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1. Definition and main results

Definition 1. Two (C∞-smooth) Riemannian metrics g and ḡ on a closed manifold Mn are said
to be geodesically equivalent if their geodesics coincide as unparameterized curves. They are
strictly non-proportional at x ∈ Mn, if the polynomial det(g|x − tḡ|x) has only simple roots.

The question of whether two different metrics can have the same geodesics is natural and,
therefore, classical. The first examples are due to E. Beltrami [B], a local descriptions of geodesi-
cally equivalent metrics was understood by U. Dini [Di] and T. Levi-Civita [LC]. We will recall
Levi-Civita’s Theorem in Section 2.1. For more historical details, see the surveys [Mi, Am], or/and
the introductions to the papers [M1, M4].

The main result of our paper is (for definition and properties of htop we refer to [Bo, KH, Ma]):

Theorem 1. Suppose the Riemannian metrics g and ḡ on a closed connected manifold Mn are
geodesically equivalent and strictly non-proportional at least at one point. Then the topological
entropy htop(g) of the geodesic flow of g vanishes.

The condition that the metrics are strictly non-proportional is important: for example, the
product metric on a closed product manifold M = M1 × M2 admits a family g1 + tg2 of non-
proportional metrics (but not strictly non-proportional if dimM > 2) with the same geodesics.
But if at least one factor has fundamental group with positive exponential growth (for instance if
M1 is hyperbolic), then by the Dinaburg Theorem any geodesic flow on M has htop(g) > 0.

Vanishing of the topological entropy of a C∞-smooth flow implies a lot of dynamical restric-
tions. For example, the ball volume grows sub-exponentially with its radius (Manning’s inequality
[Mn]), the number of geodesic arcs joining two generic points grows sub-exponentially with its
maximal length (Mañé’s formula [Ma]) and the volume of a compact submanifold propagated by
the geodesic flow also changes sub-exponentially (Yomdin’s Theorem [Y]), see also [P2].

Probably even more interesting are topological restrictions implied by htop(g) = 0. The subex-
ponential growth of π1(Mn) (Dinaburg’s Theorem [D]) is not very intriguing under the assumptions
of Theorem 1, since it is known [M3] that in this case the fundamental group is virtually abelian.
But the restriction coming from the Gromov-Paternain Theorem [G, P1] and from [PP1] are new,
nontrivial and interesting: Namely in the simply connected case the manifold Mn is rationally
elliptic, i.e. π∗(Mn) ⊗ Q is finite-dimensional. This is a very restrictive property since by the
results of [FHT, Pa] a rationally elliptic manifold Mn enjoys the following properties:

1. dim π∗(Mn)⊗Q ≤ n, dimH∗(Mn,Q) ≤ 2n−1, dim Hi(Mn,Q) ≤ 1
2

(
n
i

)
(i = 1, ..., n− 1),

2. The Euler characteristic χ(Mn) satisfies 2n − n + 1 ≥ χ(Mn) ≥ 0. Moreover, χ(Mn) > 0 iff
Hodd(Mn,Q) = 0.

A manifold M with finite π1(M) is called rationally hyperbolic, if its universal cover is not
rationally elliptic. Thus, as a consequence of Theorem 1, we get
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Corollary 1. A rationally hyperbolic closed manifold Mn does not admit two geodesically equiv-
alent Riemannian metrics g and ḡ which are strictly non-proportional at least at one point.

Rational hyperbolithity means nothing in dimensions less than 4, since all closed 4-manifolds
with finite fundamental group are rational-elliptic. Note that the topology of closed 2- and 3-
manifolds admitting non-proportional geodesically equivalent metrics is completely understood:
In dimension 2, such manifolds are homeomorphic to the sphere, the projective plane, the torus
or the Klein bottle [MT2]. In dimension 3, such manifolds are homeomorphic to lens spaces or to
Seifert manifolds with zero Euler number [M2].

Starting from dimension 4, almost all simply-connected manifolds are rationally hyperbolic.
For example, in dimension 4, up to homeomorphism, there exist infinitely many simply-connected
closed manifolds, and only five of them are rationally elliptic: S4, S2 × S2, CP 2, CP 2#CP 2 and
CP 2#CP 2. It is possible to construct geodesically equivalent metrics on S4 and S2 × S2 that are
strictly non-proportional at least at one point. We conjecture here that these two are the only
closed simply-connected 4-manifolds admitting strictly non-proportional geodesically equivalent
metrics. In dimension 5, a closed rational-elliptic manifold has rational homotopy type of S2×S3

or S5 (there are infinitely many homotopy types for simply-connected 5-manifolds). By recent
results of [PP1] (see Theorem E there), a closed manifold admitting a metric with zero topological
entropy is S5, S3 × S2, SU(3)/SO(3) or the nontrivial S3-bundle over S2. We conjecture that
S3×S2 and S5 are the only closed simply-connected connected 5-manifolds admitting geodesically
equivalent metrics which are strictly non-proportional at least at one point.

In Section 5 we announce the restrictions on the topology of non-simply-connected manifolds
(admitting geodesically equivalent metrics which are strictly non-proportional at least at one point)
that follows from Corollary 1.

Now let us comment the proof of Theorem 1. The main ingredients are Theorems 2, 3 and
Corollary 2, which imply that the geodesic flow of g is Liouville-integrable.

Precisely the same integrable systems were recently actively studied in mathematical physics,
in the framework of the theory of separation of variables. Depending on the school, they are called
L-systems [Be], Benenti-systems [IMM] and quasi-bi-hamiltonian systems [CST].

But Liouville integrability does not immediately imply vanishing of the topological entropy;
counterexamples can be found in [BT1, BT2, Bu1, Bu2, KT]. If the singularities of the integrable
system behave sufficiently good (non-degenerate in the sense of Williamson-Vey-Eliasson-Ito [E, I]
or the Taimanov conditions [T]), or if the system has a lot of symmetries (for example, as in
collective integrability [BP, P1]), then htop(g) = 0. But for other situations nothing is known (at
least if n > 2, see [P0]), even if the integrals are real-analytic or polynomial in momenta.

It is worth mentioning that geodesically equivalent metrics are usually not real-analytic: Levi-
Civita’s Theorem from Section 2.1 shows the existence of an infinite-dimensional space of nonan-
alytic C∞-perturbations in the class of geodesically-equivalent metrics. Also the set of singular
points of the constructed integrals for the corresponding Hamiltonian system can be quite com-
plicated. For instance, the projection of the singularities in TMn to the base Mn is surjective for
n > 2 and its restriction to a singular Liouville fiber can have image which is locally the product
of the Cantor set and the (n− 1)-dimensional disk.

The logic of our proof for Theorem 1 is as follows:

1. We show that the topological entropy is supported on the singularities, which we describe.

2. We show that dynamics on them can be considered as a subsystem of the geodesic flow

• on a lower-dimensional closed submanifold

• admitting geodesically equivalent metrics which are strictly non-proportional at least
at one point.

Therefore we can apply induction by the dimension.
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2 Geometry behind the geodesic equivalence

In what follows we always assume that the manifold Mn is connected and that the Riemannian
metrics g and ḡ on Mn are geodesically equivalent and strictly non-proportional at least at one
point.

2.1 Integrability and Levi-Civita’s Theorem

A Riemannian metric g determines the map [g : TM → T ∗M with the inverse ]g : T ∗M → TM .
Consider the (1,1)-tensor (automorphism field) L : TM → TM given by the formula

L =
(
det(]ḡ ◦ [g)

)− 1
n+1 · (]ḡ ◦ [g). (1)

In local coordinates, Lj
i = n+1

√
(det(ḡ)/ det(g)) giαḡαj . This tensor L determines the family St ∈

C∞(T ∗M ⊗ TM), t ∈ R, of (1, 1)-tensors

St := det(L− t Id) · (L− t Id)−1. (2)

Remark 1. Although (L − t Id)−1 is not defined for t ∈ Sp(L), the tensor St is well-defined for
every t ∈ R. In fact, it is the adjunct matrix of (L − t Id). Thus by the Laplace main minors
formula, St is a polynomial in t of degree n− 1 with coefficients being (1, 1)-tensors.

The isomorphism [g allows us to identify the tangent and cotangent bundles of Mn. This
identification allows us to transfer the natural Poisson structure and the Hamiltonian system
H(x, p) = 1

2p · ]g(p) from T ∗Mn to TMn.

Theorem 2 ([MT1]). If g, ḡ are geodesically equivalent, then, for every t1, t2 ∈ R, the functions

Iti : TMn → R, Iti(v) := g(Sti(v), v) (3)

are commuting integrals for the geodesic flow of g.

Since L is self-adjoint with respect to both g and ḡ, the spectrum Sp(L) is real at every point
x ∈ Mn. Denote it by λ1(x) ≤ · · · ≤ λn(x). Every eigenvalue λi(x) is at least continuous functions
on Mn, and is smooth near the points where it is a simple eigenvalue.

Theorem 3 ([M1]). Let (Mn, g) be a geodesically complete connected Riemannian manifold. Let
a Riemannian metric ḡ on Mn be geodesically equivalent to g. Then, for every i ∈ {1, . . . , n− 1}
and for all x, y ∈ Mn, the following holds:

1. λi(x) ≤ λi+1(y).

2. If λi(x) < λi+1(x), then λi(z) < λi+1(z) for almost every point z ∈ Mn.

3. If λi(x) = λj(y) for a certain j 6= i, then there exists z ∈ Mn such that λi(z) = λj(z).

Corollary 2 ([MT3]). Let (Mn, g) be a connected Riemannian manifold. Suppose a Riemannian
metric ḡ on Mn is geodesically equivalent to g and is strictly non-proportional to g at least at
one point. Then, for every mutually-different t1, t2, . . . , tn ∈ R, the integrals Iti are functionally
independent almost everywhere, i.e. the differentials dIti are linearly independent a.e. in TM .

3



Let us describe the local form of the integrals It. For every x ∈ Mn consider coordinates in
TxMn such that the metric g is given by the diagonal matrix diag(1, 1, . . . , 1) and the tensor L is
given by the diagonal matrix diag(λ1, λ2, . . . , λn). Then the tensor (2) reads:

St = det(L− t Id)(L− t Id)(−1)

= diag(Π1(t),Π2(t), . . . , Πn(t)),

where the polynomials Πi(t) are given by the formula

Πi(t)
def=

∏

j 6=i

(λj − t) .

Hence, for every ξ = (ξ1, . . . , ξn) ∈ TxMn, the polynomial It(x, ξ) is given by

It = ξ2
1Π1(t) + ξ2

2Π2(t) · · ·+ ξ2
nΠn(t). (4)

For further use, let us consider the one parameter family of functions

I ′t
def=

d

dt

(
It

)
.

For every fixed t ∈ R this function is an integral of the geodesic flow for g.
Let us now formulate (a weaker version of) the classical Levi-Civita’s Theorem.

Theorem 4 (Levi-Civita [LC]). Consider two Riemannian metrics on an open subset Un ⊂
Mn and the tensor L given by (1). Suppose the spectrum Sp(L) is simple at every point x ∈ Un.

Then the metrics are geodesically equivalent on Un if and only if around each point x ∈ Un

there exist coordinates x1, x2, . . . , xn in which the metrics have the following model form:

ds2
g = |Π1(λ1)|dx2

1 + |Π2(λ2)|dx2
2 + · · ·+ |Πn(λn)|dx2

n, (5)

ds2
ḡ = ρ1|Π1(λ1)|dx2

1 + ρ2|Π2(λ2)|dx2
2 + · · ·+ ρn|Πn(λn)|dx2

n, (6)

where the functions ρi are given by

ρi
def=

1
λ1λ2 . . . λn

1
λi

.

and λi = λi(xi) are smooth functions of one variable.

Definition 2. The above coordinates will be called Levi-Civita coordinates and the neighbor-
hoods Un from Theorem 4 will be called Levi-Civita charts.

In Levi-Civita coordinates the tensor L is diagonal diag(λ1, . . . , λn), so the notations in the
Levi-Civita Theorem are compatible with those in the beginning of the section.

Corollary 3 ([M1, BM]). Suppose the Riemannian metrics g, ḡ are geodesically equivalent on
M . Then, the Nijenhuis torsion of the tensor L given by (1) vanishes: NL = 0.

If the metrics are strictly non-proportional at least at one point, Corollary 3 follows from the
above version of Levi-Civita’s theorem. In the general case, Corollary 3 follows from the original
version of Levi-Civita’s Theorem [LC] and was proven in [M1] and [BM].

Combining formulae (5) and (4), we see that in the Levi-Civita coordinates the function It is
given by

It =
∑

i

|Πi(λi(x))|Πi(t) ξ2
i (7)

In particular, the function Iλi(x) as the function on the cotangent bundle is equal to (−1)i−1p2
i .

4



2.2 Distributions of eigenvectors: submanifolds MA.

We begin with investigation of the set of points from the Levi-Civita charts, the union of which is
the open dense set

Reg(M) = {x ∈ M : λi(x) 6= λj(x) for i 6= j}.
This set can be represented as the intersection Reg(M) = ∩A RegA(M) by all (proper) subsets
A ⊂ {1, 2, . . . , n}, where we denote

RegA(M) = {x ∈ M : ∀i ∈ A ∀j 6∈ A λi(x) 6= λj(x)}.

Notice that ∪A RegA(M) = M for n > 3.
At every point x ∈ RegA(M) denote by DA(x) the subspace of TxMn spanned by the

eigenspaces with the eigenvalues λi, where i ∈ A. Since the eigenvalues λi for i ∈ A do not bifur-
cate with the eigenvalues λj for j 6∈ A, DA is a smooth distribution on RegA(M). By Corollary 3
it is integrable. We will denote by MA(x) its integral submanifold containing x ∈ RegA(x) ⊂ Mn.

Lemma 1. For x ∈ RegA(M) the following statements hold:

1. The restrictions of g and ḡ to MA(x) are geodesically equivalent.

2. g|MA(x) and ḡ|MA(x) are strictly non-proportional at least at one point.

3. For i ∈ A the ith eigenvector of L (corresponding to λi) coincides with the respective eigen-
vector of the operator LA, constructed via (1) for the metrics g|MA(x) and ḡ|MA(x).

4. There exists a universal along MA(x) constant c (calculated explicitly in the proof) such that
the part of c · Sp(L), corresponding to A, coincides with the spectrum of the operator LA,
constructed by the restricted to MA(x) metrics.

5. In particular, if an eigenvalue λi, i ∈ A is constant, then the corresponding eigenvalue of the
operator LA, constructed for the restrictions of g and ḡ to MA(x), is constant on MA(x).

Proof: The distribution DA defines a foliation on RegA(M) and on its open dense subset
Reg(M). Then it is sufficient to prove the first, third and the fourth statements of the lemma
at the points of this subset. By Theorems 3, 4 in a neighborhood of every point x ∈ Reg(M),
there exist Levi-Civita coordinates such that the metrics g, ḡ are given by formulas (5)-(6). In
these coordinates, MA(x) is the coordinate plaque of the coordinate collection xα with α ∈ A =
{α1, . . . , αm}. Then the restrictions of the metrics to MA(x) are given by:

g|MA
= |Πα1(λα1)|dx2

α1
+ |Πα2(λα2)|dx2

α2
+ · · ·+ |Παm(λαm)|dx2

αm
,

ḡ|MA
= ρα1 |Πα1(λα1)|dx2

α1
+ ρα2 |Πα2λα2 |dx2

α2
+ · · ·+ ραm |Παm(λαm)|dx2

αm
.

Since λj is constant on MA(x) for every j 6∈ A, every factor of Παi of the form λj − λαi can be
“hidden” in dx2

αi
. We see that then the first metric is already in the Levi-Civita form, and the

second metric becomes in the Levi-Civita’s form after multiplication by

C
def=

∏

j 6∈A

λj , (8)

which is constant on MA(x). Hence, by Levi-Civita’s Theorem, the restrictions of the metrics to
MA are geodesically equivalent.

Direct calculations show that in local coordinates the tensor LA is given by:

C1/(m+1)diag(λα1 , . . . , λαm). (9)

The third and the fourth statements of the lemma follow.
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Now let us prove the second statement. Suppose the restriction of the metrics are not strictly
non-proportional at every point of a certain MA(x). Then, by Theorem 3, there exist α1, α2 ∈ A
such that λα1 ≡ λα2 on MA(x). Consider the set B := {1, . . . , n} \A. Take the union of all leaves
MB containing at least one point of MA(x). Clearly, this union contains an open subset of Mn.
Since the eigenvalues λα1 , λα2 are constant along MB , in view of (9) and Theorem 3, at every
point of this open subset we have λα1 = λα2 , which contradicts Theorem 3. Lemma 1 is proven.

Lemma 2. Suppose the eigenvalue λi is not a constant. Take a point y ∈ Mn such that

max
x∈M

λi−1(x) < λi(y) < min
x∈M

λi+1(x).

(We assume by definition that minx∈M λn+1(x) = ∞ and maxx∈M λ0(x) = −∞.)
Let C(i) := {1, 2, . . . , n} \ {i}. Then, MC(i)(y) is a closed submanifold.

The conditions that the eigenvalue is not constant and that λi is neither maximum nor minimum
are important: one can construct counterexamples, if one of these conditions is omitted.

Proof of Lemma 2: Since maxx∈M λi−1(x) < λi(y) < minx∈M λi+1(x), there exist
csmall, cbig ∈ R such that

• csmall < λi(y) < cbig,

• at least one of the numbers csmall, cbig is a regular value of the function λi,

• the other number is not a critical value of λi (i.e. is either a regular value or is equal to λi

at no point.)

Denote by N the connected component of the set

{x ∈ Mn : csmall ≤ λi(x) ≤ cbig},

containing the point y. Then N ⊂ RegC(i)(M) is a connected manifold with boundary. Therefore,
DC(i) is a smooth distribution on N . Since it is integrable by Corollary 3, it defines a foliation.
By Corollary 3, the function λi is constant on the leaves of the foliation. Then, every connected
component of the boundary of N is a leaf of the foliation.

At every x ∈ Mn, consider the vector vi satisfying
{

L(vi) = λi(x)vi

g(vi, vi) = |Πi(λi)|. (10)

By definition of N , the function |Πi(λi)| is nonzero and smooth at every point of N . Thus vi

vanishes nowhere in N . Hence, at least on the double-cover of N , it is defined globally up to
a sign and is smooth. The double-cover projection maps closed submanifolds into closed ones.
Therefore, without loss of generality we can assume that the vector field vi is globally defined
already on N .

Consider the flow of the vector field vi. It takes leaves to leaves. Indeed, it is sufficient to
prove this almost everywhere, for instance in Levi-Civita charts. In Levi-Civita coordinates the
leaves of the foliation are the plaques of the coordinates xα, where α ∈ A, and the vector field vi

is ± ∂
∂xi

, so the claim is trivial.
Since the leaves are (n−1)-dimensional and the flow of vi shuffles them, the flow acts transitively

and all leaves are homeomorphic. Every connected component of the boundary of B is compact
and is a leaf, whence all leaves are compact. In particular, MC(i)(y) is compact. Lemma 2 is
proven.

6



2.3 Bifurcation of eigenvalues: submanifolds Singj
i .

The spectrum Sp(L) is simple in Reg(M), i.e. almost everywhere in Mn. But at certain points the
multiplicity of some λi can become greater than one. Such points will be called the bifurcation
points of λi. By Theorem 3 the following types of bifurcations of the eigenvalue λi are possible.

Case 1: The eigenvalues λi and λi+1 are not constant and there exists x ∈ M such that
λi(x) = λi+1(x). Denote λ̄i = maxλi(x) = min λi+1(x). Let us consider the set

Sing1
i

def= {x ∈ Mn : (λi(x)− λ̄i)(λi+1(x)− λ̄i) = 0}.

This set was studied in [M1] (see Theorem 6 there). It was shown that Sing1
i is a connected closed

totally geodesic submanifold of codimension one. The restrictions of the metrics to it are strictly
non-proportional at least at one point. Note that not all points of Sing1

i are points of bifurcation
of the eigenvalues λi, λi+1.

Case 2: There exists x ∈ M and i ∈ {2, . . . , n− 1} such that λi−1(x) = λi+1(x). In this case,
the eigenvalue λi is constant. Let us consider the set

Sing2
i

def= {x ∈ Mn : (λi−1(x)− λi)(λi+1(x)− λi) = 0}.

This set was also studied in [M1] (see Theorem 6 there). It was shown that Sing2
i is a connected

closed totally geodesic submanifold of codimension two. The restrictions of the metrics to it are
strictly non-proportional at least at one point. Moreover, the set of the points x ∈ Sing2

i such that
λi−1(x) = λi+1(x) is nowhere dense in Sing2

i .
Case 3a: The eigenvalue λi is constant, there exists x ∈ M such that λi = λi+1(x) and there

exists no y such that λi−1(y) = λi.
Case 3b: The eigenvalue λi is constant, there exists x ∈ M such that λi = λi−1(x) and there

exists no y such that λi+1(y) = λi.
In Cases 3a, 3b, let us consider respectively the sets

Sing3
i = {x ∈ Mn : λi = λi+1(x)} or Sing3

i = {x ∈ Mn : λi = λi−1(x)}.

The next lemma shows that, similar to Cases 1 and 2, Sing3
i is a submanifold of codimension 2

and the restrictions of the metrics to Sing3
i are geodesically equivalent and strictly non-proportional

at least at one point. Note that, contrast to the previous cases, the set Sing3
i is not necessary

connected.

Lemma 3. Under assumptions of Cases 3a or 3b, the set Sing3
i is a

(1) totally geodesic

(2) closed submanifold of codimension 2.

(3) Moreover, the restrictions of the metrics to Sing3
i are strictly non-proportional at least at

one point.

Here we will proof that Sing3
i is a closed submanifold of codimension 2 such that the restrictions

of the metrics to it are strictly non-proportional at least at one point. The first statement of
the lemma, namely that Sing3

i is totally geodesic, will follow immediately from Theorem 6, see
Remark 3. Before Theorem 6, Lemma 3 will be used only once, namely in the proof of Theorem 5.
Since the proof of Theorem 6 does not require Theorem 5, no logical loop appears.

Proof of statements 2,3 of Lemma 3: We consider Case 3a, the other case is completely
analogous. By definition, the set Sing3

i is closed and, therefore, compact.
Let us show that locally Sing3

i is a submanifold of codimension 2. Let A = {i, i + 1}. Take
a point x0 such that λi = λi+1(x0). Then x0 ∈ RegA(M) and we can consider the set MA(x0).
By Lemma 1, the restrictions of the metrics to MA(x0) are geodesically equivalent and strictly
non-proportional at least at one point. Since MA(x0) is two-dimensional, the set of points, where
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these restrictions are proportional, is discrete [MT2]. In view of Lemma 1, the restrictions of the
metrics are proportional at x0. Then in a small neighborhood of x0, there exists no other point
x ∈ MA(x0) such that λi = λi+1(x). Denote by B the set {1, 2, . . . , n} \A. For every point x of a
small neighborhood of x0 in MA(x0), consider the set MB(x). It is a submanifold of codimension
two. Since the eigenvalues λi, λi+1 are constant along MB , in a small neighborhood of x0 the set
Sing3

i coincides with MB(x0). Thus it is a submanifold of codimension 2.
By the second statement of Lemma 1, the restrictions of the metrics to Sing3

i are strictly
non-proportional at least at one point. The 2nd and 3d statements of Lemma 3 are proven.

Remark 2. We will not prove or use it, but for general understanding let us note that the sets
TSingj

i consist of singular points (the definition is in Section 3). Moreover,

TSing1
i = {(x, ξ) ∈ TM : Iλ̄i

= 0, dIλ̄i
= 0}

TSing2
i = {(x, ξ) ∈ TM : Iλi

(x, ξ) = 0, dI ′λi
= 0}

TSing3
i = {(x, ξ) ∈ TM : Iλi

(x, ξ) = 0, dI ′λi
= 0}.

Let us note that for a fixed i only one of the submanifolds Singj
i , j = 1, 2, 3, can be non-empty.

3 Description of singular points

Consider some mutually-different numbers t1, . . . , tn ∈ R and the respective integrals It1 , . . . , Itn .
Consider the Poisson action of the the group (Rn,+) on TMn: an element (a1, ..., an) ∈ Rn acts
by time-one shift along the Hamiltonian vector field of the function a1It1 + ... + anItn . Since the
functions are commuting integrals, the action is well-defined, smooth, symplectic, preserves the
integrals It and the Hamiltonian of the geodesic flow, see §49 of [A] for details.

A point (x, ξ) ∈ TM is called singular if the differentials dIt1 , . . . , dItn are linearly dependent
at (x, ξ). An orbit of the action is called singular if it has a singular point. All points of a singular
orbit are singular and have the same coefficients of the linear dependence.

Although the Poisson action depends on the choice of constants t1, . . . , tn, the property of
(x, ξ) being singular does not depend on the choice of ti as far as these numbers are all different.

3.1 Singular points in Levi-Civita coordinates

As we have remarked in Section 2.3, the submanifolds TSingj
i ⊂ TM consist of singularities.

The next theorem describes another type of singularities, which lie over a Levi-Civita chart
Un ⊂ Reg(Mn). Fix a point x ∈ Reg(Mn) and denote by λ̄1, . . . , λ̄n the constants λ1(x), . . . , λn(x)
respectively.

Theorem 5. Let the metrics g and ḡ be given by formulas (5)-(6) in a neighborhood Un ⊂ Mn. If
the point (y, ξ) = (x1, . . . , xm, ξ1, . . . , ξm) ∈ T Reg(Mn) is singular, then there exists i ∈ {1, . . . , n}
such that dIλ̄i

= 0. Then Iλ̄i
(x, ξ) = 0 and at least one of the following statements holds:

1. The derivative ∂λi(x)
∂xi

vanishes at x.

2. The function I ′̄
λi

vanishes at (x, ξ).

Moreover, if MC(i)(y) is compact, the whole geodesic passing through y with the velocity vector ξ
is contained in MC(i)(y), where C(i) is the same as in Lemma 2.

Actually, the assumption that MC(i)(y) is compact is not necessary: Theorem 5 remains true, if
we replace this condition by the condition that y 6∈ Sing1

i . Our stronger assumption makes the
proof shorter.

Proof of Theorem 5: Suppose the point (y, ξ) is singular. Then, there exist constants
(µ1, . . . , µn) 6= (0, . . . , 0) such that at (y, ξ) it holds:

µ1dIλ̄1
+ · · ·+ µndIλ̄n

= 0.
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We will show that for every i such that µi 6= 0 the differential dIλ̄i
vanishes at (y, ξ). For every

j ∈ {1, ..., n} consider the function Iλj(x)(x, η) := (It(x, η))|t=λj(x). In a small neighborhood of
y, the function λj is smooth. Hence the function Iλj(x) is smooth as well. At the point (y, ξ) we
have:

dIλj(y) = dIλ̄j
+ I ′̄λj

· dλj .

We will work on the cotangent bundle to Mn. As we explained in Section 2.1, the function Iλj(x)

is equal to (−1)j−1p2
j and its differential has coordinates

(0, . . . , 0︸ ︷︷ ︸
n+j−1

, 2 · (−1)j−1 · pj , 0, . . . , 0).

Since the function λj depends on xj only, its differential is

(0, . . . , 0︸ ︷︷ ︸
j−1

,
∂λj

∂xj
, 0, . . . , 0).

Thus dIλ̄j
at (y, ξ) is given by

(0, . . . , 0︸ ︷︷ ︸
j−1

, I ′̄λj
· ∂λj

∂xj
, 0, . . . , 0︸ ︷︷ ︸

n−1

, 2 · (−1)j−1 · pj , 0, . . . , 0).

We see that the differentials dIλ̄j
do not combine: If µi 6= 0, then dIλ̄i

= 0. Therefore, pi = 0
(i.e. ξi = 0), which is equivalent to Iλ̄i

(x, ξ) = 0, and at least one of the following holds: ∂λi

∂xi
(x) = 0

or I ′̄
λi

(x, ξ) = 0. The first part of the theorem is proven.
Now let us show that the geodesic γ such that (γ(0), γ̇(0)) = (y, ξ) is contained in MC(i)(y).

Since MC(i)(y) is compact, it is sufficient to prove that at almost every point of the geodesic the
velocity vector of the geodesic is contained in DC(i). Since Singj

k are totally geodesic submanifolds,
the geodesic γ intersect them transversally, and it is sufficient to prove that the velocity vector of
the geodesic lies in DC(i) in Levi-Civita’s charts.

Since Iλ̄i
is an integral and dIλ̄i

= 0 at (y, ξ), we obtain that dIλ̄i
vanishes at every point

(γ(t), γ̇(t)). Then, as we explained above, in the Levi-Civita chart, the component ξi equals zero,
so that the velocity vector of the geodesic lies in DC(i). Finally, the geodesic stays in MC(i) forever.
Theorem 5 is proven.

3.2 Removable singularities

Our next goal is to show that certain singular points are artificially singular: if we use a finite
cover and choose the integrals appropriate, they become regular.

Suppose the eigenvalue λi is constant. From the proof of Theorem 5 it follows that for every
x ∈ Reg{i}(M) and ξ ∈ DC(i)(x) ⊂ TxMn the differential dIλi vanishes at (x, ξ). We will show
that this singularity is removable, in the sense that on an appropriate finite cover we can find a
linear in velocities function Ji such that J2

i = (−1)i−1Iλi . This relation immediately implies that
Ji commutes with the functions It. Since Iλi is an integral, Ji is an integral as well. Since it is
linear in velocities, it corresponds to a Killing vector field. We will show that this Killing vector
field is nonzero at x, which automatically implies that the differential of this integral does not
vanish at (x, ξ).

In the Levi-Civita coordinates Iλi = (−1)i−1p2
i and we can put Ji = ±pi. Clearly, in the

Levi-Civita coordinate system, Ji(η) := g(vi, η), where vi = ± ∂
∂xi

.
Note that the vector field ∂

∂xi
satisfies conditions (10), and that near every regular point every

vector field satisfying (10) is the vector field ∂
∂xi

of a certain Levi-Civita coordinate system.
Thus, in order to show that (at least on a finite cover) there exists a smooth function Ji such

that it is linear in velocities and such that J2
i = (−1)i−1Iλi , it is sufficient to prove
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Theorem 6. Suppose λi is constant. Then at least on a double cover of Mn there exists a smooth
vector field vi satisfying (10) at every point x ∈ Mn.

Remark 3. Conditions (10) imply that the zeros of vi coincide with ∪j=2,3Singj
i . Since vi is a

Killing vector field, Sing3
i is a totally-geodesic submanifold.

Proof of Theorem 6: First we show that at least on the double-cover there exists a continuous
vector field vi with the required properties. In order to do this, it is sufficient to prove the following
semi-local statement:

(S) Locally near every point x there exist precisely two continuous vector fields vi satisfying
(10).

If λi−1(x) 6= λi 6= λi+1(x), then y ∈ Reg{i}(M). Then, Πi(λi) 6= 0. Hence, vi 6= 0 in a small
neighborhood of x and the statement (S) is trivial.

Let us consider x ∈ Singj
i , where j = 2 or 3, and prove the statement in a small disk neighbor-

hood Un 3 x.
First of all, if a vector field vi satisfies (10), then the vector field −vi satisfies (10) as well.

Since Singi is nowhere dense, the fields do not coincide. Therefore we obtain at least two different
required vector fields.

Next, there exist no more than two such vector fields. Indeed, such a vector field vi must
vanish along Singj

i , since Πi(λi) equals zero there, and it is non-zero in the complement. This
complement is connected, because Singj

i has codimension 2 (by proven part of Lemma 3 and as
we explained in Section 2.3), and the claim follows.

At last, let us prove that such continuous field vi exists in the small disk neighborhood Un 3 x.
Since Un \ Singj

i is connected, we can define vi in one of two possible ways at some point x0 and
extend by continuity along paths in Un \ Singj

i . We need to show that the result is well-defined.
In order to do this we connect two paths φ0, φ1 from x0 to x1 in Un \ Singj

i by a homotopy φτ

in Un. The paths and the homotopy can be assumed smooth. Since Singj
i has codimension 2, we

can perturb homotopy and make it to be transversal to Singj
i . Thus, the intersection of Imageφτ

with Singj
i is a finite set {(tk, τk)} ∈ [0, 1] × [0, 1] and it suffices to consider only one point of

intersection y0 = φτ0(t0) = φ(t0, τ0) ∈ Singj
i . If we can find the required field vi on a transversal

2-dimensional disk at y0, we are done.
As we explained in Section 2.3, at almost every point y ∈ Singj

i we have λi−1(y) 6= λi+1(y).
(Actually, for j = 3 this is true at every point.) Thus, without loss of generality, we can assume
that λi−1(y0) 6= λi+1(y0).

Assume λi−1(y0) 6= λi = λi+1(y0). The case λi−1(y0) = λi 6= λi+1(y0) is completely analogous.
Let A = {i, i + 1}. Then y0 ∈ RegA(M). Consider the leaf MA(y0). This is a 2-dimensional

manifold transverse to Singj
i at y0. The homotopy can be perturbed to have the image locally

coinciding with MA(y0). Since vi ∈ DA, the problem, thanks to Lemma 1, is reduced to a local
2-dimensional question on MA(y0).

Consider the restriction of the metrics to MA(y0). Denote by LA the tensor (1) constructed
for the restrictions of the metrics. We denote by λA ≤ λ′A its eigenvalues. By Lemma 1, λA is
constant, λ′A is not. If there exists a (continuous) vector field vA on MA such that it vanishes
precisely at y0, such that it is eigenvector of LA with eigenvalue λA, and such that its length is√

λ′A − λA, we are done. Indeed, by Lemma 1 the vector field vi given by
√√√√√C−1/3

∣∣∣∣∣∣
∏

α 6=i,i+1

(λi − λα)

∣∣∣∣∣∣
vA,

where C is given by (8), satisfies the conditions (10). Since
√√√√√C−1/3

∣∣∣∣∣∣
∏

α6=i,i+1

(λi − λα)

∣∣∣∣∣∣
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is a smooth positive function, the existence of vA implies the existence of vi.
Let us prove the existence of such vector field vA. At every y ∈ MA(y0), y 6= y0, denote by lA

the eigenspace of LA corresponding to λA. Let us show that that for every geodesic γ on MA(y0)
passing through y0 the velocity vector γ̇(t) is orthogonal (in the restriction of g) to lA at every
γ(t) 6= y0. Indeed, let IA

t be the one-parametric family of the integrals from Theorem 2 constructed
for the restrictions of g and ḡ to MA(y0). Consider the integral IA

λA
. At the tangent plain to every

point z consider the coordinates such that the restriction of g to MA(y0) is given by diag(1, 1) and
LA is diag(λA, λ′A). In this coordinates, the integral IA

t equals (λ′A− t)ξ2
1 +(λA− t)ξ2

2 , so that IA
λA

is equal to (λ′A−λA)ξ2
1 . We see that the integral vanishes on every geodesic γ passing through y0.

Because λ′A(z) 6= λA(z) for z 6= y0, we obtain that the component ξ1 of the velocity vector of γ at
z vanishes, which means that the eigenvalue of LA corresponding to λA is orthogonal to γ.

Clearly, in MA(y0) \ y0 there exists a vector field of length 1 such that it is orthogonal to the
geodesics passing through y0, see Figure 1.

0
y

Figure 1: In dimension 2, there exists a vector field orthogonal to all geodesics containing y0.

Multiplying this vector field by
√

λ′A − λA, we obtain a required vector field vA on MA(y0)\y0.
We put vA = 0 at point y0. Since

√
λ′A − λA converges to 0 when x tends to y0, the result

is a required continuous vector field vA on MA(y0). Therefore, there exists a vector field vi

along MA(y0) (satisfying (10)). Thus, the vector vi at x1 does not depend on the choice of path
connecting x0 and x1. Finally, vi is well-defined at the whole Un \Singj

i , and is at least continuous
on it.

At the points of Un ∩ Singj
i let us put vi equal to zero. Since Πi(λi) tends to 0 when x

approaches Singj
i , the vector field is continuous on Un. Statement (S) is proven.

Then, at least on the double cover of Mn, there exists a continuous vector field vi satisfying
(10). Without loss of generality, we can assume that the vector field vi is defined already on Mn.

Now let us prove that the vector field vi is actually smooth. Clearly, it is smooth on the
compliment to Singj

i , because it coincides with the appropriate field ∂
∂xi

there. Denote by Ft the
flow of the vector field vi on Mn \ (Sing2

i ∪ Sing3
i ). This flow is globally (=for every value of t)

defined. Indeed, if x /∈ Sing2
i ∪ Sing3

i , then λi−1(x) < λi < λi+1(x). Since vi is an eigenvector
of L with eigenvalue λi and the Nijenhuis tensor NL vanishes (Corollary 3), for every t we have:
λi−1(Ft(x)) = λi−1(x), λi+1(Ft(x)) = λi+1(x). Therefore, the trajectory of the flow passing
through x never approaches the set Sing2

i ∪ Sing3
i .

The function J(η) := g(vi, η) is a linear in velocities integral of the geodesic flow, which implies
that Ft acts by isometries on Mn \ (Sing2

i ∪Sing3
i ). Since Mn \ (Sing2

i ∪Sing3
i ) is everywhere dense

in Mn, the map Ft can be extended by completeness to act by isometries on the whole Mn. Thus,
there exists a Killing vector field on Mn coinciding with vi almost everywhere. Since every Killing
vector field is smooth, the vector field vi is smooth. Theorem 6 is proven.
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4 Proof of Theorem 1

We use induction by the dimension. If dimension of the manifold is n < 2, Theorem 1 is trivial.
Assume that for every dimension less than n Theorem 1 is true and consider dim M = n.

Vanishing of the topological entropy for the lift of a dynamical system to a finite cover (of
a closed manifold) implies vanishing of the topological entropy of the original system. Thus, we
assume that already on Mn for every constant eigenvalue λi we can associate a global vector field
vi from Theorem 6. Therefore for every constant λi we globally define the integral Ji such that
its differential does not vanish over the points of Reg(Mn), it commutes with all integrals It, it is
functionally dependent with the integral Iλi .

By geodesic flow we will understand the restriction of the Hamiltonian system on TMn with
the Hamiltonian H(ξ) := g(ξ, ξ) to T1M

n = {ξ ∈ TMn : H(ξ) = 1}. The symplectic form on
TMn came from T ∗Mn via standard identification by g.

Since T1M
n is compact, the variational principle (see, for example, Theorem 4.5.3 of [KH])

holds, and we obtain
htop(g) = sup

µ∈B
hµ(g).

Here B is the set of all invariant ergodic probability measures on T1M
n and hµ is the entropy of

an invariant measure µ. Recall that a measure is called ergodic, if µ(B)(1 − µ(B)) = 0 for all
µ-measurable invariant Borel sets B.

Therefore, in order to prove Theorem 1, it is sufficient to prove that hµ(g) = 0 for all µ ∈ B.
Fix one such measure and let Supp(µ) be its support (the set of x ∈ Mn with an arbitrary small
neighborhoods Uε(x) of positive measure).

Since the measure is ergodic, its support lies on a level surface of every invariant continuous
function. Then, Supp(µ) is included into a Liouville leaf Υ (Recall that a Liouville leaf is a
connected component of the set {It1 = c1, . . . , Itn = cn}, where c1, ..., cn are constants.)

Suppose a point ξ ∈ Supp(µ) is nonsingular, or is a removable singular point (in the sense that
every Iλi such that dIλi = 0 can be replaced by a linear integral Ji such that dJi 6= 0). Then, a
small neighborhood U(ξ) of ξ in Supp(µ)

• has positive measure in µ,

• contains only points that are nonsingular or removable-singular.

We will show that these two conditions imply that the entropy of µ is zero.
By implicit function Theorem, Υ is n-dimensional near ξ. Denote by O(ξ) the orbit of the

Poisson action of (Rn, +) containing ξ. Since it is also n-dimensional, in a small neighborhood of
ξ it coincides with Υ. Thus, U(ξ) ⊂ O(ξ).

The orbits of the Poisson action and the dynamic on them are well-studied (see, for example,
§49 of [A]). There exists a diffeomorphism to

T k × Rn−k = S1 × ...× S1

︸ ︷︷ ︸
k

×R× ...× R︸ ︷︷ ︸
n−k

with the standard coordinates φ1, ..., φk ∈ (R mod 2π), tk+1, ..., tn ∈ R such that in these
coordinates (the push-forward of) every trajectory of the geodesic flow is given by the formula

(φ1(τ), ..., φk(τ), tk+1(τ), ..., tn(τ)) = (φ1(0)+ω1τ, ..., φk(0)+ωkτ, tk+1(0)+ωk+1τ, ..., tn(0)+ωnτ),

where the constants ω1, ..., ωn are universal on T k × Rn−k.
We see that if at least one of the constants ωk+1, ..., ωn is not zero, every point of U(ξ) is

wandering (see §3 in Chapter 3 of [KH] for definition), which contradicts the invariance of the
measure. Then, the entropy of µ is zero.

If all constants ωk+1, ..., ωn are zero, the coordinates tk+1, ..., tn are constants on the trajectories
of the geodesic flow. Since µ is ergodic, they are constant on the points of Supp(µ). Then, Supp(µ)
is (diffeomorphic to) the torus T k̄ of dimension k̄ ≤ k, and the dynamics on Supp(µ) is (conjugate
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to) the linear flow on T k̄. Then, the entropy of µ is zero, see for example Proposition 3.2.1 of
[KH].

Now suppose that Supp(µ) contains only singular points which are not removable. If all of
them belong to ∪i,jTSingj

i , then (because the measure is ergodic) Supp(µ) is a subset of a certain
TSingj

i . Since Singj
i is totally geodesic, and since by induction hypothesis the topological entropy

on Singj
i is zero, the entropy of µ is also zero.

The last case is when Supp(µ) contains a singular point which is not removable and which do
not belong to ∪i,jTSingj

i . Then, since all Singj
i are totally geodesic, and since there are finitely

many of them, Supp(µ) contains a singular point ξ which is not removable and such that its
projection does not belong to ∪i,jSingj

i . Then, the projection of a small neighborhood U(ξ) of ξ

does not contain points of ∪i,jSingj
i . From Theorem 5 it follows, that only finite number of It can

be singular at ξ. Since the measure is ergodic, we obtain that there exists i such that dIλ̄i
= 0 at

every point of Supp(µ), such that the eigenvalue λi satisfies the assumptions of Lemma 2. Then,
by Lemma 2, for every point y from the projection of U(ξ) every MC(i)(y) is compact. Then,
by Theorem 5, for every η ∈ U(ξ), the projection of the trajectory of the geodesic flow passing
through η stays on the corresponding MC(i). Since all MC(i) are compact and do not intersect one
another, a trajectory staying over one MC(i) never approaches another MC(i). Thus, since µ is
ergodic, all points of Supp(µ) belong to a certain TMC(i)(y). Then, the dynamics on Supp(µ) is a
subsystem of the geodesic flow for the restriction of g to MC(i)(y). (Indeed, if a geodesic of a metric
lies on a submanifold, then it is a geodesic in the restriction of the metric to the submanifold.)
By induction assumptions, the entropy of µ is zero.

Thus, for every ergodic probabilistic invariant measure µ its entropy is zero. Finally, the
topological entropy is zero. Theorem 1 is proven.

5 Topological restrictions for manifolds with infinite funda-
mental group: announcement

Theorem 7. Suppose the Riemannian metrics g and ḡ on a closed connected manifold Mn are
geodesically equivalent and strictly non-proportional at least at one point. Then some finite cover
of Mn is diffeomorphic to the product Qk × Tn−k of a rational-elliptic manifold and the torus.

The proof of this theorem is lengthy and will appear elsewhere. Here we sketch the proof only. It
uses Corollary 1, methods developed in [M1, M4] and classical results of [CG].

In [M1], it was shown that if a manifold with non-proportional geodesically equivalent metrics
has an infinite fundamental group, it admits a local product structure (= a new Riemannian
metric and two orthogonal foliations of complementary dimensions Bk and Bn−k such that in a
small neighborhood of almost every point all three object look as they come from the Riemannian
product of two Riemannian manifolds). In [M4] (see Lemma 2 there), it was shown that (assuming
that the initial metrics g and ḡ are strictly non-proportional at least at one point), the restriction
of the local-product metric to the leaves of the foliations admits a metric which is geodesically
equivalent to it and strictly non-proportional to it at almost every point. By applying the same
construction to the leaves, we obtain that Mn admits a Riemannian metric h and m orthogonal
foliations Bk1 , Bk2 , ..., Bkm of complementary dimension k1 + k2 + ... + km = n such that

• the restriction of the metric h to Bk1 is flat,

• the leaves of Bk2 , Bk3 , ..., Bkm are compact and have finite fundamental group (this is actually
the lengthy part of the proof; its proof it similar to the proof of Theorem 2 from [M1], but
one can not apply Theorem 2 from [M1] directly and should essentially repeat all steps of
its proof in a slightly different setting.)

• the restriction of h to each of Bk2 , Bk3 , ..., Bkm admits a metric which is geodesically equiv-
alent to it and is strictly non-proportional to it at least at one point.
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• locally, in a neighborhood of every point, the metric h and the foliations Bki look as they
(simultaneously) came from the direct product of m Riemannian manifolds.

Then, by Corollary 1, the (universal cover of) Bk2 × Bk3 × ... × Bkm
is rational elliptic, and

Theorem 7 follows from Theorem 9.2 of [CG].
Theorem 7 allows us to generalize Corollary 1. Let rank π1(M) be the minimal number of

generators of the fundamental group, which span a subgroup of finite index, and π∗+1(M) =
⊕i>1πi(M) be the sum of abelian higher homotopy groups. Denote dimQ π∗(M) = rank π1(M) +
dim π∗+1(M)⊗Q.

Corollary 4. Let (Mn, g) satisfies the hypotheses of Theorem 7. Then:

dimQ π∗(Mn) ≤ n, dim H∗(Mn;Q) ≤ 2n and χ(Mn) ≥ 0.

For small dimensions, in view of Theorem 1, Corollary 4 follows from [PP2].
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