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|. INTRODUCTION

e [Pantazi, 1938, 1940]

Mihaileanu, 1941]
e [Dou, 1953, 1955]
e [Bol, 1932]

e [Blaschke, 1955]

"Find invariant conditions for a planar 4-web to
be ofrank 1 or 2 or 3.”

e [Pirio, 2005]
e [Akivis, Goldberg, Lychagin, 2004]



II. ABELIAN EQUATIONS
o Wy =< wq,...,wg > =asmooth planar
dwebinD CR?°and7w: E — D=a
subbundle of the trivial bundle R% x D — D

consisting of points (:El, ey T, a), where
(z1,...,24) € R% a € D, such that

d
> 1 Tiwia = 0.

Definition 1 By the abelian equation
associated with the d-web W ,; we mean a
system of 1-st order differential equations for

sections (A1, ..., A\g) (i.e. Zf Aiw; = 0) of
the bundle 7 such that (cf. [Griffiths, 1977]):

d()\lwl) — s = d()\dwd) = 0.

An abelian equation can be obtained by
differentiation from an abelian relation

P1(x) + @2(y) + p3(fs(z,v))
+--+palfa(z,y)) = 0.

Let A; C J!(7) be the subbundle of the
1-jet bundle corresponding to the abelian

equation, and A, C J*(7) be the

(k — 1)-prolongation of 2(1. Denote by

Tk k—1 : A — Ak_1 the restrictions of the
natural projections J* () — J*~1(7).
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e Proposition2 Letk < d — 2. Then %, are
vector bundles and the maps
T k—1 : &g < Ap_1 are projections.
Moreover, dimker 7, ;1 = d — k — 2.

e |n other words, one has the following tower of
vector bundles:

0 71,0 2,1 3,1 Td—2,d—3
DHE<—Q[1<—Q[2<—...Q[d_3 — Q[d_g.

The last projection A j_o «+— 20, _3 is an
Isomorphism, and geometrically can be
viewed as a linear connection in the vector
bundle m4_3 : 4_3 — D. Remark that the
abelian equation is formally integrable if and
only if this linear connection is flat.



e The dimension of this bundle is equal to
(d=2)+--+1=(d—2)(d—1) /2. —

The solution space Sol (2l) of the abelian
equation %2l is finite-dimensional and

dim Sol (/) < (d—1)(d—2) /2.

Definition 3 The dimension dim Sol (%) is
called the rank of the corresponding d-web

Wy.

Proposition 4 [Bol, 1932] The rank does not
exceed (d — 1) (d — 2) /2.



e Let us write down the abelian equation in the
explicit form. To do this, we choose a
3-subweb, say (w1, ws,w3) , and normalize
d-web as it was done in [Akivis, Goldberg,
Lychagin, 2004].

a1witwotws =0,...,a9—2w1twastwyg = 0,
with a1 = 1.

d—2 d—2
Then A1 = ) | “a;ui, Ao = ) 1 " uy,

and the system of differential equations
d()\zwz) — O, 1 = 1, ..,d
IS equivalent to

Ay (ur) == Ag_a (ug—2) =0,
o1 (uy) + -+ + 01 (ug—2) =0,

where A; = 61 —ds0a;,1=1,..,d — 2
and 0, are the covariant derivatives with
respect to the Chern connection. Moreover,
the functions u,; are assumed to be of weight
one.



e The obstruction for compatibility of the abelian
system is given by the multi-bracket [Kruglikov,
Lychagin, 2006]. Computing the multi-bracket,
we get the following compatibility condition for
the abelian system:

s = Lhu + - +Ug_2uq—2 =0,
where

L = A - Ag_o - 01
AL A 01 - Ny A gg - A

are linear differential operators of order
<d-—2.

Theorem 5 A d-web Wy is of maximum rank
(d—1)(d—2)/2ifand only if ¢ = 0 on
Ag_o.

e Remark that 2¢ can be viewed as a linear
function on the vector bundle 2{;_-, and
therefore the above theorem imposes
(d — 1) (d — 2) /2 conditions on the web
W 4 in order the web has the maximum rank.
A calculation of these conditions is pure
algebraic, and we shall illustrate this
calculation for planar 4-webs.
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lll. PLANAR 4-WEBS OF DIFFERENT RANKS

Obstruction

e For 4-webs W, we use the following
normalization:

w1 +ws +w3 =0, aw; +wy +wyqg =0,

where a1 = 1, and as = a is the basic
invariant of 114 of weight 0. For webs Wy,
the tower of prolongations of the abelian
equation is

™ 1,0 2,1
D+— F «+—— 911 A — 9[2,

where g 1 : %lo — %l; defines a linear
connection on the 3-dimensional vector
bundle 7m1: Ay — D.



e To write down the obstruction
= (A1A251—51A1A2)u+(A1A251—A151A2)v

on %5, we use the standard coordinates in the
bundle: u, v and v, where vy corresponds to
the covariant derivative 05 of v. In these
coordinates, the restriction sz to 25 is

M = CUg + C1V + C2U,

ail — aaz22 — 2 (1 — CL) a2

= K
=R 4a(1 — a)
_|_(—1—|—2a)a%—a2a%+2(1—a)2a1a2
4(1—a)?a? ?
Ko — K1 (a—4)a1 + (11 — 20a + 12a%) a2
C1 = 5 K
4(1 — a) 12(1 —a)’a
aiiz — 4122 air — aa2
T —a) i —a)"
(2a — 1) (a1 — aaz) A a5 ((1 —2a) a1 + aas)
4(1—a)’a? - 4(1—a)’a? 7
.  aK> — K, (1—2a)a1—(a—2)aa2K
i da(1 — a) 4(1—a)®a? .

Here K w1 A w2 is the curvature 2-form of
3-subweb |1, 2, 3] and the low indices mean the
corresponding covariant derivatives with respect to
the Chern connection.



IV. 4-WEBS OF MAXIMUM RANK

e Definition 6 The sum of the curvature

2-forms of all four 3-subwebs |1, 2, 3],
11,2,4],|1,3,4] and |2, 3, 4] of a 4-web W}
is called the curvature 2-form of Wy.

Lwl N\ Wo = 4(30&)1 /\ w2

e Theorem 7 A planar 4-web is of maximum

rank three if and only if the invariants cg, ¢

and ¢ vanish: | cg = ¢1 = ¢co = 0.

Co — 0—
_ _9(1 —
Fo G —aaxn —2(1—a)ar
4a(l —a
o (—142a)a®—a’az2+2(1—a)?ajaz
4(1—a)?a?
—>K1 :,KQZ
C1 — Co :O—>K1 :,KQZ

Comparing the two values of /; and K5, we
arrive at two conditions which, if cg = 0, are
equivalent to the linearizability conditions for a

4-web W4.



Theorem 8 [Akivis, Goldberg, Lychagin,
2004] A 4-web W (4, 2) is linearizable if and
only if its curvature K along with its covariant
derivatives K1, K9 and its basic invariant a,
along with its covariant derivatives

ai,a;ij, Gk satisfy the following conditions:

1
Ky = (4= a?) [(a1 +aa2)K — a1 + (2 + a)aiiz — 2a12
1

(a — a?

2 { [(4 —6a)ar + (—2 + 3a + 0,2)&2] ai1

+[ (=6 + Ta+ 20%)a1 + (20— 3a%)as | ar

+ -(Qa(l —a)a; — 20,2&2] agg}

P 3{“*}+8a—*%fﬂ0nfg—2a%ﬂﬂ3

(a —a?)

+(6 — 15a + 9a® + 2a”)(a1)*az

+(—2a + 6a* — 3a3))a1(a2)2}
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Ky =

1
(a — a?
—(2a + 1)ai22 + CLCL222]
1
-+ (a — CL2)2 { [(2&1 -+ (2a — 2)&2] aii

i _(_5 + 6a)ar + (2 — 3a — 2a2)a2] @12

) [(al + aaz2)K + 2a112

-+ -(1 —a —2a*)a; + 2a2a2] agg}

1 3 3 3
¥ (a_a2>3{<4“—2><a1> +a°(az)

+(5 — 12a + 6a*)(a1)’as

+(—2+5a — 3a® — 2a°)a; (a2)2}

Theorem 9 A planar 4-web is of maximum
rank three if and only if this web is linearizable
and its curvature 2-form vanishes.
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e Corollary 10 A linear planar 4-web is of
maximum rank three if and only if its curvature
2-form vanishes.

Corollary 11 (Theorem of Poincaré) A planar
4-web of maximum rank three is linearizable.

e Definition 12 4-webs all 3-subwebs of which
are parallelizable (hexagonal) are called
Mayrhofer 4-webs.

Corollary 13 The Mayrhofer 4-webs are of
maximum rank three.
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e Example 14 Consider the planar 4-web W,
formed by the coordinate lines
y = const., x = const. and by the level
sets of the functions

flz,y) =7 and g(z,y) = =07
This web is a 4-subweb of the famous Bol’s
S-web. It was shown in [Akivis, Goldberg,
Lychagin, 2004] that this 4-web is linearizable.
The direct calculation shows that the
curvature 2-form of this 4-web vanishes:
Lwy N we = 0 — our Wy is of maximum
rank three.

e Three abelian relations admitted by 11/, are:

logz —logy — log f(x,y) = 0,

1 —x I —y
— log

log +log g(z,y) = 0,

log(1 —z) —log(1 — f(x,y))

+log(l —g(z,y)) = 0.
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e Theorem 15 (Blaschke—Howe, 1932; Sophus
Lie, 1882) For d = 3, 4, d-web of maximum
rank is algebraizable.

")+ f(x) + f(x) + fi(z) =0

for any straight line intersecting 4 curves
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V. 4-WEBS OF RANK TWO

e Theorem 16 A planar 4-web is of rank two if

and only if | G;; = 0, 2,7 = 1,2, |where

Gi1=aco(c2.2 — c21) +aca(co1 — co2)
—a (1 —a)cies
+ (2a2 — a1 — aas) coco — KcE,
Gi2=acg(c1,2 — c1,1) + aci(co1 — Co,2)
—a(l—a)ci+ (a3 + a1z — az) &
+(2a9 — a1 — 2aas)cocy,
Ga1=co(c21 —aca2) + calaco e —co1)
—2ascoca +a (1 —a)c3,
Gaa=co(c11 —ac12) +c1(acoe —co1)
+a (1 —a)cica — ascpey

—as(1 — a)cgea + (aze — K) c3.
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e Example 17 Consider the planar 4-web W,
formed by the coordinate lines
y = const., x = const. and by the level
sets of the functions

f(z,y) =z +yand g(z,y) = z* + y°.

For this 4-web, we have
co # 0; c1 = co = 0; and therefore
Gi; = 0 — Wy is of rank two.

e Two abelian relations admitted by the web are

r+y— flz,y) =0; 2° +y° —g(z,y) = 0.

e Remark that the conditions of linearizability
from [Akivis, Goldberg, Lychagin, 2004] do not
hold for this web. This implies

Proposition 18 General 4-webs admitting
two abelian equations are not necessarily
linearizable.
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VI. 4-WEBS OF RANK ONE

e Theorem 19 A planar 4-web is of rank one if
and only if the web is of one of the following

types:
1. |cg =0, Jp = Jo2 =0, |where

J1 = azcica(c1 —c2) + CLC%(Cl,z —cC11)
+cica(ci1 +alce1 —ci2 —c2,2))
-|-C%(CL62,2 —C2,1),

Jo=0c(c1 —c2)’ K
+(c1,11 —c1,12) cica (c2 — c1)

—|—C% (c1 —c2) (c2,11 — ¢c2,12)
—c2(2¢1 —c2)c11(c1,2 —c1,1)
‘|‘C%02,1(Cl,2 —c22+C2.1)

+cici1(cao — 2¢2.1)

and ¢y # co, c1 # 0.
2. |lcg =0, cgt =c9g #0, J3 =0, |where

J3 = (CLQQ — CL12) (1 — a) —+ CIQ(CLQ — al)
~(1-a) K.
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co =0, ¢ =0, 027&07 Jy =0,

where

2
Js = a10a0 —ajao — Ka

co # 0, Jio = J11 = J12 =0,

Ji0 = G11G22 — G21GH 2,

where

Ji1 = co(G21,1G22 — Ga2,1G21)

+(azco — ac1)G3y + (aca — azco

+ac1)Ga1Gaz — acaG3,,

Ji2 = co(G21.2G22 — Ga2.2G21)

+(asco — acy)G%,

—|—a(62 — Cl)GQlGQQ — CQG%Q.
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e Example 20 We consider the planar 4-web
formed by the coordinate lines
Yy = const., x = const. and by the level
sets of the functions

flz,y) = (f_yy)Q and g(z,y) = (mx_;j)Q'

By direct calculation, we find that for this
4-web we have

C():O, 61,62#0, 61#62, J1:J2:O%

W, of type 1 indicated in Theorem 19 and
the W, is of rank one.

e The only abelian equation admitted by W, is

log x—log y+log f(x,y)—log g(x,y) = 0.

e The conditions of linearizability from [Akivis,
Goldberg, Lychagin, 2004] do not hold for this
web —

Proposition 21  General 4-webs admitting
one abelian equation are not necessarily
linearizable.
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e Theorem 21 A nonparallelizable planar
4-web W, with a basic invariant a = const
has rank 0.

Proof cg,c1,co # 0 — rankWy4 < 3
Gi; # 0 — rankWy < 2
Ji0 = G11Go2 —G19Go1 # 0 —rankWy, <1 —

rank W4 = 0 Q.E.D.
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VIl. 5-WEBS OF MAXIMUM RANK

We now take d = 5. Because the maximum
rank (d) of W (d,2,1) is

m(d) = (d — 1)(d — 2), the maximum
rank of W (5,2,1) is w(5) = 6.

Ajwy + Aswy + wws + uwy + vws = 0,
where

W3 — —w1 — W2,
W4 = —aWp — W2,
ws = —bwi — wa,

and a and b are the basic invariants of the

5-web W5 = W(5, 2, 1).
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e Theorem 22 A planar 9-web is of maximum
rank six if and only if its curvature K and the
covariant derivatives K1, Ko, K11, K19 and
K55 of K are expressed in terms of the
H-web basic invariants a and b and their
covariant derivatives up to the 4th order as
follows:

K=.. Ki=.. Ky=..,
K11 — ey K12 — ey K22 = ...
e K = ...is equivalent to the 5-web curvature

2-form = the sum of the curvature 2-forms of
10 3-subwebs £, 1, C].

o K =..., K;,=.. K;; =..donotimply
the 5-web linearizability conditions from
[(Akivis, Goldberg, Lychagin, 2004] —

Proposition 23 The general 5-web of
maximum rank is not linearizable
(algebraizable).
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e Example 23 We consider the Bol 5-web
formed by the coordinate lines
y = const., x = const. and by the level
sets of the functions

f(xay) — %7 g4(x,y) — }:_za

We have K = 0 — K; = K;; = 0. The
RHS of the formulas in Theorem 21 are also
0 — the Bol 5-web is of maximum rank 0.

H[1,2,3,4] — M[1,2,3,5] — yg’;fﬁ)y(;f)l) # 0,

i.e., the Bol 5-web is not linearizable
(algebraizable).
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e Six abelian relations for the Bol 5-web are:

Inu; —Inus — Inug =0,

Inus + Inus — Inus = 0,

In(1 —uy) —In(1 —wuz) +1Inuy =0,

In(1 —wuy) —In(1 —wu3)+ In(l —us) =0,

1 — 1 —
e s + In(1 —uy) = 0,

Dz(ul) - DQ(U2) — Dz(u3)

—D>(uy) + Da(us) = 0,

In

where w1 = x, U = Y, U3 = f(ﬂfa?/)a
Uyg = 94(%9)7 Uy = 95($,y) and

__fou< In 1] u|+1n|u|>du

+11nuln(1—u)—%2, 0<u<l,

IS the version of the original Rogers
dilogarithm normalized so that RHS of the last
abelian relation is 0.
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e Example 24 We consider the 5-web formed
by the coordinate lines
Yy = const., x = const. and by the level
sets of the functions

f(xay) — %7 94($ y) (x— 1)(y 1)’
95(,Y) = Ge=1)-

We have K = 0 — K; = K;; = 0. The
RHS of the formulas in Theorem 21 are also
0 — our 5-web is of maximum rank 0.

1,2,3,4] — H[1,2,3,5] = U, and the
4-subweb |1, 2, 3, 4] is linearizable — our
5-web is linearizable (algebraizable.)
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e Six abelian relations for this D-web are:

Inu; —Ilnugs —Inug =0,
Inug —Inug + Inug = 0,
In 1 ﬁlm —ln(l—fcf) —Inuy =0,
—In(l —u1)+In—=— —lnus =0,
1 1—1’LL2
4 +u2—u3——:O,
U U
o "1
—Uq —Ug———o,
uo us

where w1 = x, Uy = Y, U3 = f(zay)a
Uy = g4($,y)> U5 — 95($ay)-
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e Nonlinearizable 5-webs of maximum rank
were called exceptional webs. As we saw, the
general 5-web of maximum rank is not
linearizable (algebraizable). — They are not
exceptional webs.

Among 5-webs of maximum rank there is a
class of algebraizable webs.

e On the other hand, among nonalgebraizable
d-webs, there are polylogarithmic  d-webs .

“Are all webs of maximal rank which are not
algebraizable of this type? We do no attempt
to formulate this question
precisely—intuitively, we are asking whether
or not for each k such that there is a "new”
n(k)-web of maximal rank one of whose
abelian relations is a (the?) functional
equation with (k) terms for the k
polylogarithm Liy ? [Griffiths, 2001]

In our opinion, it is natural to call exceptional
such polylogarithmic webs. [Pirio, Robert,
Trépereau]
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