
Linearizability of d-webs, d � 4; on
two-dimensional manifolds

Maks A. Akivis, Vladislav V. Goldberg, Valentin V. Lychagin

Abstract
We �nd d � 2 relative di¤erential invariants for a d-web, d � 4; on a

two-dimensional manifold and prove that their vanishing is necessary and
su¢ cient for a d-web to be linearizable. If one writes the above invariants
in terms of web functions f(x; y) and g4(x; y); :::; gd(x; y); then necessary
and su¢ cient conditions of linearizabilty of a d-web are two PDEs of the
fourth order with respect to f and g4, and d�4 PDEs of the second order
with respect to f and g4; :::; gd . For d = 4; this result con�rms Blaschke�s
conjecture on the nature of conditions of linearizabilty of a 4-web. We
also give Mathematica codes for testing 4- and 5-webs for linearizability
and examples of their usage.

0 Introduction

Let Wd be a d-web given by d one-parameter foliations of curves on a two-
dimensional manifoldM2. The web Wd is linearizable (recti�able) if it is equiv-
alent to a linear d-web, i.e., to a d-web formed by d one-parameter foliations of
straight lines on a projective plane.
The problem of linearizability of webs was posed by Blaschke ([2], §17 and

§42) who claimed that it is hopeless to �nd such a criterion because of complexity
of calculations involving high order jets. Blaschke in [2] (§ 42) formulated the
problem of �nding conditions for linearizability of 4-webs given on M2: He
found out that a general 4-web W4 has 12 absolute invariants of 4th order while
a linear 4-web has 10 absolute invariants of 4th order. Based on this, Blaschke
made a conjecture that conditions of linearizability for a 4-webW4 should consist
of two conditions for the 4th order web invariants.
A criterion of linearizability is very important in web geometry and in its

applications. It is also important in nomography (see [2], §17 and [3], §18).
A new approach for �nding conditions of linearizability for webs on the plane

has been proposed by Akivis in 1973 in his talk at the Seminar on Classical
Di¤erential Geometry in Moscow State University. Goldberg [6] implemented
this approach for 3-webs.
In this paper we use this approach to establish a criterion of linearizability

for d-webs, d � 4. We prove that the Blaschke conjecture was correct: a 4-
web is linearizable if and only its two 4th order invariants vanish. In terms of
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the invariants de�ning the geometry of a 4-web W4; the vanishing of these two
invariants means that the covariant derivatives K1 and K2 of the web curvature
K are expressed in terms of the curvature K itself, the basic web invariant a
and its covariant derivatives up to the 3rd order. We �nd explicit expressions
for these invariants in terms of symmetrized covariant derivatives. Note that
expressions for these invariants in terms of web functions contain 262 terms
each.
Note that a di¤erent approach to the linearization problem for websWd; d �

4; was used by Hènaut in [7]. However, Hènaut�s did not �nd conditions in the
form suggested by Blaschke. His conditions do not contain web invariants.
We investigate also linearizability of webs Wd; d � 5: In this case the lin-

earizability conditions involve d � 2 di¤erential invariants. Two of them have
order 4 and the rest is of order 2.
All computations in this paper were done by hands, and the more routine

ones checked by Mathematica package. At the end of the paper, we give Math-
ematica codes for testing 4- and 5-webs for linearizability and examples of their
usage.

1 Basics constructions

We recall main constructions for 3-webs on 2-dimensional manifolds (see, for
example, [3] or [2] , or [6]) in a form suitable for us.
Let M2 be a 2-dimensional manifold, and suppose that a 3-web W3 is given

by three di¤erential 1-forms !1; !2; and !3 such that any two of them are
linearly independent.

Proposition 1 The forms !1; !2; and !3 can be normalized in such a way that
the normalization condition

!1 + !2 + !3 = 0 (1)

holds.

Proof. In fact, if we take the forms !1 and !2 as cobasis forms of M2, then
the form !3 is a linear combination of the forms !1 and !2 :

!3 = �!1 + �!2 ;

where �; � 6= 0:
After the substitution

!1 !
1

�
!1; !2 !

1

�
!2; !3 ! �!3

the above equation becomes (1).
It is easy to see that any two of such normalized triplets !1; !2; !3 and

!s1; !
s
2; !

s
3 determine the same 3-web W3 if and only if

!s1 = s!1; !
s
2 = s!2; !

s
3 = s!3 (2)

2



for a non-zero smooth function s:
We will investigate local properties of W3: Thus we can assume that M2 is

a simply connected domain of R2, and therefore there exists a smooth function
f such that !3 is proportional to df; that is, !3 ^ df = 0: The function f is
called a web function. Note that this function is de�ned up to renormalization
f 7�! F (f) :
We choose such a representation of W that

!3 = df: (3)

Similarly we �nd smooth functions x and y for forms !1 and !2 such that

!1 = adx; !2 = bdy

for some smooth functions a and b:
Moreover, functions x and y are independent and therefore can be viewed

as (local) coordinates. In these coordinates the normalization condition gives

!1 = �fxdx; !2 = �fydy; !3 = df:

Let the vector �elds @1 and @2 form the basis dual to the cobasis !1; !2;
i.e., !i (@j) = �ij for i; j = 1; 2:
Then

@1 = �
1

fx

@

@x
; @2 = �

1

fy

@

@y

and
dv = @1(v) !1 + @2 (v) !2 (4)

for any smooth function v:

1.1 Structure equations

>From now on we shall assume that a 3-web W3 is given by di¤erential 1-forms
!1; !2; and !3 normalized by conditions (1) and (3).
Since on a two-dimensional manifold the exterior di¤erentials d!1 and d!2 as

2-forms di¤er from the 2-form !1^!2 only by factors, we get d!1 = h1 !1^!2
and d!2 = h2 !2 ^ !1 for some functions h1 and h2:
By d!3 = 0; one gets h1 = h2: Denote this function by H: Then d!1 =

H!1 ^ !2 and d!2 = H!2 ^ !1 or

d!1 = !1 ^ 
; d!2 = !2 ^ 
; (5)

where

 = �H!3: (6)

We call relations (5) the �rst structure equations of the 3-web W3: In terms of
the web function f , one has


 = � fxy
fxfy

!3
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and

H =
fxy
fxfy

:

If we change the representative according to (2), then the �rst structure equa-
tions take the form

d!sp = !
s
p ^ 
s; p = 1; 2; 3;

where

s = 
 � d log (s)

It follows that d
s = d
.
One has

d
 = K!1 ^ !2: (7)

This equation is called the second structure equation of the web, and the function
K is called the web curvature.
If we put d
s = Ks!s1 ^ !s2; then Ks = s�2K: Therefore the curvature

function K is a relative invariant of weight 2:
In terms of the web function f; one has

K = � 1

fxfy

�
log

�
fx
fy

��
xy

(8)

(cf.[2], § 9, or [1], p. 43).
For the basis vector �elds @1 and @2, the structure equations take the form

[@1; @2] = H (@2 � @1): (9)

where [ ; ] is the commutator of vector �elds.
Substituting (6) into (7), one gets d
 = dH^!1+!2);and from (4) it follows

that
K = @1 (H)� @2 (H) : (10)

1.2 The Chern connection

Let us use the di¤erential 1-form 
 to de�ne a connection in the cotangent
bundle �� : T �M !M by the following covariant di¤erential:

d
 : �
1 (M)! �1 (M)
 �1 (M) ;

where

d
 (!1) = �!1 
 
;
d
 (!2) = �!2 
 
;

and 
 denotes the tensor product.
In what follows we shall denote by �p (M) ; p = 1; 2; the modules of smooth

di¤erential p-forms on M:
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It is easy to check that the curvature form of the above connection is equal
to �d
; that is, d2
 : �1 (M)! �1 (M)
�2 (M) is the multiplication by �d
 :

d2
 (!) = �! 
 d


for any di¤erential form ! 2 �1 (M) :This connection is called the Chern con-
nection of the web.
It is also easy to check that the Chern connection satis�es the relations

d
 (!
s
i ) = �!si 
 
s

for i = 1; 2; and any non-zero smooth function s: The straightforward compu-
tation shows also that d
 is a torsion-free connection.
Recall (see, for example, [10], p. 128) that for the covariant di¤erential

dr : �1 (M) ! �1 (M) 
 �1 (M) of any torsion-free connection r; one has
dr = d
 � T; where

T : �1 (M)! S2 (M) � �1 (M)
 �1 (M)

is the deformation tensor of the connection, and S2 (M) is the module of the
symmetric 2-tensors on M .

Below we shall use the notation rX (�)
def
= (dr�) (X) for the covariant deriv-

ative of a di¤erential 1-form � along vector �eld X with respect to connection
r:

Proposition 2 Let dr : �1 (M)! �1 (M)
�1 (M) be the covariant di¤eren-
tial of a connection r in the cotangent bundle of M: Then a foliation f� = 0g
on M given by the di¤erential 1-form � 2 �1 (M) consists of geodesics of r if
and only if

dr (�) = �
 � + � 
 �

for some di¤erential 1-forms �; � 2 
1 (M) :

Proof. Let �0 be a di¤erential 1-form such that � and �0 are linearly indepen-
dent.
Then

dr (�) = �
 � + � 
 � + h�0 
 �0:

Assume thatX is a geodesic vector �eld onM such that � (X) = 0: ThenrX (�)
must be equal to zero on X: But

dr� (X) = � (X) � + h�
0 (X) �0:

Therefore, h = 0:

Corollary 3 Foliations f!1 = 0g ; f!2 = 0g ; and f!3 = 0g are geodesic with
respect to the Chern connection.
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1.3 Akivis�Goldberg equations

The problem of linearization of webs can be reformulated as follows: �nd a
torsion-free �at connection such that the foliations of the web are geodesic with
respect to this connection.

Proposition 4 Let dr = d
 �T : �1 (M)! �1 (M)
�1 (M) be the covariant
di¤erential of a torsion-free connection r such that the foliations f!p = 0g ; p =
1; 2; 3; are geodesic. Then

T (!1) = T
1
11!1 
 !1 + T 112 (!1 
 !2 + !2 
 !1) ;

T (!2) = T
2
22!2 
 !2 + T 212 (!1 
 !2 + !2 
 !1) ;

(11)

where the components of the deformation tensor have the form

T 212 = �1; T 112 = �2; T
1
11 = 2�1 + �; T

2
22 = 2�2 � � (12)

for some smooth functions �1; �2; and �:

Proof. Due to (2) and the requirement that the foliations f!1 = 0g and
f!2 = 0g are geodesic, one gets (11). The same requirement for the foliation
f!3 = 0g gives the following relation for the components of the deformation
tensor T :

T 111 + T
2
22 = 2(T

1
12 + T

2
12);

and this implies (12).
Therefore, in order to linearize the 3-web, one should �nd functions �1; �2 and

� in such a way that the connection corresponding to d
 � T; where the defor-
mation tensor T has form (12), is �at.
Let us denote by ri the covariant derivatives along @i; i = 1; 2; with respect

to the connection r and by

R : �1 (M)! �1 (M)

the curvature tensor .
>From the standard formula for the curvature R (X;Y ) = [rX ;rY ]�r[X;Y ]

(see, for example, [9], p. 133) and (9) we �nd that

R (!) = [r1;r2] (!) +H (r1 �r2) (!)

for any ! 2 �1 (M) :
It follows from the above proposition that for the connection corresponding

to d
 � T we get

r1 (!1) = � (2�1 + �+H) !1 � �2 !2;
r1 (!2) = �(�1 +H) !2;
r2 (!1) = � (�2 +H) !1;
r2 (!2) = ��1 !1 � (2�2 � �+H) !2:
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and

R(!1) = (2@2 (�1)� @1 (�2) + @2 (�)�H (2�1 � �2 + �)� �1�2 �K) !1 +
(@2 (�2) + �2 (�H � �2 + �)) !2;

R (!2) = (�@1 (�1) + �1 (H + �1 + �)) !1 +

(@2 (�1)� 2@1 (�2) + @1 (�)�H (�1 � 2�2 + �) + �1�2 �K) !2

Therefore, in order to obtain a �at torsion-free connection, components of
the deformation tensor must satisfy the following Akivis-Goldberg equations

R (!1) = 0; R (!2) = 0: (13)

Since !1 and !2 are linearly independent, equations (13) imply that

2@2 (�1)� @1 (�2) + @2 (�)�H (2�1 � �2 + �)� �1�2 �K = 0;

@2 (�2) + �2 (�H � �2 + �) = 0;
�@1 (�1) + �1 (H + �1 + �) = 0;

@2 (�1)� 2@1 (�2) + @1 (�)�H (�1 � 2�2 + �) + �1�2 �K = 0:

Resolving the system with respect to the derivatives of �1 and �2, we obtain
the following system of PDEs:

@1 (�1) = �1 (H + �1 + �) ;

@2 (�1) =
K

3
+H

�
�1 +

�

3

�
+ �1�2 +

1

3
@1 (�)�

2

3
@2 (�) ;

@1 (�2) = �
K

3
+H

�
�2 �

�

3

�
+ �1�2 +

2

3
@1 (�)�

1

3
@2 (�) ;

@2 (�2) = �2 (H + �2 � �) :

We shall look at the above system as a system of partial di¤erential equations
with respect to the functions �1 and �2 provided that � is given.
We get the compatibility conditions for this system from structure equations

(9) for �1 and �2 presented in the form

@1(@2 (�i))� @2(@1 (�i)) +H (@1 (�i)� @2 (�i)) = 0;

where i = 1; 2:
After a series of long and straightforward computations, we obtain the fol-

lowing two compatibility equations:

I1 (�) = 0; I2 (�) = 0; (14)

where I1 (�) and I2 (�) have the form

I1 (�) = �@21 (�) + 2@1@2 (�) + (�+H) @1 (�)� 2 (2H + �) @2 (�)

+H�2 + (2H2 � @2 (H))�� @1 (K) + 2HK
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and

I2 (�) = �@22 (�) + 2@1@2 (�) + 2(��H)@1 (�)� (H + �)@2 (�)�H�2

+
�
2H2 � @1 (H)

�
�� @2 (K) + 2HK:

We sum up these results in the following

Theorem 5 The Akivis-Goldberg equations as di¤erential equations with re-
spect to the components T 112 = �2 and T 212 = �1 of the deformation tensor T
are compatible if and only if the component � satis�es the following di¤erential
equations:

I1 (�) = 0; I2 (�) = 0:

If the above conditions (14) are valid, then the system (13) of PDEs is the
Frobenius-type system, and for given values �1 (x0) and �2 (x0) at a point x0 2
M; there is (a unique) smooth solution of the system in some neighborhood of
x0:

2 Linearization of 4-Webs

2.1 The Basic Invariant of a 4-web

A 4-web W4 on M2 can be de�ned by 4 di¤erential 1-forms !1; !2; !3; and !4
such that any two of them are linearly independent.
We prove the following proposition:

Proposition 6 The forms !1; !2; !3; and !4 can be normalized in such a way
that the normalization condition (1) holds for the �rst three of them, and in
addition, the following condition holds for the forms !1; !2; and !4:

!4 + a!1 + !2 = 0; (15)

where a is a nonzero function.

Proof. In fact, if we take the forms !1 and !2 as cobasis forms of M2, then

the forms !3 and !4 are linearly expressed in terms of !1 and !2 :

!3 = �!1 + �!2;

!4 = �
0
!1 + �

0
!2;

where �; �; �
0
; �

0
6= 0; � 6= �0 ; ��

0
� �0� 6= 0:

Making the substitution

!1 ! � 1
�
!1; !2 !

1

�
!2; !3 ! �!3; !4 ! ��

0

�
!4;
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we get (1 ) and (15) with a = �
0
�

�
0
�
.

Note that a 6= 0; 1: Moreover, the value a (x) ; x 2 M; of the function a is
the cross-ratio of the four tangents to the lines in T �x (M

2) generated by the
covectors !1;x; !2;x; !3;x, and !4;x; and therefore is an invariant of the 4-web.
The function a is called the basic invariant of the 4-web (see [4] and [5], pp.
302�303).
We shall consider a 4-web h!1; !2; !3; !4i as the 3-web h!1; !2; !3i and an

extra foliation given by form !4 which satis�es (15). Moreover, by the Chern
connection, the curvature, etc. that we discussed above for a 3-web we shall
mean the corresponding constructions for the 3-web h!1; !2; !3i :

Theorem 7 Let r be a torsion-free connection in the cotangent bundle �� :
T �M !M such that the foliations f!1 = 0g ; f!2 = 0g ; f!3 = 0g ; and f!4 = 0g
are geodesic for r: Then the components of the deformation tensor T have the
form (12) and

� =
@1 (a)� a@2 (a)

a� a2 : (16)

Proof. Let dr = d
�T be the covariant di¤erential of the connection r. Then
(15) gives

�dr (!4) = !1 
 da� !4 
 
 � aT (!1)� T (!2) :

If !4 = 0; then !2 = �a!1; and the right-hand side takes the form�
@1 (a)� a@2 (a) + �

�
a2 � a

��
!1 
 !1:

Therefore, this tensor equals zero if and only if equation (16) holds.

2.2 Di¤erential Invariants of 4-Webs

For the values of the operators I1 (�) and I2 (�) on the function � = (@1 (a) �
a@2 (a))=(a� a2); we introduce the following operators:

I01 (f; a) = I1

�
@1 (a)� a@2 (a)

a� a2

�
and

I02 (f; a) = I2

�
@1 (a)� a@2 (a)

a� a2

�
:

These are di¤erential operators of order three in the basic invariant a and
of order four in the web function f:
If they are equal to zero, then � satis�es the conditions I1(�) = I2(�) = 0,

and therefore the Akivis�Goldberg equations for the 3-web generated by !1; !2;
and !3 are compatible. They can be solved with respect to the functions �1
and �2; and we get �nally the deformation tensor and such �at connection in
which the leaves of !p = 0 for all p = 1; 2; 3; 4 are geodesics.
Summarizing we get the following theorem.
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Theorem 8 The 4-webW4 is linearizable if and only if the conditions I01 (f; a) =
0 and I02 (f; a) = 0 hold.

We call the quantities I01 (f; a) and I
0
2 (f; a) the basic di¤erential invariants

of 4-web.
In order to make the expressions for these invariants more symmetric, we

introduce a second web function for a 4-web W4. Namely, locally one can �nd
a function g(x; y) such that !4 ^ dg = 0; or

!4 = u dg

for some function u: Note that the function f(x; y) de�nes the 3-subweb of the
4-web W4 formed by the foliations f!1 = 0g ; f!2 = 0g ; and f!3 = 0g ;and the
function g(x; y) de�nes the 3-subweb of the 4-web W4 formed by the foliations
f!1 = 0g ; f!2 = 0g ; and f!4 = 0g :
It follows from (15) that

ugx = �afx; ugy = �fy:

These two equations imply that

a =
fygx
fxgy

and

a =
@1 (g)

@2 (g)
: (17)

Substituting this expression into (16) and the result obtained into (14), one
gets two di¤erential invariants I1 (f; g) and I2 (f; g) each of which is of order
three in f and g:

2.3 Computation of the Di¤erential Invariants

2.3.1 Calculus of Covariant Derivatives

Let d
 : �1(M) ! �1 (M) 
 �1 (M) be the covariant di¤erential with respect
to the Chern connection.
Denote by �k (M) =

�
�1 (M)

�
k
the module of covariant tensors of order

k: Then the Chern connection induces a covariant di¤erential

d(k)
 : �k (M)! �k+1 (M) ;

where
d(k)
 : h� 7�! hd

(k)
r (�) + � 
 dh

and h 2 C1 (M) and � 2 �k (M) :
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If � has the form � = u!i1 
 !i2 
 � � � 
 !ik in the basis f!1; !2g; where
i1; i2; :::; ik = 1; 2; and u 2 C1 (M) ; then

d(k)
 (�) = !i1 
 !i2 
 � � � 
 !ik 
 (du� ku
) :

We say that u is of weight k and call the form

�(k) (u) = du� ku
 (18)

the covariant di¤erential of u: Decomposing the form �(k) (u) in the basis
f!1; !2g; we obtain

�(k) (u) = �
(k)
1 (u) !1 + �

(k)
2 (u) !2;

where

�
(k)
1 (u) = @1 (u)� kHu; (19)

�
(k)
2 (u) = @2 (u)� kHu

are the covariant derivatives of u with respect to the Chern connection. Note
that �(k)1 (u) and �(k)2 (u) are of weight k + 1:

Lemma 9 For any s = 0; 1; :::; the relation

�
(s+1)
2 � �(s)1 � �(s+1)1 � �(s)2 = sK (20)

holds for the commutator.

Proof. We have

�
(s+1)
2 � �(s)1 = @2@1 � sH@2 � (s+ 1)H@1 +

�
s (s+ 1)H2 � s@2H

�
and

�
(s+1)
1 � �(s)2 = @1@2 � sH@1 � (s+ 1)H@2 +

�
s (s+ 1)H2 � s@1H

�
:

The statement follows now from (10).

2.3.2 Prolongations of the Curvature and the Basic Invariant

As we have seen, the geometry of a 4-web is determined by the curvature K,
the basic invariant a and their (covariant) derivatives. In order to express the
invariants I1 and I2 in terms of K; a and their covariant derivatives, we need
the �rst covariant derivatives of K and covariant derivatives of a up to the third
order.
We apply (19) to K and a:
The curvature function K is of weight two. Hence

K1 = �
(2)
1 (K) = @1 (K)� 2HK;

K2 = �
(2)
1 (K) = @2 (K)� 2HK:
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The basic invariant is of weight zero: Hence

a1 = �
(0)
1 (a) = @1a;

a2 = �
(0)
2 (a) = @2a:

Note that (20) for s = 0 implies that �(1)2 � �(0)1 = �
(1)
1 � �(0)2 :

Thus, we have the following expressions for the second covariant derivatives
of a :

a11 = �
(1)
1 � �(0)1 (a) = @21a�H@1a;

a12 = a21 := �
(1)
2 � �(0)1 (a) = @1@2a�H@2a;

a22 = �
(1)
2 � �(0)2 (a) = @22a�H@2a:

Formula (20) for s = 1 gives �(2)2 � �(1)1 � �(2)1 � �(1)2 = K:
De�ne the third covariant derivatives as follows:

eaijk = �(2)k � �(1)j � �(0)i (a) :

Note that these expressions are symmetric in (i; j) : In order to get symmetry
in (i; j; k) for all third covariant derivatives, we de�ne the symmetrized third
covariant derivatives aijk as follows:

a111 = ea111; a222 = ea222;
a112 =

1

3
(ea112 + ea121 + ea211) ;

a122 =
1

3
(ea122 + ea212 + ea221) :

For them we have the following expressions:

a111 = @
3
1a� 2H@21a+ (H2 � @1H)@1a;

a112 = @1@2@1a�H@21a� 2H@2@1a+
�
2H2 � 2@1H + @2H

3

�
@1a;

a122 = @2@1@2a�H@22a� 2H@1@2a+
�
2H2 � @1H + 2@2H

3

�
@2a;

a222 = @
3
2a� 2H@22a+ (H2 � @2H)@2a:

2.3.3 Cartan�s Prolongations

In this section we show the relationship of the above calculus to Cartan�s pro-
longations of the curvature K and the basic invariant a of a 4-web W4.
Since K is a relative invariant of weight two, it satis�es the following Pfa¢ an

equation:
�K = K1!1 +K2!2;

where �K = �(2)K = dK � 2K
:
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Since a is an absolute invariant, we have

�a = a1!1 + a2!2;

where �a = �(0)a = da:
Applying (18) to a1 and a2; we obtain

�a1 = a11!1 + a12!2;

�a2 = a12!1 + a22!2

because a12 = a21:
Here �ai = �

(1)ai = dai � ai
; i = 1; 2:
For the covariant di¤erentials of aij ; we have

�a11 = ea111!1 + ea112!2; (21)

�a12 = ea121!1 + ea122!2;
�a22 = ea221!1 + ea222!2;

where �aij = �
(2)aij = daij � 2aij
:

Passing to the symmetrized derivatives and using (20) , we �nd that

ea112 + 2ea121
3

= a112;ea112 � ea121
2

=
K

2
a1:

Therefore, ea112 = a112 + 2K
3
a1;

and the �rst equation in (21) takes the following form:

�a11 = a111!1 + (a112 +
2

3
a1K)!2:

For the second equation of (21), we have

ea121 = a112 � K
3
a1

and
�a12 = (a112 �

1

3
a1K)!1 + ea122!2:

For the third equation of (21), we have ea122 = ea212 and
ea221 + 2ea122

3
= a122;ea221 � ea122

2
= �K

2
a2:
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and

ea221 = a122 � 2
3
Ka2;

ea122 = a122 + 1
3
Ka2:

Therefore,

�a12 = (a112 �
1

3
a1K)!1 + (a122 +

1

3
Ka2)!2;

�a22 = (a122 �
2

3
a2K)!1 + a222!2:

2.3.4 Di¤erential Invariants in Terms of Covariant Derivatives

Here we express invariants I01 (f; a) and I
0
2 (f; a) in terms of the curvature func-

tion K , basic invariant a and their covariant derivatives. To do this, we express
the ordinary derivatives in therms of the covariant derivatines according to the
above formulae. After long computations, we get that the linearizability condi-
tions I01 (f; a) = I

0
2 (f; a) = 0 are equivalent to the following two equations:

K1 =
1

a� a2
h1
3
((1� a)a1 + aa2)K � a111 + (2 + a)a112 � 2aa122

i
+

1

(a� a2)2 f[(4� 6a)a1 + (a
2 + 3a� 2)a2]a11

+[(2a2 + 7a� 6)a1 + (2a� 3a2)a2]a12 + [2(a� a2)a1 � 2a2a2]ga22

+
1

(a� a2)3 [(�6a
2 + 8a� 3)(a1)3 � 2a3(a2)3

+(2a3 + 9a2 � 15a+ 6)(a1)2a2 + (�3a3 + 6a2 � 2a)a1(a2)2]

and

K2 =
1

a� a2
h1
3
(a1 + (a� 1)a2)K + 2a112 � (2a+ 1)a122 + aa222

i
+

1

(a� a2)2 f[2a1 + (2a� 2)a2]a11

+[(6a� 5)a1 + (�2a2 � 3a+ 2)a2]a12 + [(1� a� 2a2)a1 + 2a2a2]ga22

+
1

(a� a2)3 [(4a� 2)(a1)
3 + a3(a2)

3

+(6a2 � 12a+ 5)(a1)2a2 + (�2a3 � 3a2 + 5a� 2)a1(a2)2]:

3 Linearization of d-Webs

A d-webWd onM2 is de�ned by d di¤erential 1-forms !1; !2; !3; :::; !d such that
any two of them are linearly independent. We shall �x the 3-subweb h!1; !2; !3i
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and by the Chern connection, curvature, etc. we shall mean the corresponding
constructions for this 3-web:
For any 4 � � � d; we shall consider a 4-subweb W�

4 de�ned by the forms
!1; !2; !3; !�:We denote the basic invariant of this subweb by a� and continue
use the notation a for a4. Then

!� + a� !1 + !2 = 0:

In the same way we used above, we prove the following theorem:

Theorem 10 Let r be a torsion-free connection in the cotangent bundle �� :
T �M !M such that the foliations f!1 = 0g ; f!2 = 0g ; f!3 = 0g ; and f!� = 0g
are r-geodesic for all � � 4: Then the components of the deformation tensor T
have form (12) and

� =
@1 (a�)� a�@2 (a�)

a� � a2�
(22)

for all � = 4; :::; d:

Comparing the expressions for �; we get the following d � 4 new relative
invariants of the d-web Wd :

I� =
@1 (a�)� a�@2 (a�)

a� � a2�
� @1 (a)� a@2 (a)

a� a2 ;

where � = 5; :::; d:
The web Wd can be de�ned by the functions f; g4 = g; :::; gd and

a� =
@1 (g�)

@2 (g�)
:

This gives the following expressions for the invariants I� :

I(f; g; g�) = I (f; g�)� I (f; g) ;

where � = 5; :::; d; and

I (f; p) =
(@1p)

2 @22p� 2@1p @2p @1@2p+ (@2p)2 @21p
@1p @2p (@2p� @1p)

:

Summarizing we get the following theorem:

Theorem 11 The d-webWd is linearizable if and only if the conditions I1 (f; g) =
0 , I2 (f; g) = 0 and I (f; g; g5) = 0; ::::; I (f; g; gd) = 0 hold.
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3.1 Method of d-Web Linearization

3.1.1 4-Webs

We de�ne a 4-web W4 by two web functions f and g: Then the procedure for
the linearization of such a web can be outlined as follows:

Step 1 Check the linearizability conditions I1 (f; g) = 0; I2 (f; g) = 0:

Step 2 Find the function � from (16). Solve the Akivis-Goldberg equations (13)
with respect to the functions �1 and �2. This is the Frobenius-type PDEs
system due to Step 1. Find the components of the deformation tensor T
from (12).

Step 3 The connection �0�T is �at. Find local coordinates x1 and x2 in which the
connection coincides with the standard one on M2: In these coordinates,
the leaves of W4 are straight lines.

Remark 12 Step 2 and Step 3 can be performed in a constructive way (in
quadratures) if the web under consideration admits a nontrivial symmetry group.
In this case one can �nd the �rst integrals for the system of Akivis-Goldberg
equations and hence the deformation tensor. If this deformation tensor also
possesses nontrivial symmetries, then the local coordinates in Step 3 can be
found.

3.1.2 d-Webs, d > 4

We de�ne a d-web Wd by d � 2 web functions f and g = g4; :::; gd: Then the
procedure for linearization can be outlined as follows:

Step 1 Check the linearizability conditions I1 (f; g) = 0; I2 (f; g) = 0; I(f; g; g5) =
0; :::; I(f; g; gd) = 0:

Step 2 Find the function � from (16). Solve the Akivis-Goldberg equations (13)
with respect to the functions �1 and �2. This is the Frobenius-type PDEs
system due to Step 1. Find the components of the deformation tensor T
from (12).

Step 3 The connection �0�T is �at. Find local coordinates x1 and x2 in which the
connection coincides with the standard one on M2: In these coordinates,
the leaves of Wd are straight lines.

4 Tests and Examples

4.1 Test notebooks

Below we give Mathematica codes for testing 4- and 5-webs for linearizability.

16



The following program computes di¤erential invariants of d-webs for d � 4:

webInvariants[fTab_] := [ff; g;X; Y; h;A; I1; I2; J; a; �; d; ansg;
f = fTab[[1]]; d = Length[fTab]; g[i_] = fTab[[i]];

X[A_] := �D[A; x]
D[f; x]

; Y [A_] := �D[A; y]
D[f; y]

; h =
D[f; x; y]

D[f; x] �D[f; y] ;

a[i_] =
D[f; y] �D[g[i]; x]
D[f; x] �D[g[i]; y] ; �[i_] :=

X[a[i]]� a[i] � Y [a[i]]
a[i]2 � a[i] ; � = �[2];

I1 = X[X[�]]� 2 �X[Y [�]] + (�� h) �X[h] + (4 � h� 2 � �) � Y [�] +
h � �2 � (2 � h2 � Y [h]) � ��X[X[h]] +X[Y [h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
I2 = X[Y [�]]� 2 �X[Y [�]] + (2 � �+ 2 � h) �X[h] + (h� �) � Y [�]�
h � �2 � (2 � h2 �X[h]) � �+ Y [Y [h]]� Y [X[h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
J [i_] := (�� �[i])==Simplify;
ans = fI1; I2; Table[J [i]; fi; 3; dg]g ]

The following program tests 4-webs for linearizability:

linTest4Web[f_; g_] :=Module[

fX;Y; h;A; I1; I2; a; �; Z; ansg;

X[A_] := �D[A; x]
D[f; x]

; Y [A_] := �D[A; y]
D[f; y]

; h =

D[f; x; y]

D[f; x] �D[f; y] ;

a =
D[f; y] �D[g; x]
D[f; x] �D[g; y] ; � =

X[a]� a � Y [a]
a2 � a ;

I1 = X[X[�]]� 2 �X[Y [�]] + (�� h) �X[h] + (4 � h� 2 � �) � Y [�] +
h � �2 � (2 � h2 � Y [h]) � ��X[X[h]] +X[Y [h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
I2 = X[Y [�]]� 2 �X[Y [�]] + (2 � �+ 2 � h) �X[h] + (h� �) � Y [�]�
h � �2 � (2 � h2 �X[h]) � �+ Y [Y [h]]� Y [X[h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
Z = If [I1 === 0&&I2 === 0; "Y ES"; "NO"];

ans = Z ]
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The following program tests 5-webs for linearizability:

linTest5Web[f1_; f2_; f3_] :=Module[

fX;Y; h;A; I1; I2; J; a1; a2; �; �; Z; ansg;

X[A_] := �D[A; x]
D[f; x]

;Y [A_] := �D[A; y]
D[f; y]

;h =
D[f1; x; y]

D[f1; x] �D[f1; y] ;

a1 =
D[f1; y] �D[f2; x]
D[f1; x] �D[f2; y] ; a2 =

D[f1; y] �D[f3; x]
D[f1; x] �D[f3; y] ;

� =
X[a1]� a1 � Y [a1]

a12 � a1 ; � =
X[a2]� a2 � Y [a2]

a22 � a2 ;

I1 = X[X[�]]� 2 �X[Y [�]] + (�� h) �X[h] + (4 � h� 2 � �) � Y [�] +
h � �2 � (2 � h2 � Y [h]) � ��X[X[h]] +X[Y [h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
I2 = X[Y [�]]� 2 �X[Y [�]] + (2 � �+ 2 � h) �X[h] + (h� �) � Y [�]�
h � �2 � (2 � h2 �X[h]) � �+ Y [Y [h]]� Y [X[h]] + 2 � h �X[h]
�2 � h � Y [h]==Simplify;
J = (�� �)==Simplify;
Z = If [I1 === 0&&I2 === 0&&J === 0; "Y ES"; "NO"];

ans = Z ]

Here f ,g and f1; f2; f3 are the web-functions.
Results of the tests are �YES�or �NO�depending on linearizability of the

web. Note that the computer testing gives the same results if in each example
we replace the functions f(x; y) and g(x; y) by the functions f(p(x); q(y)) and
g(p(x); q(y)), where p(x) and q(y) are arbitrary smooth functions of x and y;
respectively (i.e., if we consider equivalent webs).

4.2 Examples

1. linTest4Web[x=y; x+ y] = "Y ES"

This is the 4-web whose third foliation consists of straight lines of the
pencil with center at the origin, and the 4th foliation consists of parallel
straight lines forming the angle 135 degrees with positive direction of the
axis Ox, i.e., this 4-web is linear, and the test is just for demonstration
that it is working.

2. linTest4Web[x=y; (1� y)=(1� x)] = "Y ES"
In this case the 3rd and 4th foliations are straight lines of two pencils with
their vertices at (0; 0) and (1; 1). This 4-web is also linear, and the test is
just for demonstration that it is working.

3. linTest4Web[x+
p
x2 � y; x+ y] = "Y ES"

18



In this case the curves of the 3rd foliation are tangent to the parabola
y = x2, and the 4th foliation consists of parallel straight lines forming the
angle 135 degrees with positive direction of the axis Ox, i.e., this 4-web is
linear. But here it is not obvious, that the 3rd foliation consists of straight
lines.

4. linTest4Web[x+
p
x2 � y; y +

p
y2 � x] = "Y ES"

Here the curves of the 3rd foliation are tangent to the parabola y = x2,
and the curves of the 4th foliation are tangent to the parabola x = y2,
i.e., this 4-web is linear.

5. linTest4Web[x=y; (x+ y) � Exp[�x]] = "NO"
This is the 4-web whose third foliation consists of straight lines of the
pencil with center at the origin, and the 4-subweb de�ned by the 4th
foliation and the coordinate lines is parallelizable. The 4-web in this
example is not linearizable, although two of its 3-subwebs are linearizable.

6. linTest4Web[x=y; xn + yn] = "Y ES"

This web is equivalent to the 4-web of the 1st example. This web is not
linear but it is linearizable.

7. linTest5Web[y=x; (1� y)=(1� x); (x� xy)=(y � xy)] = "NO"
This is the famous 5-web constructed by Bol (see [2], § 46 and [3], §12
and §31). This web consists of 4 pencils of straight lines (the �rst two are
the pencils of parallel coordinate lines, and the 3rd and the 4th are the
pencils with centers at (0; 0) and (1; 1)), and a foliation of conics passing
through 4 centers of the 4 pencils. Bol constructed this example to show
that there exists a 5-web of maximum rank 6 which is not linearizable.
Bol gave an indirect proof that this 5-web is not linearizable. Our test
gives the direct proof of this fact.

8. linTest4Web[y=x; (x� xy)=(y � xy)] = "Y ES"
This is a 4-subweb of the Bol 5-web considered in the previous example.
It is formed by 3 pencils of straight lines and the same foliation of conics.
It appeared that this 4-web is linearizable while the Bol 5-web is not
linearizable. Note that we can prove the linearizability of this 4-web using
the quadratic transformation x = 1=x�; y = 1=y� suggested by Blaschke
in [2], §46.
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