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Abstract

In this paper we generalise the classical notion of state of a probabilis-
tic system to include a nontrivial minimal bound on the class of observ-
ables. A product is introduced and the resulting structure is shown to
be a monoidal category. Probabilistic relations are de�ned and composi-
tions of relations is introduced. The resulting structure is also a category,
the category of probabilistic relations. Finally we embedd the category
of probabilistic relations into a category of bimodules and show that in
this context it is possible to quantize some aspects of the probabilistic
description.

1 Introduction

>From a deterministic point of view a physical system is described in terms of
its state space. This is a set whose elements label the possible distinguishable
states the system in question might assume. The state of the system at any
point in time is from this point of view fully determined only when a unique
label from the set of possible labels is assigned.
In many cases the state spaces are however so large or our means of observa-

tions so weak that a deterministic state description can not be found. For such
situations a probabilistic approach is used. The states of a physical system are
now labelled by probability spaces h
;B; �i. Here we deviate somewhat from
the usual idea that the state of a system is a point in a probability space. The
resoning is that in order to specify the state of a system we must specify the
observable events and assign a probability to each such event. The spesi�cation
of the algebra of observable events and the assignment of probabilities to them is
really what constitute a state. This is a point of view that includes both classical
systems and quantum systems. For the quantum case the algebra of events form
a orthomodular lattice whereas in the classical case we have a boolean algebra.
For the quantum case the algebra of events can be represented as the algebra
of subspaces of a Hilbertspace whereas in the classical case we get a algebra of
subsets of some set. These are however only convenient representations of the
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state and is usually not unique. In this paper we assume that for each state a
particular representation in the form of a probability space is choosen and thus
a state becomes a probability space. From this point of view the notion of map-
pings of spaces assumes a central role, they are the only means of comparing
di¤erent states of a system. Properties of the system must be described in terms
of maps between states. This leads us directly to the categorical point of view
which is the point of view we have on probability theory. The book [14] gives
and excellent elementary introduction the categorical view of mathematics, a
more advanced introduction can be found in the book [7]
Let a state, that is a probability space, h
;B; �i be given. Here 
 is a set,

B is a class of subsets of 
 that are the observables for the system in question
and � is a probability measure that assign a probability to each observable in
B. The class of observables is assumed to contain the empty set ;,the whole
set 
 and is closed under countable union and complement. The fact that B
contains at least ; and 
 means that for any state at least these two events
are observable. We are thus putting a lower bound on the class of observables,
meaning that the class of observables should at least contain the empty set and
the whole set.
In this paper we explore the consequences of assuming lower bounds on

the set of observables di¤erent from the standard ones described above. More
precisely we assume that for each probabilistic state X = h
X ;BX ; �Xi there
is assigned a sub �-algebra GX � BX . All the algebras GX are assumed to be
isomorphic to a single algebra G. For the standard situation G is equal to the
Boolean algebra B2 of all subsets of a one element set. Probabilistic states with
an assigned subalgebra GX is called a probabilistic bundle. The probabilistic
bundles are the objects in a category where arrows are absolutely continuous
maps. We construct a product in this category and prove that the product
de�nes a monoidal structure on the category of probabilistic bundles. For �nite
distributive lattices the monoidal structure was studied in [11].
The notion of independence between two probabilistic states is de�ned in

terms of the product and is shown here to depend on the choice of minimal
bound on the set of observables. This means that states that from a classical
point of view are dependent can be independent for some choice of minimal
bound G 6= B2.
>From a deterministic point of view a relation between two sets 
X and


Y is a subset of the product 
X � 
Y . A probabilistic relation is triple
h
X � 
Y ;BXY ; �XY i where BXY is a class of deterministic relations that is
assumed to form a �-algebra and where �XY is a measure on BXY . A proba-
bilistic relation is thus itself a probability space. We show that any morphism of
probabilistic bundles is in fact a special kind probabilistic relation, and we de-
�ne a composition of relations that reduce to the composition of maps when the
relations corresponds to maps. The probabilistic bundles together with proba-
bilistic relations is shown to form a (weak) category R(A) and we extend the
product to this category.
The category R(A) formalizes the notion of state space from a probabilistic

point of view. Objects in this category are states and arrows are relations
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between states. In the last part of this paper we show that the category R(A)
can be mapped into the category of A-A bimodules. Here A is a C� algebra
related to the minimal bound G. This functor thus gives an algebraic description
of the state space, it is a subcategory of a category of bimodules. We show that
with this algebraic embedding it becomes possible to deform or quantize aspects
of the probabilistic state spaces.

2 A Monoidal Category of Probability Spaces

2.1 Probability Spaces

In this section we de�ne what a probability space will mean in this paper.
Certain natural restrictions are made on the general concept of an abstract
probability space in order for our constructions to make sense. We organize
probability theory using the categorical framework as this leads to constructions
that are natural. In fact category theory was invented in order to formalize the
notion of canonical or natural constructions in mathematics. The basic idea in
category theory is to organize any modeling and theory construction in terms
of objects and arrows. These are the only primitives in the theory. Note that
arrows are also called morphisms, both terms will be used in this paper. Each
arrow points from one object to another and there is a associative composition
of arrows de�ned. The description of a category is completed when an arrow
that acts as left and right identity for composition is identi�ed for each object.
We get a concrete example of a category if we let objects be sets with some
structure and arrows be structure preserving maps. For such examples arrow
are maps, but in general they need not be maps. In this paper we will discuss
probabilistic relations and show that they are arrows in a category. It will be
evident that they are in general not maps of sets.
The goal of this section is to de�ne a category whose objects are probability

spaces and whose arrows are maps of probability spaces. Natural restrictions
are made on both probability spaces and maps of spaces in order to get a well
behaved category. In this way category theory will constrain what probabil-
ity spaces and what maps between probability spaces should be. Recall that
probability spaces are to be thought of as states of physical systems so we have
placed restrictions on what kind of states to allow. The allowed states form the
objects in our category. Thus the category is in e¤ect the space of states of
physical systems. Arrows are possible transformations of states. Probabilis-
tic relations should then be thought of as the possible relations that can exist
between physical states.
A measurable space [5] is a pair X = h
X ;BXi where 
X is a set and BX is

a �-algebra on 
X . A measurable map f : X ! Y is a map of sets 
X ! 
Y
such that f�1(A) 2 BX for all A 2 BY .
Let 
 be a set and let � be a topology on 
. In this paper the term topol-

ogy is taken to mean a second countable, locally compact Hausdorf topology.
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Note that any such space is metrizable, Polish and �-compact.A Borel structure
corresponding to a topology � is the smallest �-algebra containing the topology
� and is denoted by B(�). A Borel space is a measurable space where the �-
algebra is the Borel structure. Any continuous map f : h
X ; �Xi ! h
Y ; �Y i is
measurable with respect to the Borel structures B(�X) and B(�Y ).
Note that with our restriction on the topology any Borel space is a standard

Borel space in the terminology of descriptive set theory.
Let h
;B(�)i be a Borel space where � is a topology on 
 and let Y � 
 be

a subset. De�ne the restriction of � and B(�) to Y by �Y = fA \ Y j A 2 �g
and B(�)Y = fB \ Y j B 2 B(�)g. Clearly B(�)Y is a �-algebra on Y . We
could however also de�ne a �-algebra on Y by B(�Y ). These two �-algebras on
Y are always the same B(�)Y = B(�Y ).
Note that for a general set Y , �Y is not a topology in the restricted sense

used in this work. In order to ensure that it is locally compact the set Y must
be closed or an intersection of an open and a closed set.
A measure space is a triple X = h
X ;BX ; �Xi where h
X ;BXi is a mea-

surable space and �X is measure on h
X ;BXi. By probability space we mean
a measure space X where BX = B(�X) for some topology on 
X and where
�X(
X) = 1. Note that since �X is second countable every measure is auto-
matically regular [3].
LetX = h
X ;BXi be a measurable space and let �X and �X be two measures

on X. Recall that �X is absolute continuous with respect to �X if �X(U) = 0
whenever �X(U) = 0. When �X is absolute continuous with respect to �X we
write �X � �X . If we have both �X � �Y and �Y � �X then the measures are
equivalent and we write �X � �Y .
Let X and Y be two probability spaces and let f : h
X ;BXi ! h
Y ;BY i be

a measurable map. De�ne a second probability measure f��X on h
Y ;B(�Y )i
by

f��X(V ) = �X(f
�1(V ))

for V 2 B(�Y ).
A map f of probability spaces is absolute continuous i¤ f��X � �Y . Ob-

viously, the identity map is absolute continuous and composition of absolute
continuous maps is absolute continuous too. This completes our description of
the category of probability spaces

De�nition 1 The category of probability spaces will be denoted by P. Objects
in this category are probability spaces as de�ned in this section and arrows are
measurable, absolutely continuous maps.

The existence and properties of all constructions in this paper are ultimately
relying on properties of the category P. In the next section we will begin
exploring these properties. Here we will only describe the terminal object and
isomorphisms in the category. Recall that a terminal object in a category C is
a object T such that there exists a unique arrow from any object X to T . The
importance of terminal objects in category theory is that they can be used to
de�ne points. Let X be a object in a category with a terminal object T . Then
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a point in X is a arrow from T to X. This describes the notion of points in
terms of the primitives of category theory, objects and arrows. Not all categories
have a terminal object, but for the one that does it is important to identify. The
terminal object in the category of probability spaces is the one point probability
space T = h
T ;B(�T ); �T i where 
T = f�g, B(�T ) = f?; f�gg and �T is the
only possible measure on this space. Evidently all maps f : 
T ! 
X are
measurable and if pf = f(�) 2 
X then it is easy to see that f is a point
in X if and only if �X is a discontinous measure with �X(pf ) 6= 0. Thus
objects X with a continuous probability measure �X have no points! This is
another reason for not considering the points of 
X to represent states of a
physical system modelled by the probability space X = h
X ;B(�X); �Xi. Many
states have no points. In category theory points are derived not de�ned. If
X = h
X ;B(�X); �Xi with �X = �x, the delta measure consentrated at a point
x 2 
X , then X is a state in the usual sense. It is trivial but satisfying that in
this case the state X has exactly one point in the categorical sense. This point
is the arrow f : T ! X de�ned by f(�) = x.
An isomorphisms in any category is an arrow f : X ! Y such that there

exists an arrow g : Y ! X with f � g = 1Y and g � f = 1X . Since in our case
an arrow, f , is a measurable map we must clearly require that f is bijectiv·e.
Note that a bijective measurable map between measurable spaces does not in
general have a measurable inverse. For our case however the Borel structures
are generated by Polish spaces and for this case any injective measurable map
f : X ! Y will by the Kuratowski Theorem [5] satisfy f(B(�X)) � B(�Y ).
Therefore any bijective measurable map has a measurable inverse.
>From this it follows that a morphism f : X ! Y of probability spaces

that is bijective at the level of sets, is an isomorphism of probability spaces i¤
f��Y � �X .

2.2 The Monoidal Structure

We will now start exploring the category P by showing that it has a prod-
uct. In a category there can be many types of products, some derived from a
universal limiting construction.All such products can be subsumed under the
notion of a monoidal structure on a category. Anyone applying mathematics
is constantly making use of monoidal structures. Two standard examples of
monoidal structures are the cartesian product in the category of sets and the
tensor product in the category of vector spaces. The �rst can be described in
terms of a universal limit whereas the other can not. Note that since a category
consists of both objects and arrows a product is de�ned only when we know how
to take products of both objects and arrows. Since arrows can be composed the
product of arrows should behave natural with respect to this composition. In
category theory this is expressed by saying that the product is a bifunctor. The
main reason for the prevalence of products in mathematics is that interactions
are described in terms of products. In probability theory products are used to
de�ne dependence and independence of random variables.
A monoidal structure in a category is basically a product in the category
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that is associative up to natural isomorphism and has a unit object up to nat-
ural isomorphism. What this means is that if X,Y and Z are objects in the
category and if the product is denoted by 
 then we require that there exists
a isomorphism �XY Z : X 
 (Y 
 Z) ! (X 
 Y ) 
 Z. Similarly if I is the
unit object we require that there exists isomorphisms �X : I 
 X ! X and

X : X 
 I ! X. The isomorphisms can not be arbitrarily choosen for dif-
ferent objects, they must form the components of a natural transformation. In
addition they must satis�e a set of equations known as the MacLane Coherence
Conditions. These equations ensure that associativity and unit isomorphisms
can be extended consistently to products of �nitely many objects. The condi-
tions that must be satis�ed by �,
 and � are the following.
For all objects X,Y ,Z and T we must have

�X
Y;Z;T � �X;Y;Z
T = (�X;Y;Z 
 1T ) � �X;Y
Z;T � (1X 
 �Y;Z;T )
(
X 
 1Y ) � �X;I;Y = 1X 
 �Y


I = �I

These are the MacLane coherence conditions. The naturality conditions are
expressed as follows. For any arrows f : X ! X 0,g : Y ! Y 0 and h : Z ! Z 0

we must have

((f 
 g)
 h) � �X;Y;Z = (f 
 (g 
 h)) � �X0;Y 0;Z0

f � �X = �X0 � (1I 
 f)
f � 
X = 
X0 � (f 
 1I)

In general such equations are di¢ cult to solve, there is a very large number
of variables and equations. However in some simple situations the naturality
conditions can be used to reduce the system of equations to a much smaller set.
In the last section of this paper we will solve a similar set of equations that
determine what we think of as quantizers for the category. Each solution of
those equations will give us a coherent way of deforming all structures de�ned
in terms of the monoidal structure.
The reader not familiar with categories,natural transformations and Coher-

ence conditions are referred to the two books mentioned in the introduction. In
order to see further examples of how such system of equations are solved and
how they are related to quantization we refer to previous publications by us
[8],[9],[4].
A monoidal category is a 6 tuple hC;
; I; �; �; 
i where each element in this

6 tuple has the properties just described.
We will now review the usual construction of products of probability spaces

and show that it de�nes a monoidal structure on the category P. First we need
to de�ne a bifunctor and then show that it has the additional properties required
from a monoidal structure. This is simple but instructive so we do it in detail.
Let X = h
X ;B(�X)i and Y = h
Y ;B(�Y )i be Borel spaces. We can de�ne

two natural �-algebras on 
X �
Y . These are B(�X)
B(�Y ) and B(�X 
 �Y ),
where B(�X)
B(�Y ) is the �-algebra generated by the set of measurable boxes
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S = fA � B j A 2 B(�X), B 2 B(�Y )g and where B(�X 
 �Y ) is the Borel
structure generated by the product topology.
Note that the product topology �X
�Y is second countable, locally compact

and Hausdorf if each of �X and �Y have these properties [12]. The product
topology is thus a topology in the restricted sense used in this paper.

Lemma 2 Let �X and �Y be topologies on 
X and 
Y . Then

B(�X)
 B(�Y ) = B(�X 
 �Y ):

Proof. Let �1 : 
X�
Y ! 
X and �2 : 
X�
Y ! 
Y be the projections
on the �rst and second factor.
Clearly ��11 (�X) � B(�X 
 �Y ) and ��12 (�Y ) � B(�X 
 �Y ) and therefore

�1 : h
X �
Y ;B(�X 
 �Y )i ! h
X ;B(�X)i and �2 : h
X �
Y ;B(�X 
 �Y )i !
h
Y ;B(�Y )i are measurable maps.
Then U �
Y = ��11 (U) and 
X �V = ��12 (V ) are contained in B(�X 
 �Y )

for all U 2 B(�X) and V 2 B(�Y ); and therefore B(�X 
 �Y ) contains all boxes
U � V with U 2 B(�X) and V 2 B(�Y ).
But B(�X)
B(�Y ) is the smallest �-algebra containing all boxes and there-

fore B(�X)
 B(�Y ) � B(�X 
 �Y ).
Denote by �(S) the topology generated by a basis S. Let us assume that

�X and �Y have countable bases SX and SY . Then �X 
 �Y has countable basis
SX �SY and therefore elements of �X 
 �Y consists of countable union of open
boxes A � B 2 SX � SY . All open boxes are in B(�X) 
 B(�Y ) and since it is
closed with respect to countable unions we have �X 
 �Y � B(�X)
B(�Y ). But
B(�X 
 �Y ) is the smallest �-algebra containing �X 
 �Y and therefore we must
have B(�X 
 �Y ) � B(�X)
 B(�Y ).
Let X and Y be any pair of probability spaces. We de�ne their product to

be the object

X 
 Y = h
X � 
Y ;B(�X)
 B(�Y ); �X 
 �Y i

where �X 
 �Y is the product measure[1]. This de�ne a map of objects

(X;Y ) = X 
 Y . Note that the previous proposition and the remarks pre-
ceeding it show that X
Y is really a probability space and thus a object in the
category P. This makes 
 well de�ned on objects.The next step is to extend 

to arrows.
Let f : X ! X 0 and g : Y ! Y 0 be arrows. De�ne a map of sets f 
 g :


X � 
Y ! 
X0 � 
Y 0 by f 
 g = f � g, where f � g is the usual cartesian
product of maps. The following proposition show that 
 extends to a bifunctor
on the category P.

Proposition 3 The product f 
 g is a arrow in P, and 
 : P � P ! P is a
bifunctor on the category of probability spaces.

Proof. The map f 
 g is clearly measurable with respect to B(�X)
B(�Y )
and B(�X0)
 B(�Y 0).
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Since f and g are morphisms we have f��X � �X0 and g��Y � �Y 0 . Fur-
thermore,

(f�(�X)
 g�(�Y ))(C 0 �D0) = f�(�X)(C
0)g�(�Y )(D

0)

= �X(f
�1(C 0))�Y (g

�1(D0)) = (�X 
 �Y )((f 
 g)�1(C 0 �D0))

= (f 
 g)�(�X 
 �Y )(C 0 �D0):

Then, by the uniqueness theorem for product measures [2] and Fubini�s
theorem, we have

(f 
 g)�(�X 
 �Y ) = f�(�X)
 g�(�Y ) � �X0 
 �Y 0 :

The second part of the proposition is evident since it is well known that the
cartesian product is a bifunctor.
To show that 
 is a monoidal structure is now very simple since we know

that the cartesian product is a monoidal structure in the category of sets with
unit object the one point set I = f�g. The maps of sets de�ning this monoidal
structure are �XY Z : 
X � (
Y � 
Z)! (
X � 
Y )� 
Z de�ned by

�XY Z((x; (y; z))) = ((x; y); z)

and �X : 
T � 
X ! 
X , 
X : 
X � 
T ! 
X de�ned by

�X(�; y) = y

X(y; �) = y

These maps are obviously arrows in P and this taken together yields the
following result

Theorem 4 h
; T; �; �; 
i is a monoidal structure on the category of probability
spaces.

The reader might want to verify that �,�,and 
 solves the MacLane Co-
herence conditions and the naturality requirements. For the category P it is
furthermore easy to show that this is the only possible choise of �,� and 
 that
solves the coherence conditions for the given bifunctor. This is true because
the naturality can be used to describe all maps �X;Y;Z , �X and 
X in terms of
�T;T;T , �T and 
T . and for these maps there is only one possibility because T
consists of a single point.

3 AMonoidal Structure on the Category of Prob-
abilistic Bundles

3.1 Probabilistic Bundles

We will now construct a new category based on the category P. The construc-
tion is an example of the usual comma construction in Category Theory. We will
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form a new category by considering objects over a �xed object in the category
of probability spaces P. The objects in this new category is naturally thought
of as bundles over a �xed basespace.

De�nition 5 A probabilistic bundle over A is a 4-tuple X = h
X ;B(�X); �X ; 'Xi
where h
X ;B(�X); �Xi is a probability space and 'X : 
X ! 
A is a continuous
surjective map such that

('X)��X � �A

Note that according to this de�nition a probabilistic bundle over A is a arrow
f : X ! A in P. It is however clear that not any such arrow is a probabilistic
bundle. We now need to de�ne arrows between probabilistic bundles.

De�nition 6 Let X = h
X ;B(�X); �X ; 'Xi and Y = h
Y ;B(�Y ); �Y ; 'Y i be
probabilistic bundles. A arrow f : X ! Y of probabilistic bundles is a arrow
f : h
X ;B(�X); �Xi ! h
Y ;B(�Y ); �Y i of probability spaces such that

'X = 'Y � f

Finally we collect objects and arrows into a category.

De�nition 7 The category of probabilistic bundles over A 2 P is a category
whose objects are probabilistic bundles and arrows are arrows of probabilistic
bundles as just de�ned. We denote this category by P(A).

The restriction we have placed on the arrows in P are choosen exactly such
that the resulting category of probabilistic bundles can support a monoidal
structure. This is Categorical modelling at work. We will usually identify the
object A in P with the probabilistic bundle h
A;B(�A); �A; 1Ai and denote both
by the symbol A. Using this notation it is evident that A is a terminal object
in the category P(A). The unique morphism from any object X to A is 'X .
A point in a probabilistic bundle is a arrow s : A ! X in P(A). Using the
de�nitions just stated it is evident that this is equivalent to the existence of a
measurable map s : h
A;B(�A)i ! h
X ;B(�X)i such that

'X � s = 1
A
s��A � �X

The �rst identity say that s is a measurable section in the bundle 'X :
h
X ;B(�X)i ! h
A;B(�A)i. Such sections certainly exists for the measurable
spaces considered in this paper. The second condition on s require a certain
singularity for the measure �X . For example if X = R2,A = R with the usual
Lebesgue measures and 'X the projection on the �rst component, then no
smooth section s : R ! R2 is a point in P(A) since the image s(R) � R2 has
measure zero with respect to the Lebesgue measure on R2.
The construction of the monoidal structure will rely heavily on the properties

of the conditional expectation and we will now recall some of its properties and
introduce some important notation that we will use in the rest of the paper.
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LetX be a probability space and let f : 
X ! R be a real valued measurable
map with respect to B(�X) and the standard Borel structure on R.
Let G � B(�X) be a sub �-algebra of B(�X) and assume that

R
jf jd�X <1.

Then there exists [1],[13], a function fG : 
X ! R that is G measurable andZ
S

fGd�X =

Z
S

fd�X for all S 2 G

The function fG is unique up to sets of measure zero in G and is the con-
ditional expectation of f with respect to G. General rules for manipulating
conditional expectations can be found, for example, in [13]. We will need the
following result

Lemma 8 Let ' : 
X ! 
Y be a surjective BX � BY measurable map. Then
a function f : 
X ! R is '�1(BY ) measurable i¤ there exists a unique BY
measurable function h : 
Y ! R such that

f = h � '

Let X = h
X ;B(�X); �X ; 'Xi be a probabilistic bundle over A and GX =
'�1X (B(�A)) be a sub �-algebra of B(�X) of "cylinder" sets. We denote the
conditional expectation of a function f : 
X ! R with respect to the subal-
gebra GX by (f)X . The fact that (f)X is de�ned only up to cylinder sets of
measure zero means that we really have an equivalence class of functions where
two functions from the class di¤er only on a cylinder set of measure zero. For
each representative u of (f)X there exists according to lemma 8 a unique GX
measurable function hu such that u = hu � 'X . Let u and v be two repre-
sentatives of (f)X and assume that hu and hv di¤er on a set U; that is not of
measure zero with respect to �A. Then the representatives u and v of (f)X dif-
fer on the set '�1X (U). But then '�1X (U) must have measure zero and therefore
('X)�(�X)(U) = 0. This is however a contradiction because �A � ('X)��X .
Thus hu and hv di¤er only on a set of measure zero. We will denote the class
of functions on 
A corresponding to (f)X through lemma 8 by eX(f). Let
C 2 B(�X) and let �C be the characteristic function corresponding to C. Then
�C is obviously B(�X) measurable and

R
j�C jd�X = �X(C) <1 since the mea-

sure is �nite. Therefore (�C)X is de�ned and is by de�nition GX measurable.
For this special case we will de�ne eX(C) = eX(�C). The function eX(C) is
clearly essentially bounded by the properties of conditional expectation. Note
that we obviously have (�;)X = �; and (�
X )X = �
X and therefore eX(;) = 0
and eX(
X) = 1 up to sets of measure zero.

3.2 The Monoidal Structure

We will �rst de�ne the product of probabilistic bundles and then proceed to
extend it to arrows. The product is based on the �bered product of sets.
Let X and Y be two objects in P(A) and let 
X
AY be the �bered product

of the underlying sets 
X and 
Y , that is


X
AY = f(x; y) j x 2 
X ; y 2 
Y ; 'X(x) = 'Y (y)g:
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De�ne a map of sets 'X
AY : 
X
AY ! 
A by

'X
AY (x; y) = 'X(x) = 'Y (y)

Note that '�1X
AY
(a) = '�1X (a) � '�1Y (a) so that the �bers of the �bered

product of the bundles X and Y is just the product of the �bers of the two
bundles. This is perhaps a simpler way to view the bundle 'X
AY : 
X
AY !

A. We are going to construct an object X 
A Y in P(A) with underlying set

X
AY and underlying map 'X
AY . This will be the object part of a bifunctor
that will form a monoidal structure on the category of probabilistic bundles.
Note that 
X
AY is a subset of 
X � 
Y . Let 4A � 
A � 
A be the

diagonal. Then 4A is a closed set with respect to the product topology because
the topological space h
A; �Ai is Hausdor¤.
This means that 
X
AY = ('X 
 'Y )�1(4A) is a closed and thus measur-

able subset of 
X � 
Y since 'X
AY is by de�nition continuous.
De�ne

�X
AY = (�X 
 �Y ) \ (
X
AY ):

Since the set 
X
AY is closed, the topology �X
AY is a topology in our
restricted sense. This is the point where we need the continuity of 'X and 'Y .
>From lemma 2 it is easy to see that

B(�X
AY ) = (B(�X)
 B(�Y )) \ 
X
AY :

Therefore, B(�X
AY ) is the �-algebra generated by �bered rectangles (or,
cubes) C �A D. From the previous remarks it is clear that B(�X
AY ) is a
subalgebra of B(�X)
 B(�Y ).
We will now de�ne a measure on the measurable space h
X
AY ;B(�X
AY )i

in such a way that it reduce to the product measure when A = T , the trivial one-
point probability space introduced in section 2. Let C 2 B(�X) and D 2 B(�Y )
be arbitrary measurable subsets. De�ne a set function, �A on measurable boxes
C �D by

�A(C �D) =
Z
eX(C)eY (D)d�A

This is clearly well de�ned . It is however not at all obvious that it can be
extended to a measure on h
X
AY ;B(�X
AY )i. We will now prove this by using
the simplest elements from the theory of positive operator valued measures and
integrals. Our main source for this theory is [10].
Recall that a positive operator valued measure (POV) on a measurable space

h
;Bi is a set function, E : B ! O(H) where O(H) is the set of bounded
operators on a Hilbert space H. For E to be a POV we must require that
E(C) � 0 is a positive operator for all elements C 2 B and that it is countable
additive on disjoint unions of sets.

E([1i=1Ci) =
1X
i=1

E(Ci)

11



Limits must be taken in the strong sense, that is pointwise convergence in
norm. Also recall that a spectral measure is a POV when E(C) is a projector
for all C.
We will show that the formula for �A can be related to the product of two

POV�s and throught this prove that �A extends to a measure.
Let HA = L2(
A;B(�A); �A). Then HA is a Hilbertspace and we have a

standard spectral measure PA de�ned by

PA(V )� = �C�

Using the notion of conditional expectation we now de�ne a operator valued
set function on B(�X) with values in O(HA) by

EX(C) =

Z
eX(C)dPA

Lemma 9 EX is a POV.

Proof. We know that eX(C) � 0 except for a set of measure zero with
respect to �A. But any such set also has measure zero with resect to PA.
Therefore

EX(C) =

Z
eX(C)dPA � 0

Let � 2 HA and de�ne a setfunction �� by

��(C) = hEX(C)�; �iA 2 [0; 1]

where the bracket denotes inner product in HA. If we can prove that �� is
a measure for all � 2 HA, then EX is a POV [10].
Let ��A(V ) = hPA(V )�; �iA. Then ��A is a measure that is absolutely con-

tinous with respect to �A with density j�j2. Let furthermore h be the density
of �A with respect to ('X)��X and let g be its inverse so that gh = 1 up to
measure zero with respect to �A. The densities g and h exists because we are
assuming that ('X)��X is equivalent to �A. Using these densities and standard
properties of integration with respect to POV�s we have

��(C) =

Z
eX(C)d�

�
A

=

Z
eX(C)j�j2d�A

=

Z
eX(C)j�j2gd('X)��X

=

Z
(�C)X '

�
X(j�j2g)d�X

=

Z
C

'�X(j�j2g)d�X

12



This proves that �� is a measure that is in fact absolutely continuous with
respect to �X and we can conclude that EX is a POV.
Let now X and Y be given objects in P(A) and let EX and EY be the

two POV�s constructed as above. We have now two POV�s acting on the same
Hilbert space HA. It is possible to de�ne the product of them only if they
commute. But by standard properties of integration with respect to spectral
measures we have

EX(C)EY (D) =

Z
eX(C)dPA

Z
eY (D)dPA

=

Z
eX(C)eY (D)dPA

=

Z
eY (D)dPA

Z
eX(C)dPA

= EY (D)EX(C)

thus our two measures commute. But then we can conclude that the formula

E(C �D) = EX(C)EY (D) =
Z
eX(C)eY (D)dPA

extends to a unique POV on B(�X
AY ).

Theorem 10 The set function �A de�ned by

�A(C �D) =
Z
eX(C)eY (D)d�A

extends to a unique probability measure on the measurable space h
X
AY ;B(�X
AY )i.

Proof. In general, if E is a POV acting on a Hilbert space H then for all
� 2 H the set function ��(C) = hE(C)�; �iH is a measure.Since �A is a �nite
measure we know that the constant function 1A is an element in HA. But then
since

hE(C �D)1A; 1AiHA
=

Z
eX(C)eY (D)d�A

= �A(C �D)

we can conclude that �A extends to a measure on the measurable space
h
X
AY ;B(�X
AY )i. It is a probability measure because �A(
X � 
Y ) =Z
�A = 1.

Proposition 11 Let L1(X) be the space of essentially bounded measurable
function on h
X ;B(�X); �Xi. Then we have for any f 2 L1(X)Z

fdEX =

Z
eX(f)dPA

13



Proof. Let � 2 HA and de�ne two measures

��X(C) = hEX(C)�; �iHA

��A(V ) = hPA(V )�; �iHA

Then by the general properties of integration with respect to operator mea-
sures we have proved the theorem if for all � 2 HAZ

fd��X =

Z
eX(f)d�

�
A

Let M� and N� be functionals on L1(X) de�ned by the lefthand side and
righthand side of the previous equation. It is straight forward to prove that
both M� and N� are bounded on L1(X):Since the space of simple functions is
dense in L1(X) we have proved the theorem if we can show thatM�(s) = N�(s)
for all simple functions. But for simple functions the identity follows directly
from the linearity of conditional expectation.

Lemma 12 Let p; q be the projections of 
X � 
Y on 
X and 
Y . Then we
have

p�(�A) � �X
q�(�A) � �Y

Proof. Let C0(X) be the algebra of continuous functions with compact
support on a probability space X = h
X ;B(�X); �Xi. Let f 2 C0(X) and let
f 
 1 be the function de�ned by (f 
 1)(x; y) = f(x)and let h be the density
of �A with respect to ('X)��X . Then we have using [10] and the previous
lemmaZ

fdp�(�A) =

Z
f � pd�A =

Z
(f 
 1)d�A = h(

Z
f 
 1dEX)1A; 1Ai

= h(
Z
fdEX)1A; 1Ai = h(

Z
eX(f)dPA)1A; 1Ai

=

Z
eX(f)d�A =

Z
(f)X(h � 'X)d�X =

Z
f(h � 'X)d�X

=

Z
fd�X

Where �X(U) =
R
U
(h � 'X)d�X . Since all measures are regular we can

conclude that p�(�A) = �X . But clearly �X � �X so p��A � �X .
The second part of the lemma is proved in a similar way.

Lemma 13 The support of the measure �A is contained in the closed set 
X
AY .

Proof. Let S = 
X
AY and let (x; y) 2 Sc be a element in the complement
of S. De�ne a = 'X(x) and b = 'Y (y). Since (x; y) 2 Sc we have a 6= b.

14



Since h
A;B(�A)i is Hausdorf there exists open sets Ux; Vy in 
A such that
a 2 Ux; b 2 Vy and Ux \ Vy = ;. Let Cx = '�1X (Ux) and Dy = '�1Y (Vy).
Then Cx 2 B(�X); Dy 2 B(�Y ) and Cx �Dy � Sc with (x; y) 2 Cx �Dy. Thus
O = fCx�Dy j (x; y) 2 Scg is a open cover for Sc. But h
X�
Y ;B(�X)
B(�Y )i
is second countable and thus Lindlöf and therefore there exists a countable sub-
cover G = fCi�Dig1i=1 of Sc. But by the properties of conditional expectation
we have eX(Cx) = �Ux and eY (Dy) = �Vy up to sets of �A-measure zero, so
eX(Cx)eY (Dy) = �Ux\Vy = 0 and therefore that �A(Cx �Dy) = 0.
Since �A is a measure we have

�A(S
c) = �A([1i=1Ci �Di) =

1X
i=1

�A(Ci �Di) = 0:

Since the support of the measure �A is the smallest closed set F such that
�A(F

c) = 0 we can conclude that F � 
X
AY .
Recall that he Borel algebra B(�X
AY ) is a subalgebra of B(�X)
 B(�Y ).

De�nition 14 The restriction of the measure �A to the subalgebra B(�X
AY )
we shall denote by �X
AY . This measure we will also denote by �X 
A �Y and
called a �bered product of the measures �X and �Y .

Using this de�nition, lemma 13 and lemma 12 we can generalize proposition
11 to the following very useful result

Proposition 15 Let f and g be any essentially bounded functions on X and Y
and let (f 
 g)A be the restriction of f 
 g to 
X
AY . ThenZ

(f 
 g)Ad�X
AY =

Z
(f 
 g)d�A =

Z
eX(f)eY (g)d�A

Proof. The �rst identity is just a direct consequence of lemma 13. We now
prove the second identity. Let t be a �xed simple function on 
Y and de�ne
maps M(f) and N(f) for functions on 
X by

M(f) =

Z
(f 
 t)d�A

N(f) =

Z
eX(f)eY (t)d�A

We will now prove that M(f) is well de�ned on L1(�X).
Let f 2 L1(�X) and g 2 L1(�Y ) be arbitrary essentially bounded functions

on h
X ;B(�X)i and h
Y ;B(�Y )i. Thus there exists sets Vf � 
X and Vg � 
Y
with �X(Vf ) = �Y (Vg) = 0 and f bounded on the complement V cf of Vf and g
bounded on the complement V cg of Vg. But then f 
 g is obviously bounded on
the set V cf � V cg � 
X � 
Y . Furthermore we have

(V cf � V cg )c � (Vf � 
Y ) [ (
X � Vg)
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But then

�A((V
c
f � V cg )c) � �A(Vf � 
Y ) + �A(
X � Vg)

= p��A(Vf ) + q��A(Vg) = 0

where the last identity follows from lemma 12. Therefore f
g is in L1(�A).
This argument proves that M(f) is well de�ned on L1(�X). It is obvious that
N(f) is well de�ned on the same space by the properties of conditional ex-
pectation. In fact simple estimates show that M and N are both continous
linear functionals. But the de�nition of �A and linearity of conditional expec-
tation show that M(s) = N(s) for all simple functions. The density of simple
functions in L1(�X) and the continuity now show thatZ

(f 
 t)d�A =
Z
eX(f)eY (t)d�A

We now �x f and consider the two sides of the above equation to be functions
on L1(�Y ). Repeating the argument above for L1(�Y ) we �nally prove the
proposition.
We can now use the previus result to prove the following extension of lemma

12 that we will need later.

Proposition 16 Let p : 
X � 
Y ! 
X and q : 
X � 
Y ! 
Y be the
projections. Then we have

p�(�A) � �X
q�(�A) � �Y

Proof. By lemma 12 we only need to prove that p��A � �X and q��A � �Y .
Let h be the density of ('X)��X with respect to �A and let f 2 C0(X) be any
continuous function with compact support on X. Then we haveZ

fd�X =

Z
eX(f)hd�A =

Z
eX(f)eY (h � 'Y )d�A =Z

(f 
 (h � 'Y ))d�A =
Z
(f 
 1)(1
 (h � 'Y ))d�A =Z

(f � p)d� =
Z
fdp��

where � � �A is the measure de�ned by �(V ) =
R
V
(1 
 (h � 'Y ))d�A. By

uniqueness of regular measures we can conclude that �X = p��. But � � �A
implies that p�� � p��A and therefore �X � p��A . The second part of the
proposition is proved in an entirely similar way.

Proposition 17 ('X
AY )��X
AY = �A
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Proof. We have for any U 2 B(�A) that

[('X
AY )�(�X
AY )](U) = (�X
AY )(('X
AY )
�1(U))

= (�X
AY )(('
�1
X (U)� 
Y ) \ 
X
AY ) = �A('

�1
X (U)� 
Y )

=

Z
eX('

�1
X (U))eY (
Y )d�A =

Z
eX('

�1
X (U))d�A

=

Z
�Ud�A = �A(U)

We can conclude that

Proposition 18 X 
A Y = h
X
AY ;B(�X
AY ); �X
AY ; 'X
AY i is a proba-
bilistic bundle.

We have now de�ned a product of objects 
A(X;Y ) = X 
A Y and we will
next proceed to extend it to a product of arrows and show that it is a bifunctor.
Let f : X ! X 0 and g : Y ! Y 0 be morphisms of probabilistic bundles.

De�ne a map of sets f 
A _g : 
X
AY ! 
X0
AY 0 by

f 
A g = f �A g

Recall that the map f �A g is the restriction of f � g to the subset 
X
AY .
The map f
Ag is clearly measurable with respect to the Borel algebras B(�X
AY )
and B(�X0
AY 0). In order to prove that it is a arrow in the category of proba-
bilistic bundles we must now show that it is absolute continuous.
Let the probabilistic bundleX be given byX = h
X ;B(�X); �X ; 'Xi. De�ne

a new probabilistic bundle f�X by f�X = h
f�X ;B(�f�X); �f�X ; 'f�Xi where

f�X = 
X0 ,B(�f�X) = B(�X0),'f�X = 'X0 and �f�X = f��X .
We need the following lemma

Lemma 19 Let C 0 2 B(�X0). Then ef�X(C
0) = eX(f

�1(C 0))

Proof. Let U 2 B(�A) be any measurable set and let V = '�1f�X(U) =

'�1X0 (U).
Then we haveZ

V

(�C0)f�Xd�f�X =

Z
V

�C0d(f��X) = f��X(C
0 \ V )

= �X(f
�1(C 0) \ f�1('�1X0 (U))) = �X(f

�1(C 0) \ '�1X (U))

=

Z
'�1X (U)

�f�1(C0)d�X

17



On the other hand using the change of variable formula we haveZ
V

[eX(f
�1(C 0)) � 'f�X ]d�f�X =

Z
�'�1

X0 (U)
(eX(f

�1(C 0)) � 'X0)d(f��X)

=

Z
(�'�1

X0 (U)
� f)(eX(f�1(C 0)) � 'X0 � f)d�X =

Z
�'�1X (U)[eX(f

�1(C 0)) � 'X ]d�X

=

Z
'�1X (U)

(�f�1(C0))Xd�X =

Z
'�1X (U)

�f�1(C0)d�X

Therefore by uniqueness (�C0)f�X = eX(f
�1(C 0)) � 'f�X and ef�X(C

0) =
eX(f

�1(C 0)).
Using this lemma we can prove

Proposition 20 (f 
A g)�(�X
AY ) = �f�X
Ag�Y

Proof. We have

[(f 
A g)�(�X
AY )](C
0 �A D0) = (�X
AY )(f

�1(C 0)�A g�1(D0))

=

Z
eX(f

�1(C 0))eY (g
�1(D0))d�A =

Z
ef�X(C

0)eg�Y (D
0)d�A

= �f�X
Ag�Y (C
0 �A D0)

The proposition now follows from the uniqueness of measure theorem.
For probabilistic bundles X and Y de�ne a relation X � Y i¤ 
X =


Y ,B(�X) = B(�Y ),'X = 'Y and �X � �Y . If h is the density of �X with
respect to �Y we say that X � Y with density h. If X � Y and Y � X we
write X � Y .

Lemma 21 Let X � Y with density h and let the densities of �A with respect
to ('X)��X and of ('Y )��Y with respect to �A be gX and fY . Then we have
for C 2 B(�X)

eX(C) = eY (FYGXh�C)

where FY = fY � 'Y and GX = gX � 'Y .

Proof. Let fX be the density of ('X)��X with respect to �A and gX the
density of �A with respect to ('X)��X . Note that fXgX = 1 up to sets of
measure zero.Let VA 2 B(�A) be any measurable set. Then we haveZ

V

eX(C)fXd�A =

Z
V

eX(C)d(('X)��X) =Z
'�1X (V )

(�C)Xd�X =

Z
'�1X (V )

�Cd�X =Z
'�1X (V )

h�Cd�Y =

Z
V

eY (h�C)d(('Y )��Y ) =Z
V

eY (h�C)fY d�A
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>>From this we can conclude that eX(C)fX = eY (h�C)fY up to sets of
measure zero. But then since fXgX = 1 up to sets of measure zero we get
eX(C) = eY (h�C)gXfY . For any B(�X) measurable function k and '�1X (B(�A))
measurable function l we have l(k)X = (lk)X . Using this result we have eX(C) =
eY (h�C)gXfY = eY (h�C(gX � 'Y )(fY � 'Y )) = eY (FYGXh�C).
We can now prove a generalization of a well known result from the theory

of product measures.

Proposition 22 Let Xi and Yi be probabilistic bundles with Xi � Yi for i =
1; 2. Then we have

X1 
A X2 � Y1 
A Y2

Proof. Let the density of Xi with respect to Yi be hi for i = 1; 2. Then we
have

�X1
AX2
(C �A D) =

Z
eX1

(C)eX2
(D)d�A

=

Z
eY1(FY1GX1h1�C)eY2(FY2GX2h2�D)d�A

=

Z
(FY1GX1

h1�C 
 FY2GX2
h2�D)

Ad�Y1
AY2

=

Z
C�AD

(FY1h1GX1 
 FY2GX2h2)
Ad�Y1
AY2

But then by uniqueness we can conclude that �X1
AX2
� �Y1
AY2 with

density (FY1h1GX1 
 FY2GX2h2)
A.

We now use the previous results to prove that

Proposition 23 f 
A g is a morphism of probability spaces

Proof. We have using propositions 20 and 22 that

(f 
A g)�(�X
AY ) = �f�X
Ag�Y � �X0
AY 0

This proposition show that 
A is a bifunctor on the category of conditional
probability spaces. We will now show that it is in fact an monoidal structure.
At the level of sets �A is a monoidal structure with unit object A and

associativity and unit constraints given by �A; �A and 
A where �A is the
restriction of the associativity constraint for � on the category of sets and
where

�AX(a; x) = x; and 
AX(x; a) = x:

In order to ensure that 
A is a monoidal structure we only need to verify
that the maps �A; �A and 
A are isomorphisms in the category of probabilistic
bundles. They are all continuous and thus measurable maps. Furthermore we
have
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Lemma 24

(�AX)�(�A
AX) � �X ; (
AX)�(�X
AA) � �X :

Proof. Let hX be the density of �A with respect to ('X)��X and fX the
density of ('X)��X with respect to �A. Note that hXfX = 1 up to sets of
�A measure zero. Let �X be the measure de�ned by �X =

R
U
(hX � 'X)d�X .

Then clearly �X � �X . But we also have �X(U) =
R
U
d�X =

R
U
(fX �'X)(hX �

'X)d�X =
R
U
(fX � 'X)d�X and therefore we also have �X � �X . The two

measures �X and �X are thus equivalent. For �A we have

[(�AX)��A
AX ](U) = �A
AX(
A �A U) =
Z
eA(
A)eX(U)d�A =

Z
eX(U)d�A

=

Z
(�U )X(hX � 'X)d�X =

Z
U

(hX � 'X)d�X = �X(U)

and therefore (�AX)��A
AX = �X � �X
>From this lemma we have

Corollary 25 �AX and 
AX are isomorphisms in the category of probabilistic
bundles.

For �AXY Z we need the following result

Lemma 26 eX
AY (C �A D) = eX(C)eY (D)

Proof. We have seen in proposition 17 that ('X
AY )�(�X
AY ) = �A.
Using this and the change of variable formula we have for all U 2 B(�A)Z

('X
AY )�1(U)

(eX(C)eY (D) � 'X
AY )d(�X
AY ) =Z
(�UeX(C)eY (D)) � ('X
AY )d(�X
AY ) =

Z
U

eX(C)eY (D)d�A

On the other hand we haveZ
('X
AY )�1(U)

(�C�AD)X
AY d(�X
AY )

=

Z
�('X
AY )�1(U)(�C�AD)X
AY d(�X
AY )

=

Z
(�'�1X (U)\C�AD

)X
AY d(�X
AY ) =

Z
�'�1X (U)\C�AD

d(�X
AY )

= (�X
AY )('
�1
X (U) \ C �A D) =

Z
eX('

�1
X (U) \ C)eY (D)d�A

=

Z
U

eX(C)eY (D)d�A
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Therefore by uniqueness we can conclude that

eX
AY (C �A D) = eX(C)eY (D)

Using this lemma we have

Proposition 27 �AXY Z is a isomorphism in the category of probability bundles

Proof.

(�AXY Z)��X
A(Y
AZ)((C �A D)�A E)
= �X�
A(Y
AZ)(C �A (D �A E))

=

Z
eX(C)eY
AZ(D �A E)d�A =

Z
eX(C)eY (D)eZ(E)d�A

=

Z
eX
AY (C �A D)eZ(E)d�A = �(X
AY )
AZ((C �A D)�A E)

But this means that (�AXY Z)��X
A(Y
AZ) = �(X
AY )
AZ

In summary we have proved the following fundamental property of the cat-
egory of probabilistic bundles.

Theorem 28 h
A; A; �A; �A; 
Ai is a monoidal structure on the category of
probabilistic bundles.

Note that when A is equal to the one point probability space T we obviously
have �X
TY = �X 
 �Y .

Example 29 Let 
A = fa1; :::; ang be a �nite set. The topology on A is the
power set �A = P (
A), so all set are clopen and B(�A) = P (
A). A probability
measure on the measurable space h
A; P (
A)i is a sequence �A = fqigni=1 with
qi � 0 and

Pn
i=1 qi = 1. The probability space A = h
A; P (
A); �Ai is clearly

a object in P. Let X and Y be any pair object in P(A). The functions 'X and
'Y induce partitions of 
X and 
Y into clopen sets fCigni=1 and fDigni=1and
furthermore '�1X (B(�A)) = fCigni=1; '�1Y (B(�A)) = fDigni=1.We have


X �A 
Y = [ni=1Ci �A Di
(�C)X =

X
�X(Ci)>0

PX(CjCi)�Ci

(�D)Y =
X

�Y (Di)>0

PY (DjDi)�Di

where

PX(CjCi) =
�X(C \ Ci)
�X(Ci)

PY (DjDi) =
�Y (D \Di)
�Y (Di)
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Therefore

�A(C �D) =
nX
I=1

PX(CjCi)PY (DjDi)qi

For the case of n = 1 we get 
X �A 
Y = 
X � 
Y and �A(C � D) =
�X(C)�Y (D). This is the standard product measure.

Example 30 Let 
X = 
Y = I = [�1; 1] and let B(�X) = B(�Y ) be the
standard Borel structure on I and �X = �Y = 1

2� where � is the lebesques
measure on R restricted to the interval I. Let A be the interval J = [0; 1],
standard Borel structure and �A = �. Let 'X = 'Y be the absolute value
function. The maps 'X and 'Y are continuous and ('X)��X = ('Y )��Y = �A
so X and Y are objects in P(A). For any set C in R let

C� = fx 2 R j � x 2 Cg

We observe that

'�1X (B(�A)) = fV [ V� j V 2 B(�A)g

An easy calculation gives us the following characterization

Proposition 31 f : 
X ! R is measurable with respect to '�1X (B(�A)) if and
only if f is an even function. For absolute integrable B(�X)-measurable function
f we have

eX(f) =
1

2
(f(x) + f(�x))

Therefore the measure �A will in this case be

�A(C �D) =
Z 1

0

1

4
(�C + �C�)(�D + �D�)d�

This measure is supported on the set


X �A 
Y = f(x; y) 2 R2 j jxj = jyjg

4 Markov Relations

If 
X and 
Y are sets then a relation between 
X and 
Y is a subset of

X�
Y and a relation between measurable spaces h
X ;B(�X)i and h
Y ;B(�Y )i
is a measurable subset in h
X � 
Y ;B(�X) 
 B(�Y )i. The collection of all
measurable sets in the product h
X � 
Y ;B(�X)
 B(�Y )i form the algebra of
observable relations. We get a probabilistic relation by assigning a probability to
all observable relations. This is the obvious and natural notion of a probabilistic
relation. In the following we introduce relations of probabilistic bundles and
show that they form the arrows in a larger category that we call the category
of Markov relations. We explore some of the properties of this category and its
relation to the category of probabilistic bundles.
Let pXY : 
X 
 
Y ! 
X and qXY : 
X � 
Y ! 
Y be the projections

and let pAXY and q
A
XY be their restriction to the set 
X �A 
Y � 
X � 
Y .
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De�nition 32 A Markov relation between the probabilistic bundles X and Y is
a probability measure � on the measurable space h
X �A 
Y ;B(�X)
A B(�Y )i
such that

(pAXY )�� � �X ; and (qAXY )�� � �Y :

We will denote a relation � between X and Y by � : X  Y .

We will �rst show that any arrow f : X ! Y between probabilistic bundles
will give rise to a Markov relation between X and Y .
Let f : X ! Y be a morphism of probabilistic bundles and let �f : 
X !


X � 
Y be the graph of f , �f (x) = (x; f(x)).
The graph of f is clearly a B(�X)�B(�X)
B(�Y ) measurable map and we

de�ne a probability measure �f on the measurable space h
X � 
Y ;B(�X) 

B(�Y )i by

�f = (�f )��X :

Proposition 33 The measure �f has its support in the closed set 
X �A 
Y .

Proof. Indeed, let C 2 B(�X) and D 2 B(�Y ) and assume that C � D is
in the complement of 
X �A 
Y . Note that for any box we have �f (C �D) =
�X(C \ f�1(D)). Take x 2 C \ f�1(D), then x 2 C; and there exists y 2 D
with y = f(x). But then 'Y (y) = 'Y (f(x)) = 'X(x) because f is a morphism
of probabilistic bundles. Therefore we have (x; y) 2 C �A D. But this last set
is empty. We can thus conclude that C \ f�1(D) = ? and so �f (C �D) = 0.
The proof of the proposition in completed by an argument like in lemma 13.
The measure �f therefore restricts to a measure on the measurable space

h
X�A
Y ;B(�X)
AB(�Y )i. Moreover, we have (pAXY )��f = �X and (qAXY )��f =
f��X � �Y and this proves that �f : X  Y is a Markov relation. Markov
relations thus exists. The following proposition gives is another example of a
Markov relation.

Proposition 34 Let X and Y be probability bundles. Then

�X
AY : X  Y

is a Markov relation

Proof. We know that �X
AY is a measure on h
X�A
Y ;B(�X)
AB(�Y )i
and from lemma 16 we have (pAXY )�� � �X ; and (qAXY )�� � �Y .

4.1 Composition of Markov Relations

We will now show that Markov relations, like morphisms, can be composed and
that they form the arrows in a category that includes the category of probability
bundles.
First we must introduce some notation that will be used in the rest of this

section. For any pair of probabilistic bundles X and Y let the subalgebras
GpXY and GqXY of B(�X) 
A B(�Y ) be given by GpXY = (pAXY )

�1(B(�X)) and
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GqXY = (q
A
XY )

�1(B(�Y )). For any relation � : X  Y and measurable function
F on h
X �
Y ;B(�X)
A B(�Y ); �i with

R
jF j d� <1 let (F )pXY and (F )

q
XY

be the conditional expectation of F with respect to the subalgebras GpXY and
GqXY . The function e

p
XY (F ) is well de�ned on 
X up to sets of (pAXY )�� -

measure zero by the identity (F )pXY = epXY (F ) � pAXY . Similarly the function
eqXY (F ) is well de�ned on 
Y up to sets of (q

A
XY )��-measure zero by the identity

(F )qXY = e
q
XY (F ) � qAXY .

Let now � : X  Y and � : Y  Z be relations and let � = (qAXY )�� be the
measure induced on Y by �.
Let C 2 B(�X) and D 2 B(�Z) be measurable sets. Since � = (qAXY )�� �

�Y � (pAY Z)�� the functions e
q
XY (C � 
Y ) and e

p
Y Z(
Y �D) are well de�ned

on h
Y ;B(�Y )i up to sets of �-measure zero. The following set function is well
de�ned by Hölder

�(C �D) =
Z
eqXY (C � 
Y )e

p
Y Z(
Y �D)d�

Using arguments entirely similar to the ones we used for the �bered product
we can show that this set function extends to a unique measure de�ned on
h
X
Z ;B(�X
Z)i. We denote this unique measure by the notation � � �. The
following result is proved in a way that is similar to the corresponding results
for the �bered product and is ommited.

Theorem 35 � �� is a probability measure on the product supported on the set

X �A 
Y and we have

(pXZ)�(� � �) � �X
(qXZ)�(� � �) � �Z

Furthermore if � : X  Y and � : Y  Z are relations with (qXY )�� �
�Y ,(pXY )�� � �X and similar for �. Then

(pXZ)�(� � �) � �X
(qXZ)�(� � �) � �Z

if equivalence of measures is replaced with identity, then the same holds for
the composition � � �.

These properties identify � � � as a Markov relation.

Corollary 36 Let � : X  Y and � : Y  Z be Markov relations. Then

� � � : X  Z

is a Markov relation.

We have seen that any arrows in P(A) give rise to Markov relations. Let
f : X ! Y and g : Y ! Z be arrows in P(A) and let �f : X  Y and
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�g : Y  Z be the corresponding relations, �f = (�f )��X and �g = (�g)��Y .
Since we already know how to compose arrows in P(A) the following result is
very satisfying and testify to the naturalness of our construction of composition
of Markov relations.

Proposition 37
�g � �f = �g�f

Proof. Let C 2 B(�X) and D 2 B(�Z).Then we have

(�g � �f )(C �A D) =
Z
eqXY (C �A 
Y )e

p
Y Z(
Y �A D)d�

=

Z
eqXY (C �A 
Y )e

p
Y Z(
Y �A D)d(q

A
XY )��f

=

Z
�C�A
Y (e

p
Y Z(
Y �A D) � q

A
XY )d�f

=

Z
(�C�A
Y � �f )(e

p
Y Z(
Y �A D) � q

A
XY � �f )d�X

=

Z
�C(e

p
Y Z(
Y �A D) � f)d�X

andZ
(pAYZ)

�1(V )

(�D � g � pAY Z)d�g =
Z
V�A
Z

(�D � g � pAY Z)d(�g)��Y

=

Z
(�V�A
Z � �g)(�D � g � pAY Z � �g)d�Y =

Z
�V (�D � g)d�Y

= �Y (V \ g�1(D)) = �g(V �A D) =
Z
�V�ADd�g

=

Z
�V�A
Z�
Y �ADd�g =

Z
(pAYZ)

�1(V )

�
Y �ADd�g

By uniqueness of conditional expectation we can conclude that

epY Z(
Y �A D) = �D � g

But then the previous calculation give

(�g � �f )(C �A D)

=

Z
�C(�D � g � f)d�X

= �X(C \ (g � f)�1(D))
= �g�f (C �A D)

The proposition now follows from the uniqueness of measure theorem.
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For any pair of probabilistic bundles X and Y there is a special relation
�X
AY : X  Y . For the special case when A = T the �bred product �X
TY =
�X 
 �Y is just the usual product of two measures. For this case the measure
signify independence between the states X and Y . In the general case we
will also think of �X
AY as signifying independence between the probabilistic
bundles X and Y . The following proposition support this interpretation by
showing that the composition preserve this special class of relations.

Proposition 38

(�X 
 �Y ) � (�Y 
A �Z) = �X 
A �Z

Proof. Let f be the density of ('Y )��Y with respect to �A and g the
density of ('Y )��Y with respect to �A.
Then the density of �Y with respect to (qAXY )�(�X 
A �Y ) is '�Y (f).
Note that fg = 1 up to sets of measure zero with respect to �A.
Using this we have for a given C 2 B(�X) and any V 2 B(�Y )Z

(qAXY )
�1(V )

(�C�A
Y )
q
XY d(�X 
A �Y ) =

Z
�C�AV d(�X 
A �Y )

= (�X 
A �Y )(C �A V ) =
Z
eX(C)eY (V )d�A =

Z
eX(C)eY (V )gd('Y )��Y

=

Z
�V '

�
Y (eX(C)g)d�Y =

Z
�V '

�
Y (eX(C))'

�
Y (g)'

�
Y (f)d(q

A
XY )�(�X 
A �Y )

=

Z
(qAXY )

�1(V )

(qAXY )
�('�Y (eX(C)))d(�X 
A �Y )

By the uniqueness of conditional expectation we have the identity eqXY (C�A

Y ) = '�Y (eX(C)). In a similar way we get for any D 2 B(�Z) the identity
epY Z(
Y �AD) = '�Y (eZ(D)). Using these two identities and proposition 17 we
have

((�X 
 �Y ) � (�Y 
A �Z))(C �A D)

=

Z
eqXY (C �A 
Y )e

p
Y Z(
Y �A D)d(q

A
XY )�(�X 
A �Y )

=

Z
'�Y (eX(C)eZ(D))d(q

A
XY )�(�X 
A �Y )

=

Z
eX(C)eZ(D)d('X
AY )�(�X 
A �Y )

=

Z
eX(C)eZ(D)d�A = (�X 
A �Z)(C �A D)

The proposition now follows by the uniqueness of measure theorem.
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4.2 The category of markov Relations

In this section we show that the composition is associative and that probabilistic
bundles in general form a weak category.
Let � : X  Y , � : Y  Z and ! : Z  W be relations. These relations

can be composed in two di¤erent ways, ! � (� � �) and (! � �) � �. These
two compositions are in general equal. In order to prove this we will need the
following two lemmas.

Lemma 39 We have
(pAYW )�(! � �) = (pAY Z)��

and if g is the density of (qAXY )�� with respect to (p
A
Y Z)��, then the density

of (qAXZ)�(� � �) with respect to (qAY Z)�� is e
q
Y Z((p

A
Y Z)

�(g))

We will also need the following result

Lemma 40 The following identities

epY Z((q
A
Y Z)

�(epZW (
Z �A D))) = e
p
YW (
Y �A D)

eqXZ(C �A 
Z)e
q
Y Z((p

A
Y Z)

�(g)) = eqY Z((p
A
Y Z)

�(eqXY (C �A 
Y )g))

hold.

Proof. Let V 2 B(�Y ), then we haveZ
(pAYZ)

�1(V )

(pAY Z)
�(epYW (
Y �A D))d� =

Z
V

epYW (
Y �A D)d(p
A
Y Z)��

=

Z
V

epYW (
Y �A D)d(p
A
YW )�(! � �)

=

Z
�V�ADd(! � �) = (! � �)(V �A D)

=

Z
eqY Z(V �A 
Z)e

p
ZW (
Z �A D)d(q

A
Y Z)��

=

Z
(pAYZ)

�1(V )

(qAY Z)
�(epZW (
Z �A D))d�

The �rst identity now follow from the uniqueness of the conditional expec-
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tation. For the second identity let V 2 B(�Z). Then we haveZ
(qAYZ)

�1(V )

(qAY Z)
�(eqXZ(C �A 
Z)e

q
Y Z((p

A
Y Z)

�(g)))d�

=

Z
V

eqXZ(C �A 
Z)e
q
Y Z((p

A
Y Z)

�(g))d(qAY Z)��

=

Z
V

eqXZ(C �A 
Z)d(q
A
XZ)�(� � �)

=

Z
(qAXZ)

�1(V )

�C�A
Zd(� � �)

=

Z
�C�AV d(� � �) = (� � �)(C �A V )

=

Z
eqXY (C �A 
Y )e

p
Y Z(
Y �A V )d(q

A
XY )��

=

Z
eqXY (C �A 
Y )e

p
Y Z(
Y �A V )gd(p

A
Y Z)��

=

Z
(pAY Z)

�(eqXY (C �A 
Y )g)�
Y �AV d�

=

Z
(qAYZ)

�1(V )

(pAY Z)
�(eqXY (C �A 
Y )g)d�

The uniqueness of conditional expectation now gives the second identity.

Proposition 41
! � (� � �) = (! � �) � �

Proof. let C 2 B(�X) and D 2 B(�W ). Then we have

(! � (� � �))(C �A D)

=

Z
eqXZ(C �A 
Z)e

p
ZW (
Z �A D)d(q

A
XZ)�(� � �)

=

Z
eqXZ(C �A 
Z)e

q
Y Z((p

A
Y Z)

�(g))epZW (
Z �A D)d(q
A
Y Z)��

=

Z
eqY Z((p

A
Y Z)

�(eqXY (C �A 
Y )g))e
p
ZW (
Z �A D)d(q

A
Y Z)��

=

Z
(pAY Z)

�(eqXY (C �A 
Y )g)(q
A
Y Z)

�(epZW (
Z �A D))d�

=

Z
eqXY (C �A 
Y )e

p
Y Z((q

A
Y Z)

�(epZW (
Z �A D)))gd(p
A
Y Z)�

=

Z
eqXY (C �A 
Y )e

p
Y Z((q

A
Y Z)

�(epZW (
Z �A D)))d(q
A
XY )��

=

Z
eqXY (C �A 
Y )e

p
YW (
Y �A D)d(q

A
XY )�� = ((! � �) � �)(C �A D)
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The proposition now follows from the uniqueness of measure theorem.

Proposition 42 Let � : X  Y be a relation. Then we have

� � �1X � �
�1Y � � = �

Proof. Let C 2 B(�X) and D 2 B(�Z) and let V 2 B(�X). Then we haveZ
(qAXX)

�1(V )

(�C � qAXX)d�1X =
Z
(�

X�V � �1X )(�C � qAXX � �1X )d�X

=

Z
�V �Cd�X = �X(C \ V ) = �1X (C �A V ) =

Z
(qAXX)

�1(V )

�C�A
Xd�1X

By uniqueness of the conditional expectation we can conclude that eqXX(C�A

X) = �C . Let g be the density of �X with respect to (pAXY )��.

(� � �1X )(C �A D) =
Z
eqXX(C �A 
X)e

p
XY (
X �A D)d�

=

Z
�Ce

p
XY (
X �A D)d(q

A
XX)��1X =

Z
�Ce

p
XY (
X �A D)d�X

=

Z
�Ce

p
XY (
X �A D)gd(p

A
XY )�� =

Z
(�C � pAXY )�
X�AD(p

A
XY )

�(g)d�

=

Z
�C�A
X�
X�AD(p

A
XY )

�(g)d� =

Z
C�AD

(pAXY )
�(g)d�

By uniqueness of measure and Radon-Nikodym we have � � �1X � �. The
second part of the proposition is proved in a entirely similar way.

The relation �1X will thus not in general act as a left and right identity
under composition.
It is however clear from the proof of the proposition that if we restrict to the

class of relations that satis�es (pAXY )�� = �X then the relation �1X is really a
right and left identity under composition.
We can now form a structure R(A) where objects are probabilistic bundles

and where arrows are relations. Because of proposition 42 the structure R(A)
will in general not be a category but we will abuse the term and de�ne R(A) to
be the category of relations of probabilistic bundles.
For the restricted class of relations with (pAXY )�� = �X it will be a true

category.
For any pair of objects we have at least one relation, namely �X 
A �Y .

The statement that this is a relation follows from lemma 13 and proposition 16.
This is the relation signifying independency between X and Y in the context of
probabilistic bundles.
The following result supports this interpretation
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Proposition 43 Let f : X ! Y be a morphism of probabilistic relations

�f � (�X 
A �X) = (1
A f)�(�X 
A �X)

Proof. Let g and f be densities as de�ned in the proof of the previous
proposition for the case X = Y .
Then we have

�f � (�X 
A �X)(C �A D)

=

Z
eqXX(C �A 
X)e

p
XY (
X �A D)d(q

A
XX)�(�X 
A �X)

=

Z
'�X(eX(C))�f�1(D)d(q

A
XX)�(�X 
A �X)

=

Z
'�X(eX(C))�f�1(D)'

�
X(g)d�X

=

Z
eX(C)eX(f

�1(D))gd('X)��X =

Z
eX(C)eX(f

�1(D))d�A

= (�X 
A �X)(C �A f�1(D)) = (1
A f)�(�X 
A �X)(C �A D)

We will now extend the monoidal structure 
A to the category of relations
R(A).
Let � : X  X 0 and � : Y  Y 0 be relations and let �X0Y : 
X0 � 
Y !


Y � 
X0 be the map, �X0Y (x
0; y) = (y; x0).

Using this we can de�ne a measurable map (1X � �X0Y � 1Y 0) that restricts
to a well de�ned continuous map

(1X
A�X0Y
A1Y 0) : (
X�A
X0)�A(
Y�A
Y 0)! (
X�A
Y )�A(
X0�A
Y 0):

Let the expression ��A � be de�ned by

��A � = (1X 
A �X0Y 
A 1Y 0)�(�
A �)

Proposition 44 ��A � : X 
A Y  X 0 
A Y 0 is a relation

Proof. � : X  X 0 is a relation and therefore we have (pAXX0)�� � �X and
(qAXX0)�� � �X0 . But then

('X
AX0)�� = ('X � pAXX0)�� � ('X)��X � �A
('X
AX0)�� = ('X0 � qAXX0)�� � ('X0)��X0 � �A

so ('X
AX0)�(�) � �A. In a similar way we get ('Y
AY 0)�� � �A. There-
fore the product �
A � is de�ned and is supported on the set (
X �A
X0)�A
(
Y �A 
Y 0). But then ��A � is a well de�ned probability measure supported
on the set (
X �A 
Y )�A (
X0 �A 
Y 0) since the map (1X 
A �X0Y 
A 1Y 0)
is continuous. It is easy to see that

(qAX
AY;X0
AY )�(��A �) = (q
A
XX0)��
A (qAY Y 0)�� � �X0 
A �Y 0

(pAX
AY;X0
AY )�(��A �) = (p
A
XX0)��
A (pAY Y 0)�� � �X 
A �Y
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and this completes the proof.
The de�nition of the product of relations in this particular way is justi�ed

by the following result

Proposition 45 Let f : X ! X 0 and g : Y ! Y 0 be morphisms of probabilistic
bundles. Then we have

�f �A �g = �f
Ag

Proof. Let C 2 B(�X) and E 2 B(�X0) and let V 2 B(�A). Then we haveZ
('X
AX0 )�1(V )

(�C�AE)X
AX0d�f =

Z
�(C\'�1X (V ))�AE

d�f

= �f ((C \ '�1X (V ))�A E) = �X(C \ '�1X (V ) \ f�1(E))

=

Z
'�X(�V )�C\f�1(E)d�X

=

Z
'�X(�V eX(C \ f�1(E)))d�X

=

Z
f�('�X0(�V eX(C \ f�1(E))))d�X

=

Z
'�X0(�V eX(C \ f�1(E)))df��X

=

Z
'�X0(�V eX(C \ f�1(E)))d(qAXX0)��f

=

Z
'X
AX0 )�1(V )

('X
AX0)�(eX(C \ f�1(E)))d�f

By the uniqueness of conditional expectation we have the identity eX
AX0(C�A
E) = eX(C \ f�1(E)). In a similar way we get the identity eY
AY 0(D�A F ) =
eY (D \ g�1(F )) for all D 2 B(�Y ) and F 2 B(�Y 0). Using these identities we
have

(�f �A �g)(C �A D �A E �A F ) = (�f 
A �g)(C �A E �A D �A F )

=

Z
eX
AX0(C �A E)eY
AY 0(D �A F )d�A

=

Z
eX(C \ f�1(E))eY (D \ g�1(F ))d�A

= (�X 
A �Y )(C \ f�1(E)�A D \ g�1(F ))
= (�X 
A �Y )((C �A D) \ (f�1(E) \ g�1(F ))) = �f
Ag(C �A D �A E �A F )

and the proposition follows from the uniqueness of measure theorem.
This proposition show that the product �A is an extension of the product


A.
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5 Quantizations

5.1 Algebra of probabilistic bundles and relations

Let X be any probabilistic bundle and let L1(X) be the space of essentially
bounded complex valued functions onX. Elements ofX are classes of essentially
bounded functions di¤ering on sets of measure zero with respect to �X . The
space L1(X) is not only a Banach space but also a C�- algebra with respect to
the natural operations.
Let f : X ! Y be a morphism of probabilistic bundles and let f� : L1(Y )!

L1(X) be the map de�ned by f�([h]) = [h � f ]:
It is easy to see that f� is well de�ned, continuous and commutes with the

product and �-operation. It is thus a morphism of C� algebras.
For any probabilistic bundle we have a map 'X : X ! A. This gives

a morphism of C� algebras ('X)� : L1(A) ! L1(X). This morphism is
moreover a monomorphism and give each C� algebra L1(X) the structure of a
L1(A) � L1(A) bimodule with the left and right action of L1(A) on L1(X)
induced by the map ('X)�.

�lX : L1(A)
� L1(X)! L1(X);

�rX : L1(X)
� L1(A)! L1(X);

where �lX([h]
 [h0]) = ('X)�([h])[h0] and similarly for the right action.
Here E 
� F is the projective tensor product of two Banach spaces E and

F .
Using this product there is a bijective correspondence between the set of

continuous bilinear maps from E � F to G and the set of continuous linear
maps from E 
 F to G for any Banach space G. It de�nes furthermore a
monoidal structure on the category of Banach spaces with C as the unit object.
In the following we denote the algebra L1(A) by the symbol A.
Let CA be the category whose objects are banach spaces and A ! A bi-

modules and morphisms are morphisms of Banach spaces that commutes with
the left and right action of A. These morphisms are thus A � A bimodule
morphisms.
The observations made above can be formulated as the existence of a con-

travariant functor F : P(A)! CA de�ned on objects and morphisms by

F (X) = L1(X);

F (f) = f�:

We will now show that the functor F can be extended to Markov relations.
Let � : X  Y be a Markov relation and let [h] 2 L1(Y ). The condition

(pAXY )�� � �X ensure that the expression [epXY ((q
A
XY )

�([h]))] is a well de�ned
element in L1(X).
De�ne

��([h]) = [epXY ((q
A
XY )

�([h]))]:
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Then the properties of conditional expectation ensure that �� is a A � A
bimodule morphism.

De�nition 46 Let � : X  Y be a Markov relation. Then �� : L1(Y ) !
L1(X) is the pullback by �.

The pullback by a relation � has the following two fundamental properties

Proposition 47 Let f : X ! Y be a morphism of probabilistic bundles and the
�f : X  Y be the corresponding relation. Then we have

(�f )
�([h]) = f�([h])

Proof. Let C 2 B(�Y ) and let [�C ] 2 L1(Y ) be the corresponding element
in L1(Y ). Then we haveZ
(pAXY )

�1(V )

(pAXY )
�(�f�1(C))d�f =

Z
(pAXY )

�1(V )

(pAXY )
�(�f�1(C))d(�f )��X =

Z
V

�f�1(C)d�X

= �X(V \ f�1(C)) = �f (V �A C) =
Z
�V�ACd�f =

Z
(pAXY )

�1(V )

�
X�ACd�f

By the uniqueness of conditional expectation we have epXY (
X �A C) =
[�f�1(C)].
But then we have

��([�C ]) = e
p
XY (
X �A C) = [�f�1(C)] = f

�([�C ]):

The proposition is therefore true for characteristic functions and by linear-
ity for simple functions. The proposition now follows by using the dominated
convergence theorem
Let f : X ! Y and g : Y ! Z be morphisms of probabilistic bundles. From

this proposition and proposition 37 we observe that we have the natural identity
(�g � �f )� = �f � � �g�. This property in fact holds for any pair of composable
relations.

Proposition 48 Let � : X  Y and � : Y  Z be relations of probabilistic
relations. Then we have

(� � �)� = �� � ��

Proof. The proposition follows for characteristic functions immediately
from lemma 40.
For C 2 B(�Z) we have

(���)�([�C ]) = epXZ(
X�AC) = e
p
XY ((q

A
XY )

�(epY Z(
Y �AC))) = �
�(��([�C ])):

By linearity the proposition is true for simple functions and by dominated
convergence and properties of conditional expectation it is true for all functions
in L1(Z).
Abusing the language slightly as explained previously we can summarize

these investigations in the following theorem
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Theorem 49 F is a contravariant functor from the category of relations of
probabilistic bundles R(A) to the category of A�A bimodules CA.

There are other natural functors one could de�ne on the category of prob-
abilistic bundles. One could associate the Hilbert space L2(X) of square inte-
grable functions to each probability spaceX. Markov relations � : X  Y would
now be mapped to bounded linear maps �� : L2(Y ) �! L2(X). Let this functor
be H. The functor H makes possible an interesting interpretation of standard
notions like transitivity and symmetry for classical relations. Let us consider the
special case of Markov relations � : X �! X. If t : 
X�A
X �! 
X�A
X is
the transposition we clearly have a action of t on � by t �� = t��. The following
de�nitions are natural generalizations of the corresponding classical notions

De�nition 50 A Markov relation is symmetric i¤ t � � = � and transitive i¤
� � � = �.

For a given Markov relation let Supp(�) be the support of the measure �.
The support of a Markov relation is clearly a classical relation on 
X . We can
prove under quite general conditions that Supp(�) is transitive and symmetric
if � is transitive and symmetric. The de�ned notions are thus the natural ones
for Markov relations.Using the results from above it is evident that a symmetric
transitive Markov relation � : X  Y is mapped to a orthogonal projector ��

on the Hilbert space L2(X). Symmetric and transitive classical relations are
"almost" equivalence relations so orthogonal projectors are in this way closely
linked to the notion of equivalence relations. We will not pursue these matters
further here but will defer them to a future publication.

5.2 Quantizations

Functors between monoidal categories should preserve monoidal structures up to
natural isomorphism. This is the natural notion of morphism between monoidal
categories[7]. We have interpreted these natural isomorphisms in terms of the
physical notion of quantization and de�ned the notion of quantizers in the cat-
egorical context. This idea has been explored in several papers [8],[9] and
preprints.
The coherence conditions for the monoidal structures leads to conditions for

the quantizers. These conditions take the form of commutative diagrams within
the categories in question; these are the quantizer equations. Each solution
of the quantizer equations leads to a uniform way of quantizing all structures
de�ned in terms of the monoidal structures.
Thus in order to quantize we need a monoidal structure. In the category

CA the tensor product of bimodules over A is an obvious candidate for such a
structure. We now brie�y recall its construction.
For any two objects E and F in CA we de�ne a continuous map ' : E 
�

A
� F ! E 
� F by

' = (1E 
 �lF )� (�rX 
 1F )
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LetM = '(E 
A
 F ) be the closure of the image of ' in E
F and de�ne

E 
A F = (E 
� F )=M

This is a Banach space and the canonical projection � : E 
� F ! E 
A F
is a continuous open map with ker(�) =M .
The product 
A sets up a bijective correspondence between the set of con-

tinuous linear maps g from E 
 F to G that satis�es M � ker g and the set of
continuous linear maps from E 
A F to G.
Note that ker g is always closed so that M � ker g if and only if the image of

' is included in the kernel of g. Let f : X ! X 0 and g : Y ! Y 0 be morphisms
of A�A bimodules.
De�ne a continuous map F : X 
 Y ! X 0 
A Y 0by

F (x
 y) = f(x)
A g(y)

For this map we evidently have M � kerF so we get induced a unique map
f 
A g : X 
A Y ! X 0 
A Y . It is now easy to see that with this value on
maps the product 
A de�nes a monoidal structure on the category CA with
associativity constraint �A given by �A(x
A (y 
A z)) = (x
A y)
A z, unit
object A and unit constraints

�AX : A
A L1(X)! L1(X)


AX : L1(X)
A A ! L1(X)

de�ned by �AX([h]
A x) = �lX([h]
 x) and similar for 
AX .
These maps are well de�ned because �lX and �

r
X de�ne the A�A bimodule

structure on X and then by de�nition their kernels contains the image of the
map '. They are clearly invertible.
Collecting together these observations we have

Theorem 51 h
A;A; �A; �A; 
Ai is a monoidal structure for the category CA.

We will apply this general formalism to the case of quantizations of the
identity functor on the category CA.
For this case a quantization is a isomorphism

qXY : X 
A Y ! X 
A Y;

that is natural in X and Y and that is a solution of the following set of
coherence conditions

qX
AY;Z � (qX;Y 
A 1Z) = qX;Y
AZ � (1X 
A qY;Z);
�AX � qA;X = �AX ;

AX � qX;A = 
AX :

Let A2 = A
� A,A3 = A
� A
� A etc. Note that An is an object in the
category CA.
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De�ne maps e
 : A�A�A ! A2 
A A2 and e4 : A�A ! A2 
A A2 by

e
(a; b; c) = (a
� b)
A (1
� c);e4(a; b) = (a
� 1)
A (1
� b):
The maps e
 and e4 are multilinear and continuous and thus de�ne unique

continuous linear maps 
 : A3 ! A2 
A A2 and 4 : A2 ! A2 
A A2. They
clearly respect the A�A bimodule structure and are thus morphisms in CA.

For a given pair of objects X and Y in CA and points x 2 X and y 2 Y
de�ne morphism 'x : A2 ! X and 'y : A2 ! Y by

'x(a
 b) = axb ; 'y(a
 b) = ayb:

Here for simplicity we write ax for �lX(a
 x) etc.
Using these morphisms and naturallity it is easy to show that any quantizer

qXY must be of the form

qXY (x
A y) = 
(q) � (x
A y)

where for any element s 2 A2
AA2 of the form s =
P

i(ai
 bi)
A (ci
di)
we de�ne

s � (x
A y) =
X
i

(aixbi)
A (ciydi)

Using this representation of qXY we can reduce the equations for the quan-
tizer to equations in the algebra A3.
The resulting equations are

(1A2 
A 4)(
(q))(1
A 
(q)) = (4
A 1A2)(
(q))(
(q)
A 1A2);

(�
 1A)(q) = 1;
(1A 
 �)(q) = 1;

where � : A
A ! A is the product on A

�([f ]
 [g]) = [fg]

In addition to this set the condition that qXY is a morphism in CA leads to
the equations

4(h)
(q) = 
(q)4(h) 8 h 2 A2:

These last equations are however trivially satis�ed for our case since the
algebra A is a commutative algebra.
As an example of what we can get by solving these equations let us as-

sume that the probability space A = h
A;B(�A); �Ai is �nite with 
A =
f1; 2; 3; ::::; ng. Then since we are only considering Hausdorf topological spaces
we have B(�A) = P(
A) where P(
A) is the power set of 
A and thus all
functions are measurable. The measure �A is then de�ned by a set of numbers
fpi)ni=1. Let us for simplicity assume that pi 6= 0 for all i. Then there are no

36



sets of measure zero and so for any function we have [f ] = ffg and the algebra
A is equal to the algebra of all complex valued functions on the �nite set 
A.
Let �i : 
A ! C be de�ned by �i(j) = 1 if and only if i = j otherwise it is equal
to zero. The set of functions f�igni=1 is evidently a basis for A and the algebra
structure is given by

�i�j =

�
�i if i = j
0 if i 6= j

An element in A3 can be expanded in the basis f�i 
 �j 
 �kg by

q =
X
i;j;k

qijk�i 
 �j 
 �k

The quantizer equations for this case reduce to a large set of quadratic
equations of a very simple form.

qijkqjmk = qimkqijm 8 i; j; k;m
qiik = 1 8i; k
qikk = 1 8i; k

These equations have nontrivial solutions even for the case of n = 2. For
this case there is one family of solutions given by

q = 1 + t(�2 
 �1 
 �2 + �1 
 �2 
 �1) t 2 C

The action of qXY is for this solution given by

qXY (x
A y) = x
A y + t(�2x�1 
A y�2 + �1x�2 
A y�1)

Note that the quantizer acts trivially if the 6 A�A bimodule structure on X
or Y are symmetric, meaning ax = xa etc. This is certainly true for the objects
L1(X) and L1(Y ) where X and Y denote probabilistic bundles in P(A). Thus
we can not use these quantizers to deform the algebra structure on L1(X). This
is true not only for this particular case but also true for any n.
Let X and Y be objects in CA and let Hom(X;Y ) be the set of continuous

linear maps from X to Y . The set Hom(X;Y ) is clearly a Banach space since
X and Y are Banach spaces. It is also a A � A bimodule if we de�ne for
h 2 Hom(X;Y ) and a 2 A

(ah)(x) = a(h(x))

(ha)(x) = h(ax)

Therefore Hom(X;Y ) is an object in the category CA:De�ne a map ec :
Hom(Y;Z)�Hom(X;Y )! Hom(X;Z) by

ec(h0; h) = h0 � h
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It is easy to see that this map is continuous and A�A bilinear. It therefore
de�ne a morphism

c : Hom(Y;Z)
A Hom(X;Y )! Hom(X;Z)

This map c is clearly just the composition of morphisms in the category
CA. We have thus internalized the operation of composition of morphisms. The
quantizers will in general act nontrivially on Hom(Y; Z) 
A Hom(X;Y ) and
will thus lead to nontrivial quantizations of composition through

cq(g 
A f) = c(
(q) � (g 
A f))

As an example of this let us consider the case with n = 2. Let 
X = 
A,
'X be the transposition on 
A,'X(1) = 2,'X(2) = 1 and �X = ('X)��A.
Then h
X ;P(
X); �X ; 'Xi is a object in P(A) with L1(X) = C2. The set
Hom(L1(X); L1(X)) is a algebra in CA and through the basis f�ig isomorphic
to the set of 2 � 2 complex matrices. Composition of linear maps turns into
matrix product and the quantized composition cq will turn into a deformed way
of computing matrix products. For the family of quantizers computed above we
�nd the new product to be�

a b
c d

�
�q
�
a0 b0

c0 d0

�
=

�
a b
c d

� �
a0 b0

c0 d0

�
+ t

�
bc0 0
0 cb0

�
It is easy to verify directly that this product is associative,distributive and

has the identity matrix as a unit. This algebra is isomorphic to the original
2 � 2 matrix algebra for all t 6= �1. For t = �1 it is not semisimple with a 2
dimensional nilpotent Jacobson radical.
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