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Abstract

We simplify proof of the theorem that close to any pseudoholomorphic
disk there passes a pseudoholomorphic disk of arbitrary close size with
any pre-described sufficiently close direction. We apply these results to
the Kobayashi and Hanh pseudodistances. It is shown they coincide in
dimensions higher than four. The result is new even in the complex case.

We aim here to prove the following statement, which was proved by another
(analogous to the approach of [7]) and more complicated method in [2].

Theorem 1. Let (M2n, J) be an almost complex manifold and

f0 : (DR, i) → (M,J), (f0)∗(0)e = v0 ∈ TM, v0 6= 0,

be a pseudoholomorphic disk. Here e = 1 is the unit vector at 0 ∈ C. For every
ε > 0 there exists a neighborhood Vε(v0) of the vector v0 such that for each v ∈ Vε

there is an ε-close in a fixed Ck-norm, slightly smaller pseudoholomorphic disk

f : (DR−ε, i) → (M, J), f∗(0)e = v.

The approximating curve f can be embedded/immersed if such is the curve f0.

This theorem was used in [2] for the proof of equivalence of two definitions
of Kobayashi pseudodistance dM in almost complex category. In the second dM

is associated via path integration to the Kobayashi-Royden pseudonorm:

FM (v) = inf{1/r | f : (Dr, i) → (M, J), f∗(0)e = v}, v ∈ TM.

The above theorem assures FM to be upper semicontinous, implying that

dM (x, y) = inf{
∫

γ∗FM | γ : [0, 1] → M, γ(0) = x, γ(1) = y}.

is well-defined.
Moreover, since an embedded disk can always be perturbed to embedded

we prove simultaneously the main properties of the Hanh pseudonorm SM (v),
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which is defined by the same formula as FM with an additional requirement
on f to be injective. This pseudometric generates a pseudodistance via path
integration, like FM generates dM , and this coincides (cf. [2]) with the distance

hM (x, y) = inf
m∑

k=1

d(zk, wk),

defined via injective chains fk : D1 → (M2n, J), k = 1, . . . , m, f1(z1) = p,
fm(wm) = q and fk(wk) = fk+1(zk+1), where d is the Poincare metric on D1.

Our approach to the close PH-curve existence result is similar to that of [10],
where the linearization of the structure J was made at a point. We linearize the
structure along the disk and use the reduction of the almost complex problem
to a complex one via the Green operator:

Tr : Ck(Dr,Cn) → Ck+1(Dr,Cn), g(z) 7→ 1
2πi

∫∫

Dr

g(z)
ζ − z

dζ ∧ dζ̄.

It is continuous in the Sobolev and Hölder norms ([11]) and obeys the identities:
∂̄Tr = Id, Tr∂̄|Ck+1

0
= Id .

Proof. We study at first the case, when the curve is embedded. Let U be a
neighborhood of the shrunk PH-curve f0(DR−ε). We can assume [2] the disk is
standard f0(DR−ε) = DR−ε × {0}n−1 ⊂ Cn and the almost complex structure
J : U → EndR(Cn), J2 = −1, along it is the standard complex structure
J(z) = J0 for all z ∈ DR−ε. The equation for f to be pseudoholomorphic reads:

∂̄f + qJ (f)∂f = 0, qJ(z) = [J0 + J(z)]−1 · [J0 − J(z)],

which due to the above properties is equivalent to

∂̄h = 0, h = [Id+TR−ε ◦ qJ (f) ◦ ∂] (f).

For k ∈ R \ Z, k > 1, consider the map

Φ : J × Ck+1(DR−ε; U) −→ Ck+1(DR−ε;Cn),
(J, s) 7−→ [Id+TR−ε ◦ qJ (f0 + s) ◦ ∂] (f0 + s),

where J is a neighborhood of the given almost complex structure J in Ck-
topology. We consider U as the total space of the ”normal bundle”, with the
sections being denoted by s, so that every map f ∈ Ck+1(DR−ε; U), that is
C1-close to (f0)|DR−ε , has a unique representation f = f0 + s.

The map ΦJ = Φ(J, ·) is Ck-smooth and satisfies: ΦJ (0) = f0, Φ′J (0) = Id.
It has the Taylor decomposition (with ‖ · ‖ being the Ck+1-norm):

ΦJ (s) = f0 + s + o(‖s‖).
Therefore Im ΦJ contains a small neighborhood of the curve f0.

Let Z = (a, v) ∈ TCn and hZ(z) = a + vz be the holomorphic disk in U ,
z ∈ DR−ε. It is close to f0 whenever Z is close to Z0 = (0, (1, 0, . . . , 0)) ∈ TCn.
Define

fZ = f0 + Φ−1
J (hZ).
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It is a J-holomorphic (R− ε)-disk, which satisfies: fZ − hZ = o(|Z − Z0|).
Consider the Ck-map Ψ : C2n → C2n, Z 7→ (fZ(0), (fZ)∗(0)e). Since the

above estimate implies Ψ′(Z0) = Id, the map Ψ(Z) is a local Ck-diffeomorphism
of a neighborhood of Z0. In particular, for every Z = (a, v) sufficiently close to
Z0 there exists a pair Z̃ = (α, ζ) such that Ψ(Z̃) = Z.

Now the obtained map f = fZ̃ is C1-close to f0 and so is embedded. It is

also smooth due to the usual elliptic regularity ([7, 5, 10]). If f0 is immersed, the
reasoning is the same for the neighborhood U obtained via f0 by the pull-back.

In the general case for the map f0 : (DR−ε, i) → (M, J) we consider the
graph f̂0 : (DR−ε, i) → (DR−ε×M, Ĵ = i× J), which is injective and apply the
part of the statement already proved. ¤

Remark. The proof implies persistence of big pseudoholomorphic disks (with
an insignificant loss of size) under perturbation not only of the initial vector,
but also of the almost complex structure J (note the role of J above), as well
as existence of a deformation of the initial curve to the perturbed one. This
generalizes theorems 1.7 of [5] and 3.1.1(ii) of [10].

The properties of the Kobayashi-Royden pseudometric for almost complex
manifolds was discussed in [2]. Let us consider the non-integrable version SM

of the Hanh pseudometric. By a theorem of Overholt [8] it coincides with the
Kobayashi-Royden pseudometric FM for domains M ⊂ Cn of dimension n > 2.
We generalize this to the non-integrable case.

Theorem 2. SM = FM for almost complex manifolds (M2n, J), n > 2.

Proof. Since SM ≥ FM , it is enough to show that whatever small ε > 0
is, any pseudoholomorphic disk of radius R > 0 can be approximated by an
injective pseudoholomorphic disk of radius R−ε with the same initial direction.

We give at first a new simple proof of Overholt’s theorem from [8]. Let
M ⊂ Cn be a domain and f : DR → M be a holomorphic map. Denote
fW (z) = f(z)−w2z

2−w3z
3, z ∈ DR−ε, W = (w2, w3) ∈ C2n. For small W the

map has still the image in M . Also note that fW (0) = f(0) and f ′W (0) = f ′(0).
By the Sard theorem a generic w2 ∈ Cn is outside the set

{f(z1)− f(z2)
z2
1 − z2

2

| z1, z2 ∈ DR−ε

}
∪

{f ′(z)
2z

| z ∈ DR−ε

}
.

For such a choice the map fw2,0 is injective outside the anti-diagonal {z2 = −z1}.
Note that regularity of the origin is preserved. So, switching on w3 being generic,
we get the map fw2,w3 to be injective everywhere.

In other words, the Sard theorem implies that the set of W = (w2, w3) for
which fW is not injective has measure zero and so a generic pair of small vectors
w2, w3 ∈ Cn defines the required approximating disk fW (z).

In the general complex case we should shift along some holomorphic vector
fields. This is achieved by the graph-lift construction and Royden’s lemma [9]
that an embedded holomorphic disk, shrunk a bit, has a Stein neighborhood.
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It is easier, however, to consider the general case of almost complex manifolds
(M, J) and to deduce the statement for integrable J as a corollary.

Denote by π : DR−ε × M → M the projection. As in theorem 1, the
graph-lift f̂0 : DR−ε → DR−ε ×M can be deformed to the family f̂Ŵ = f̂0 +
Φ̂−1

Ĵ
(gŴ ), where gŴ = ŵ0 + ŵ1z − ŵ2z

2 − ŵ3z
3, Ŵ = (ŵ2, ŵ3), ŵj ∈ Cn+1

and (ŵ0, ŵ1) = (ϕ̂0(ŵ2, ŵ3), ϕ̂1(ŵ2, ŵ3)) are some Ck-smooth functions, close
to Ẑ0 = (0, (1, 0, . . . , 0)) and such that (f̂Ŵ (0), (f̂Ŵ )∗(0)e) = Ẑ0 ∈ TCn+1. We
identify above f̂0 with g0̂, the first coordinate disk, and its neighborhood with
a ball B ⊂ Cn+1, equipped with the structure Ĵ = i× J .

Similarly to the first proof we get: f̂Ŵ = gŴ + ρŴ , where ρŴ = o(|Ŵ |).
Now fŴ is an embedding if πf̂Ŵ (z1) 6= πf̂Ŵ (z2) for z1 6= z2 and ∂πf̂Ŵ (z) 6= 0.
We consider only the first, more complicated, injectivity condition. It’s negation
is equivalent to gŴ (z1)− gŴ (z2) = [ρŴ ]|z2

z1
+ ζ, ζ ∈ D, or equivalently:

ŵ2(z1 + z2) + ŵ3(z2
1 + z1z2 + z2

2) = ŵ1 +
ρŴ (z2)− ρŴ (z1)

z2 − z1
+ ζ̃

The last equation is never satisfied for a.e. small Ŵ = (ŵ2, ŵ3) in C2n+2. In
fact, for ŵ1 = ϕ1(ŵ2, ŵ3) the r.h.s. is o(|Ŵ |). Thus the claim follows from the
Sard theorem, if at least one of the coefficients of ŵ2 and ŵ3 is not small. Since

D ×D =

=
[
U5δ(z1 = z2 = 0)

]∪[
D×D\Uδ(z1 = −z2)

]∪[
D×D\Uδ(z1 = (− 1

2±i
√

3
2 )z2)

]
.

and the regularity at (0, 0) is preserved under small perturbation we may achieve
injectivity away from the anti-diagonal by the quadratic perturbation and then
in its neighborhood by a cubic one. This finishes the proof. ¤

For n = 1, when almost complex structures are automatically integrable,
the equality SM = FM for domains M ⊂ C is equivalent to contractibility
(M = D1 or C). In the case of C-dimension n = 2 the equality may fail to hold
(however arguments of theorem 2 show that FM coincides with the pseudonorm
S̃M obtained via immersed disks).

Example. Consider the map ϕα : D1 → C2, z 7→ (z(αz − 1)2, αz2(αz − 1)),
|α| > 1. It has a unique self-intersection point ϕα(0) = ϕα(1/α) = 0, which
is transversal: ϕ′α(0) = (1, 0), ϕα(1/α) = (0, 1), and so non-removable. For a
neighborhood U of the image Im(ϕα) the pseudonorms FU and SU are different.

For the product M4 = U2
1×U2

2 the pseudonorms SM and FM were compared
in [1]. It is however unclear if we can majorize SM ≤ c · FM , with a constant
depending on M , or more generally, if Kobayashi and Hanh hyperbolicities (dM ,
resp. SM being a metric) are equivalent. Of course, the former implies the latter.

It was shown in [4] that contractible tame almost complex domains are
hyperbolic. In other cases the hyperbolicity may be lost.
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Example. Consider the Reeb foliation of R3 with the standard T 2 as a leaf.
This foliation propagates via parallel transports to R2n = R3×R2n−3, n ≥ 2, and
there is an almost complex J on R2n making the foliation pseudoholomorphic.
Every domain containing the leaf T 2 is neither tame nor hyperbolic. For n = 2
only a curve of genus 1 can be realized pseudoholomorphically in an almost
complex (R2n, J) ([6]). For n > 2 the sphere S2 can be realized pseudoho-
lomorphically, yielding a non-tame and non-hyperbolic domain in (R2n, J) ([4]).

Remark. In [6] the analogy between geodesics and pseudoholomorphic disks was
exploited (the Nijenhuis tensor plays the role of the curvature [3]). It is however
limited: By theorem 2 there are no analogs for conjugate points in complex time
curves theory. In fact the pseudoholomorphic curves are more flexible: There
passes a pseudoholomorphic disk through every finite collection of points.
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