
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the operator iBC as an inner derivation on �2
�
V C�

�
; by:

iBC : �2
�
V C�

�
�! �2

�
V C�

�
;

�C(�; �) 7�! �C(BC�; �) + �C(�; BC�):

where BC is the complexi�cation of B; and �C is the complexi�cation of �:

Proposition 5.11 Let (V;A) be the complex structure derived from an elliptic Jacobi

plane � = h!;
i, then:

iAC!
C = �2
C;

and:

iAC

C = 2!C:

Proof. When we compute iAC!C(X; Y ); we get that:

iAC!
C(X; Y ) = !C(ACX; Y ) + !C(X;ACY ) = 
C(

�
AC
�2
X; Y )� 
C(

�
AC
�2
Y;X)

= �2
C(X; Y ):

And for iAC
C(X; Y ); we get that:

iAC

C(X; Y ) = 
C(ACX; Y ) + 
(X;ACY ) = !C(X; Y )� !C(Y;X) = 2!C(X; Y ):

Theorem 5.12 The image of the operator iAC on the space �2(V C�); is the plane �C =

!C;
C

�
: The spectrum of iAC is f�2i; 0; 0; 0; 0; 2ig ; and (
C + i!C) is the eigenvector

corresponding to the eigenvalue �2i; and (
C � i!C) is the eigenvector corresponding to

the eigenvalue 2i:

Proof. Take fe�1 ^ f �1 + e�2 ^ f �2 ; e�2 ^ f �2 � e�1 ^ f �1 ; e�2 ^ f �1 ; e�2 ^ e�1; f�2 ^ e�1; f�2 ^ f �1g as
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a basis for �2(V C�) :

iAC : �2(V C�) �! �2(V C�)

e�1 ^ f �1 + e�2 ^ f �2 7�! 2ie�2 ^ f �2 � 2ie�1 ^ f �1 = 2!C

e�2 ^ f �1 7�! 0

e�2 ^ e�1 7�! 0

f �2 ^ e�1 7�! 0

f �2 ^ f �1 7�! 0

e�2 ^ f �2 � e�1 ^ f �1 7�! 2ie�1 ^ f �1 + 2ie�2 ^ f �2 = 2i
C

:

Therefore:

iAC(

C + i!C) = 2!C � i2
C = �2i(
C + i!C);

iAC(

C � i!C) = 2!C + i2
C = 2i(
C � i!C):

Lemma 5.13 Let B : V �! W be a R-linear operator from the vector space V to the

vector space W; and let BC : V C �! WC be the complexi�cation: Then, the image of B

complexi�ed is equal to the image of BC; that is:

(ImB)C = ImBC:

Proof. Let us show that (ImB)C � ImBC:

Assume that: x+ iy 2 (ImB)C ; where x; y 2 ImB; and that x = Bv0; y = Bv1:

Hence:

x+ iy = Bv0 + iBv1

= BC (v0 + iv1) 2 ImBC:
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Let us then show that ImBC � (ImB)C :

Let x+ iy 2 ImBC; then there exists v0 + iv1, where v0; v1 2 V; such that:

x+ iy = BC (v0 + iv1)

= Bv0 + iBv1;

hence x = Bv0; and y = Bv1; and so x+ iy 2 (ImB)C :

Due to the lemma above, we deduce that:

Im(iAC) = (Im (iA))
C ;

�C = (h!;
i = �)C :

Therefore, we sum up the results in this section by:

Theorem 5.14 Let (A; V ) be a complex structure, then the image of iA on the space

�2(V �); is the elliptic plane � = h!;
i :

So we found an operator, namely iA : �2(V �) �! �2(V �); such that, if we start

with a complex structure or a symmetric product structure, we are able to �nd the

corresponding elliptic or hyperbolic two-dimensional plane by im (iA) = �:
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Chapter 6

Local classi�cation of the Jacobi

PDE system

The classi�cation problem

We say that two Jacobi PDE systems � and �0 on M are locally equivalent at the point

x 2M , if there exist a local di¤eomorphism ' : Ux �! Vx; ' (x) = x; such that:

'� (!0) 2 �;

for all !0 2 �0:

This means that the two Jacobi PDE systems have an isomorphic (by ') space of

solutions. That is, if L is the solution of �, then ' (L) is a solution of �0; and vice versa.

6.1 Local classi�cation of hyperbolic Jacobi PDE�s

In this section we will investigate when a hyperbolic Jacobi PDE system is locally equiv-

alent to the wave system.

Let � be a hyperbolic Jacobi PDE system. Then this system determines a symmetric

almost product structure Ax : TxM �! TxM on M:
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The symmetric almost product structure, determines a splitting of TxM = C+;x�C�;x
, where C+and C� are 2-dimensional distributions on M:

Consider for example the Wave system:

@h1
@x2

� @h2
@x1

= 0;

@h1
@x2

+
@h2
@x1

= 0;

and obtain the matrix representation:

jjAjj =

26666664
�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

37777775 ;

in the basis
�

@
@x1
; @
@x2
; @
@u1
; @
@u2

�
:

For convenience, we make the following coordinate change:

(x1; x2; u1; u2; ) 7�! (u2 := q1; x2 := q2; u1 := p1; x1 := p2) :

Hence: �
@

@x1
;
@

@x2
;
@

@u1
;
@

@u2

�
7�!

�
@

@q1
;
@

@q2
;
@

@p1
;
@

@p2

�
;

and so the matrix will look like:

jjAjj =

26666664
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

37777775 ; (6.1)

in the basis
�

@
@q1
; @
@q2
; @
@p1
; @
@p2

�
:
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Then C+ is generated by @
@q1

and @
@q2
; and C� is generated by @

@p1
and @

@p2
:

We see that both C+ and C� are completely integrable distributions.

Theorem 6.1 Let � be a hyperbolic Jacobi PDE system, such that C+ and C� are com-

pletely integrable distributions. Then � is locally equivalent to the Wave system.

Proof. Let p1 and p2 be �rst integrals for C+; and q1 and q2 be �rst integrals for C�:

Note that @
@q1
and @

@q1
are tangent to C+, because @

@q1
(p1) =

@
@q2
(p2) = 0; and that @

@p1

and @
@p2

are tangent to C�, because @
@p1
(q1) =

@
@p2
(q2) = 0:

In these coordinates one has:

A :
@

@qi
7�! @

@qi
;

A :
@

@qi
7�! � @

@pi
:

And so it coincides with the Wave system above.

We now want to make use of the operator representation for the hyperbolic Jacobi

PDE systems, to �nd a criterion for when C+ and C� are completely integrable.

To do this we will need the Nijenhuis tensor.

The Nijenhuis tensor j[B;B]j is equal to:

j[B;B]j (X; Y ) = [BX;BY ]�B [BX; Y ]�B [X;BY ] +B2 [X; Y ] ;

where B 2 
1(M)
D(M) and X; Y 2 D(M):

Theorem 6.2 (Main theorem 1) Let � be a hyperbolic Jacobi PDE system. Then �

is locally equivalent to the Wave system if and only if:

j[A;A]j = 0:

Proof. If � is the Wave equation on the form described above, then due to (6:1) ;

we have that j[A;A]j = 0:
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On the other hand if j[A;A]j = 0; will prove that the distributions C+ and C� are

completely integrable.

Assume that X; Y are smooth vector �elds from C+; then:

0 = j[A;A]j (X; Y )

= [AX;AY ]� A [AX; Y ]� A [X;AY ] + [X; Y ] :

Since AY = Y in C+; we get that:

0 = [X; Y ]� A [X; Y ]� A [X; Y ] + [X; Y ] ;

or

(1� A) [X; Y ] = 0:

Therefore, [X; Y ] belongs to C+; and C+ is completely integrable.

In a similar way we may prove that C� is completely integrable.

6.2 Local classi�cation of elliptic Jacobi PDE�s

The classi�cation problem we will solve in this section is when an elliptic Jacobi PDE

system is locally equivalent to the Cauchy-Riemann system.

Let us �rst consider the Cauchy-Riemann system:

@h2
@x1

� @h1
@x2

= 0;

@h1
@x1

+
@h2
@x2

= 0:
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As we have seen, the matrix of the operator A is:

jjAjj =

26666664
0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

37777775 ; (6.2)

in the basis
�

@
@x1
; @
@x2
; @
@u1
; @
@u2

�
:

Theorem 6.3 (Main theorem 2) Let � be an elliptic Jacobi PDE system. Then � is

locally equivalent to the Cauchy-Riemann system if and only if:

j[A;A]j = 0:

Proof. If the Cauchy-Riemann system is on the form described above, then, due to

(6:2), we have that j[A;A]j = 0:

On the other hand if j[A;A]j = 0, then due to Newlander-Nirenberg theorem [NN ] ;

we have that there exist local complex coordinates, say, z1 = s1 + it1 and z2 = s2 + it2;

in some neighbourhood of a 2M; such that:

jjAjj =

26666664
0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

37777775 ;

in the basis
�

@
@s1
; @
@t1
; @
@s2
; @
@t2

�
:

If we do the following coordinate transformation:

(s1; t1; s2; t2; ) 7�! (s1; t1; t2; s2) ;

we transform the standard structure on C2 to the almost complex structure (6:2) of
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�:
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