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Abstract

We discuss the dimensional characterization of the solutions space of a formally integrable system of
partial differential equations and provide certain formulas for calculations of these dimensional quantities.
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1 Introduction: what is the solutions space?

Let E be a system of partial differential equations (PDEs1). We would like to discuss the
dimensional characterization of its solutions space.

However it is not agreed upon what should be called a solution. We can choose between
global or local and even formal solutions or jet-solutions to a certain order. Hyperbolic
systems hint us about shock waves as multiple-valued solutions and elliptic PDEs suggest
generalized functions or sections.

A choice of category, i.e. finitely differentiable Ck, smooth C∞ or analytic Cω together
with many others, plays a crucial role. For instance there are systems of PDEs that have
solutions in one category, but lacks them in another (we can name the famous Lewy’s
example of a formally integrable PDE without smooth or analytic solutions, [L]).

In this paper we restrict to local or even formal solutions. The reason is lack of reaso-
nable existence and uniqueness theorems (in the case of global solutions even for ODEs).
In addition this helps to overcome difficulties with blow-ups and multi-values.

If the category is analytic, then Cartan-Kähler theorem [Ka] guarantees local solutions
of formally integrable equations [Go] and even predicts their quantity. We then measure
it by certain dimension characteristics.

1 MSC numbers: 35N10, 58A20, 58H10; 35A30.
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If the category is smooth, formal integrability yields existence of solutions only if cou-
pled with certain additional conditions (see for instance [Ho]). Thus it is easier in this
case to turn to formal solutions, which in regular situations give the same dimension
characteristics. With this vague idea let us call the space of solutions Sol(E).

With this approach it is easy to impose a topology on the solutions space. However we
shall encounter the situations, when the topological structure is non-uniform.

To illustrate the above discussion, let’s consider some model ODEs (in which case we
possess existence and uniqueness theorem). The space of local solutions for the ODE
y′ = y2 is clearly one-dimensional, but the space of global solutions (continuous pieces
until the blow-up) has two disconnected continuous pieces (solutions y = (a − x)−1 for
a < 0 or for a > 0) and a singular point (solution y = 0). Another example is the equation
y′2 + y2 = 1, the solutions on(−ε, ε) of which form S1, but the space of global solutions is
R1 (both united with two singular points in Sol(E)).

We would like to observe the ”biggest” piece of the space of Sol(E), so that in our
dimensional count we ignore isolated and special solutions or their families and take those
of connected components, that have more parameters in.

It will be precisely the number of parameters, on which a general solution depends, that
we count as a dimensional characteristic. Let us discuss the general idea how to count it
and then give more specified definitions.

Note that in this paper we consider only (over)determined systems of PDEs. Most
results will work for underdetermined systems, but we are not concerned with them.

2 Understanding dimension of the solutions space

Let us treat at first the case of linear PDEs systems (the method can be transferred to
non-linear case). We consider formal solutions and thus assume the system of PDEs E is
formally integrable. We also assume the system E = Ek is of pure order k, which shall be
generalized later.

Thus for some vector bundle π : E(π) → M we identify E as a subbundle Ek ⊂ Jk(π)
(see [S, Go, KLV]) and let El ⊂ J l(π) be its (l − k)-th prolongations, l ≥ k. Then the
fibres E∞

x ⊂ J∞
x (π) at points x ∈ M can be viewed as spaces of formal solutions of E at

x ∈ M. To estimate size of E∞
x we consider the spaces of linear functions on El,x, i.e. the

space E∗
l,x. The projections πl,l−1 : El,x → El−1,x induce embeddings π∗

l,l−1 : E∗
l−1,x ↪→ E∗

l,x,
and we have the projective limit

E∗
x = ∪lE

∗
l,x.

Remark that E∗ is the module over all scalar valued differential operators on π, while
the kernel of the natural projection J∞

x (π)∗ → E∗
x can be viewed as the space of scalar

valued differential operators on π vanishing on the solutions of the PDEs system E at the
point x ∈M . Thus elements of E∗

x are linear functions on the formal solutions E∞
x .

We would like to choose ”coordinates” among them, which will estimate dimension
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of the formal solution space. To do this we consider the graded module associated with
filtred module E∗

x :

g∗(x) =
⊕

l≥0

g∗l (x),

where gl(x) are the symbols of the equation at x ∈M :

gl(x) = El,x/El−1,x ⊂ SlT ∗
x ⊗ πx

(we let El = J l(π) for l < k), and reduce analysis of E∗
x to investigation of the symbolic

module g∗x.
This g∗ is the module over the symmetric algebra STxM = ⊕Si(TxM) and its support

CharC

x (E) ⊂ PCT ∗
xM is a complex projective variety consisting of complex characteristic

vectors. The values Kp of the symbolic module g∗x at characteristic covectors p ∈ CT ∗
x \ 0

form a family of vector spaces over CharC

x (E), which we call characteristic sheaf.
By the Noether normalization lemma ([E]) there is a subspace U ⊂ TxM such that

the homogeneous coordinate ring STxM/Ann g∗(x) of CharC

x (E) is a finitely generated
module over SU . It follows that g∗(x) is a finitely generated module over SU too.

If g∗(x) is a Cohen-Macaulay module (see [E], but we recall the definition later in a
more general situation, then g∗(x) is a free SU -module (we called the respective PDEs
systems E Cohen-Macaulay in [KL2] and discussed their corresponding reduction).

Let σ be the rank of this module, and p = dimU . By the above discussion these
numbers can be naturally called formal functional rank and formal functional dimension
of the solutions space E∞

x at the point x ∈ M , because they describe on how many
functions of how many variables a general jet-solution formally depends (we shall omit
the word ”formally” later), or how many ”coordinates” from E∗

x should be fixed to get a
formal solution.

If the symbolic module is not Cohen-Macaulay, the module g∗(x) over SU is not free,
but finitely generated and supported on PCU∗. Let F(U) be the field of homogeneous
functions P/Q, where P,Q ∈ SU , Q 6= 0, considered as polynomials on U∗. Thus F(U) is
the field of meromorphic (rational) functions on U∗.

Consider F(U) ⊗ g∗(x) as a vector space over F(U). Keeping the same definition for σ,
let us call the dimension of this vector space p formal rank of E at the point x ∈M .

It is clear that for Cohen-Macaulay systems the two notions coincide. However since
g∗(x) over SU is not free, we would like to give more numbers to characterize the symbolic
module.

Let us choose a base e1, . . . , er of F(U) ⊗ g∗(x) such that e1, . . . , er are homogeneous
elements of g∗(x) and denote by Γ1 ⊂ g∗(x) the SU -submodule generated by this base. It
is easy to check that Γ1 is a free SU -module. For the quotient module M1 = g∗(x)/Γ1 we
have the following property:

Annh 6= 0 in SU, for any h ∈M1.
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Therefore AnnM1 6= 0 and the support Ξ1 of M1 is a proper projective variety in PCU∗.
We apply the Noether normalization lemma to Ξ1, we get a subspace U1 ⊂ U , such

that M1 is a finitely generated module over SU1. Its rank will be the next number p1 and
we also get σ1 = dimU1, which we can call the next formal rank and formal dimension.

Applying this procedure several more times we get a sequence of varieties Ξi and num-
bers (pi, σi), which depends, in general, on the choice of the flag U ⊃ U1 ⊃ U2 ⊃ . . . and
the submodules Γi of SUi−1.

Thus we resolve our symbolic module via the exact 3-sequences

0 → Γ1 → g∗ → M1 → 0 over SU, 0 → Γ2 →M1 →M2 → 0 over SU1, . . .

(with SuppMi = Supp Γi+1 % SuppMi+1) etc.

3 Cartan numbers

In Cartan’s study of PDEs systems E (basically viewed as exterior differential systems in
this approach) he constructed a sequence of numbers si, which are basic for his involutivity
test. These numbers depend on the flag of subspaces one chooses for investigation of the
system and so have no invariant meaning.

The classical formulation is that a general solution depends on sp functions of p varia-
bles, sp−1 functions of (p−1) variables, . . . , s1 functions of 1 variable and s0 constants (we
adopt here the notations from [BCG3]; in Cartan’s notations [C] we should rather write
sp, sp + sp−1, sp + sp−1 + sp−2 etc). However as Cartan notices just after the formulation
[C], this statement has only a calculational meaning.

Nevertheless two numbers are absolute invariants and play an important role. These are
Cartan genre, i.e. the maximal number p such sp 6= 0, but sp+1 = 0, and Cartan integer
σ = sp.

As a result of Cartan’s test a general solution depends on σ functions of p variables
(and some number of functions of lower number of variables, but this number can vary
depending on a way we parametrize the solutions). Here general solution is a local analytic
solution obtained as a result of application of Cartan-Kähler (or Cauchy-Kovalevskaya)
theorem and thus being parametrized by the Cauchy data.

Hence we can think of p as of functional dimension and of σ as of functional rank of
the solutions space Sol(E). In fact, we adopt this terminology further on in the paper,
because as was shown in the previous section it correctly reflects the situation.

These numbers can be computed via the characteristic variety. If the characteristic sheaf
over CharC(E) has fibers of dimension k, then

p = dim CharC(E) + 1, σ = k · deg CharC(E).

The first formula is a part of Hilbert-Serre theorem ([H]), while the second is more com-
plicated. Actually Cartan integer σ was calculated in [BCG3] in general situation and the
formula is as follows.
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Let CharC(g) = ∪εΣε be the decomposition of the characteristic variety into irreducible
components and dε = dimKx for a generic point x ∈ Σε. Then

σ =
∑

dε · deg Σε.

It is important that these numbers coincide with the functional dimension and rank
of the previous section. Moreover the sequence of Cartan numbers si is related to the
sequence (pi, σi) of the previous section.

This can be seen from the general approach of the next and following sections, which
treat the case of systems E of PDEs of different orders (we though make presentation for
the symbolic systems, with interpretation for general systems being well-known [S, KLV,
KL2]).

4 Symbolic systems

Consider a vector space T of dimension n (tangent space to the set of independent varia-
bles, substitute to TxM) and a vector space N of dimension m (tangent space to the set
of dependent variables, substitute to πx = π−1(x)).

Spencer δ-complex is de Rham complex of polynomial N -valued differential forms on
T :

0 → SkT ∗ ⊗N
δ
→ Sk−1T ∗ ⊗N ⊗ T ∗ δ

→ · · ·
δ
→ Sk−nT ∗ ⊗N ⊗ ΛnT ∗ → 0,

where SiT ∗ = 0 for i < 0. Denote by

δv = iv ◦ δ : Sk+1T ∗ ⊗N → SkT ∗ ⊗N

the differentiation along the vector v ∈ T .
The l-th prolongation of a subspace h ⊂ SkT ∗ ⊗N is

h(l) = {p ∈ Sk+lT ∗ ⊗ N : δv1
. . . δvl

p ∈ h ∀v1, . . . , vl} = SlT ∗ ⊗ h ∩ Sk+lT ∗ ⊗ N.

Definition. A sequence of subspaces gk ⊂ SkT ∗ ⊗N , k ≥ 0, with g0 = N and gk ⊂ g
(1)
k−1,

is called a symbolic system.

If a system of PDEs E is given as F1 = 0, . . . , Fr = 0, where Fi are scalar PDEs on
M , then T = TM,N ' Rm and the system g ⊂ ST ∗ ⊗ N is given as f1 = 0, . . . , fr = 0,
where fi = σ(Fi) are symbols of the differential operators at the considered point (or jet
for non-linear PDEs).

With every such a system we associate its Spencer δ-complex of order k:

0 → gk
δ

−→ gk−1 ⊗ T ∗ δ
−→ gk−2 ⊗ Λ2T ∗ → . . .

→ gi ⊗ Λk−iT ∗ δ
−→ · · ·

δ
−→ gk−n ⊗ ΛnT ∗ → 0.
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Definition. The cohomology group at the term gi ⊗ ΛjT ∗ is denoted by H i,j(g) and is
called the Spencer δ-cohomology of g.

Note that gk = SkT ∗ ⊗ N for 0 ≤ k < r and the first number r = rmin(g), where the
equality is violated is called the minimal order of the system. Actually the system has
several orders:

ord(g) = {k ∈ Z+ | gk 6= g
(1)
k−1}.

Multiplicity of an order r is:

m(r) = dim g
(1)
r−1/gr = dimHr−1,1(g).

Hilbert basis theorem implies finiteness of the set of orders (counted with multiplicities):

codim(g) := dimH∗,1(g) =
∑

m(r) <∞.

Starting from the maximal order of the system k = rmax we have: gk+l = g
(l)
k .

If we dualize the above construction over R, then Spencer δ-differential transforms
to a homomorphism over the algebra of polynomials ST and g∗ = ⊕ig

∗
i becomes an

ST -module. This module is called a symbolic module and it plays an important role in
understanding PDEs.

In particular, characteristic variety CharC(g) ⊂ PCT ∗ is defined as the support of this
module Supp(g∗) = {[p] : (g∗)p 6= 0} and the characteristic sheaf K over it is the family
of vector spaces, which at the point p ∈ CharC(g) equals the value of the module at this
point Kp = g∗/p · g∗. For more geometric description see [S, KLV, KL2].

5 Commutative algebra approach

We will study only local solutions of a system of PDEs E , which we consider in such a
neighborhood that type of the symbolic system does not change from point to point (on
equation) in the sense that dimensions of gk, of the characteristic variety CharC(g) and
of the fibers of K are the same.

It should be noted that if a system E is not formally integrable and E ′ is obtained from
it by the prolongation-projection method [K, M2, KL2], then the numbers p, σ change in
this process, i.e. either the functional dimension or the functional rank decrease. Thus
from now on we suppose the system E is formally integrable.

The numbers p, σ can be described using the methods of commutative algebra. Recall
([AM]) that by Hilbert-Serre theorem the sum

f(k) =
∑

i≤k

dim g∗i

6



Dimension of the solutions space of PDEs

behaves as a polynomial in k for sufficiently large k. This polynomial is called the Hilbert
polynomial of the symbolic module g∗ corresponding to E and we denote it by PE(z). If

p = deg PE(z) and σ = P
(p)
E (z), then the highest term of this polynomial is

PE(z) = σzp + . . .

(see [H] for the related statements in algebraic geometry, the interpretation for PDEs is
straightforward).

A powerful method to calculate the Hilbert polynomial is resolution of a module. In our
case a resolution of the symbolic module g∗ exists and it can be expressed via the Spencer
δ-cohomology. Indeed, the Spencer cohomology of the symbolic system g is R-dual to the
Koszul homology of the module g∗ and for algebraic situation this resolution was found
in [Gr]. It has the form:

0 → ⊕qH
q−n,n(g) ⊗ S [−q] ϕn

−→ ⊕qH
q−n+1,n−1(g) ⊗ S [−q] ϕn−1

−→ . . .

→ ⊕qH
q−1,1(g) ⊗ S [−q] ϕ1

−→ ⊕qH
q,0(g) ⊗ S [−q] ϕ0

−→ g∗ → 0,

where S [−q] is the polynomial algebra on T ∗
xM with grading shifted by q, i.e. S

[−q]
i =

Si−qTxM , and the maps ϕj have degree 0.
Thus denoting hi,j = dimH i,j(g) and τα = dimSαTM =

(
α+n−1

α

)
we have:

dim gi =
∑

q

(
hq,0τi−q − hq,1τi−q−1 + hq,2τi−q−2 − · · ·+ (−1)nhq,nτi−q−n

)
.

Let also jβ =
∑

α≤β τα = dim Jβ
v M =

(
β+n

n

)
be the dimension of the fiber of the vertical

jets Jβ
v M , i.e. the fiber of the jet space JβM over M . Thus we calculate

∑

i≤k

dim gi =
∑

q

(
hq,0jk−q − hq,1jk−q−1 + hq,2jk−q−2 − · · · ± hq,njk−q−n

)
.

Finally we deduce the formula for Hilbert polynomial of the symbolic module g∗

PE(z) =
∑

q

(

hq,0
(

z−q+n

n

)
− hq,1

(
z−q+n−1

n

)
+

+ hq,2
(

z−q+n−2
n

)
− · · · + (−1)nhq,n

(
z−q

n

))

.

Here
(

z+k

k

)
=

1

k!
(z + 1) · (z + 2) · · · (z + k).

Denote Sj(k1, . . . , kn) =
∑

i1<···<ij

ki1 · · · kij the j-th symmetric polynomial and let also

sn
i =

(n− i)!

n!
Si(1, . . . , n)
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Thus

sn
0 = 1, sn

1 =
n+ 1

2
, sn

2 =
(n + 1)(3n+ 2)

4 · 3!
, sn

3 =
n(n + 1)2

2 · 4!
,

sn
4 =

(n + 1)(15n3 + 15n2 − 10n− 8)

48 · 5!
etc.

If we decompose
(

z+n

n

)
=

n∑

i=0

sn
i

zn−i

(n− i)!
,

then we get the expression for the Hilbert polynomial

PE(z) =
∑

i,j,q

(−1)ihq,isn
j

(z − q − i)n−j

(n− j)!
=

n∑

k=0

bk
zn−k

(n− k)!
,

where

bk =

k∑

j=0

∑

q,i

(−1)i+j+khq,isn
j

(q + i)k−j

(k − j)!
.

6 Calculations for the Solutions space

We are going to compute the dimensional characteristics of two important classes of PDEs.
Involutive systems. These are such symbolic systems g = {gk} that all subspaces gk

are involutive in the sense of Cartan [C, BCG3] (this definition for the symbolic systems
of different orders was introduced in [KL5]). Thanks to Serre’s contribution [GS] we can
reformulate this via Spencer cohomology as follows.

Denote by g|k〉 the symbolic system generated by all differential corollaries of the system
deduced from the order k:

g
|k〉
i =

{
SiT ∗ ⊗N, for i < k;

g
(i−k)
k , for i ≥ k.

Then the system g is involutive iff H i,j(g|k〉) = 0 for all i ≥ k (this condition has to be
checked for k ∈ ord(g) only), see [KL5].

In particular, H i,j(g) = 0 for i /∈ ord(g) − 1, (i, j) 6= (0, 0), and the resolution for the
symbolic module g∗ as well as the formula for the Hilbert polynomial of E become easier.

Let us restrict for simplicity to the case of systems of PDEs E of pure first order. Then

PE(z) = h0,0
(

z+n

n

)
− h0,1

(
z+n+1

n+1

)
+ h0,2

(
z+n+2

n+2

)
− . . .

= b1
zn−1

(n− 1)!
+ b2

zn−2

(n− 2)!
+ · · · + b0.
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Vanishing of the first coefficient b0 = 0 is equivalent to vanishing of Euler characteristic
for the Spencer δ-complex, χ =

∑

i(−1)ih0,i = 0, and this is equivalent to the claim that
not all the covectors from CT ∗ \ 0 are characteristic for the system g.

The other numbers bi are given by the general formulas from the previous section, but
they simplify in our case. For instance

b1 = n+1
2
b0 −

∑

(−1)ih0,ii =
∑

(−1)i+1i · h0,i.

If codim CharC(E) = n− p > 1, then b1 = 0 and in fact then bi = 0 for i < n − p, but
bn−p = σ.

Theorem. If codim CharC(E) = n− p, then the functional rank of the system equals

σ =
∑

i

(−1)ih0,i (−i)
n−p

(n− p)!
.

Proof. Indeed one successively calculate the coefficients using the formula

bk =
∑

i

k∑

α=0

(−1)i+αh0,isn
k−α

iα

α!

and notes that bk equals to the displayed expression plus a linear combination of bk−1, . . . , b0.
The claim follows. �

One can extend the above formula for general involutive system and thus compute
the functional dimension and functional rank of the solutions space (some interesting
calculations can be found in classical works [J, C]).

Cohen-Macaulay systems. A symbolic system g (and the respective PDEs system
E) is called Cohen-Macaulay ([KL2]) if the corresponding symbolic module g∗ is Cohen-
Macaulay, i.e. (see [M1, E] for details)

dim g∗ = depth g∗.

Consider an important partial case (we formulate the definition only for symbolic sy-
stems; PDEs are treated in [KL4]):

Definition. A symbolic system g ⊂ ST ∗ ⊗N (n = dimT , m = dimN) of codim(g) = r
is called a generalized complete intersection if

• m ≤ r < n +m;

• codimC CharC(g) = r −m+ 1;

• dimKx = 1 ∀x ∈ CharC(g) ⊂ PCT ∗.
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Formal integrability of such systems are given by the compatibility conditions expressed
via brackets (for scalar systems [KL1, KL3]) or multi-brackets (for vector systems [KL4]).
In this case we can calculate Cartan genre and integer directly.

Theorem. Let E be a system of generalized complete intersection type and suppose it is
formally integrable. Then the functional dimension of Sol(E) is

p = m+ n− r − 1

and the functional rank is

σ = Sr−m+1(k1, . . . , kr) =
∑

i1<···<ir−m+1

ki1 · · ·kir−m+1
,

the l-th symmetric polynomial of the orders k1, . . . , kr of the system.

Note that if the last requirement in the definition of generalized complete intersection
is changed to dimKx = d everywhere on the characteristic variety, then the functional
rank will be multiplied by d:

σ = d · Sr−m+1(k1, . . . , kr).

However the formal integrability criterion for generalized complete intersections is proved
in [KL4] under assumption that d = 1.

Proof. We shall consider the case of a system g of a pure order: k1 = · · · = kr = k,
ki ∈ ord(g). The case of different orders is similar and will appear elsewhere.

The formula for functional dimension p follows directly from the definition of genera-
lized complete intersection. Let’s calculate σ.

We can use interpretation of the Cartan integer σ from §3. Recall that characteristic
variety CharC(g) is the locus of the characteristic ideal I(g) = Ann(g), which the the
annihilator of g∗ in ST .

Since the module is represented by the matrix with polynomial entries (each differential
operator ∆i giving a PDEs system E is a column ∆ij , 1 ≤ i ≤ r, 1 ≤ j ≤ m; so that their
union is a m× r matrix M(∆)), its annihilator is given by the zero Fitting ideal (in fact,
here we use the condition on grade of the ideal: depth Ann(g) = r−m+ 1, which follows
from the conditions of the above definition).

This ideal Fitt0(g) is generated by all determinants ofm×mminors of the corresponding
to M(∆) matrix of symbols M(σ∆). These minors are determined by a choice of m from
r columns, so that there are

(
r

m

)
determinants and each is a polynomial of degree kr−m+1.

However not all the minors are required to determine CharC(g) and this is manifested
by the fact, that we sum

(
r

m−1

)
degrees kr−m+1 to get the functional rank σ. The easiest

way to explain this is via the Hilbert polynomial of the symbolic module g∗.
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This can be calculated since under the assumption of generalized complete intersection
g∗ possesses a resolution in the form of Buchsbaum-Rim complex (see [KL4]):

0 → Sr−m−1V ? ⊗ ΛrU → Sr−m−2V ? ⊗ Λr−1U →

· · · → Λm+1U → U → V → g∗ → 0,

where V ' ST ⊗N∗ (recall that dimN = m and g ⊂ ST ∗⊗N) and U = ST ⊕ · · · ⊕ ST
︸ ︷︷ ︸

r terms

.

Star ? means dualization over ST and the tensor products are over ST as well.
Now the claim follows from the detailed investigation of degrees of the homomorphisms

in the above exact sequence. To see this we suppose at first that r = m+ n − 1 and use
the following assertion.

Lemma. The following combinatorial formula holds:

m
(

n+k(n+m−1)
n

)
− (n+m− 1)

(
n+k(n+m−2)

n

)

+
n−1∑

j=1

(−1)j−1
(

j+m−2
m−1

)(
n+m−1

j+m

)(
(k+1)n−k(1+j)

n

)
=

(
n+m−1

n

)
kn.

We would like to comment and interpret the sum on the left hand side of this formula.
In our case the system is of finite type (g∗ has finite dimension as a vector space) and
σ =

∑
dim gi (the sum is finite).

Stabilization of the symbol occurs at the order i =
∑
ki − 1 = k(n + m − 1) − 1:

gi = 0. So we prolong E to the jets of order k(n + m − 1) and the first term is just

dim J
k(n+m−1)
v (M,N).

The next term is due to the fact that E ⊂ Jk(M,N) is proper. It is given by r = n+m−1
equations of order k, we which we differentiate up to k(n+m−2) times along all coordinate
directions (prolongation).

There are relations between these derivatives. These are compatibility conditions (1-
syzygy of g∗), which appear in the form of multi-brackets [KL4], in our case this bracket
uses (m+ 1)-tuples of ∆i.

There are in turn relations among relations (2-syzygy of g∗), which are identities bet-
ween multi-brackets (these we call generalized Plücker identities, to appear soon), in our
case these latter use (m+ 2)-tuples of the defining operators ∆i etc.

Due to exact form of the relations (higher syzygies) we get factors
(

j+m−2
m−1

)
in the

summations formula of the lemma.
In the case r < n+m−1 we should perform a reduction, which is possible by Theorem

A [KL2]. Then the functional dimension p grows, but the functional rank remains the
same and the previous calculation works. �
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7 Examples

Here we show some examples demonstrating the above results.
1. Intermediate integral of a system E ⊂ Jkπ is such a system Ẽ ⊂ J k̃π that k̃ < k and

E ⊂ Ẽ (k−k̃) (where E (i) is the i-th prolongation of the system). Since every solution to the

system E is a solution to Ẽ (k−k̃) we conclude: Whenever the functional dimension p > 0,
we have p̃ = p and σ̃ = σ.

Indeed the solutions of Ẽ (k−k̃) form a finite-dimensional parametric family, such that
solutions of Ẽ appear for some fixed values of parameters (because we differentiate with
respect to all variables to obtain the prolongation). Thus the number of functions of p > 0
variables, on which a general solution depends, will not be altered.

2. If the PDEs system E is underdetermined, then p = n and σ ≥ 1. Indeed, σ is
precisely the under-determinacy degree, i.e. the minimal number of unknown functions
that should be arbitrarily fixed to get a determined system. We assume we can do it to
get a formally integrable system. If underdetermined system is not formally integrable,
compatibility conditions can turn it into determined or over-determined and then decrease
p and change σ.

A nice illustration is the Hilbert-Cartan system

z′(x) = (y′′(x))2.

It has p = 1, σ = 1. But even though a general solution depends on one function of one
variable, it cannot be represented in terms of a function and its derivatives only (Hilbert’s
theorem).

3. As we noticed earlier the similar situation happens to overdetermined system: If E
is not formally integrable, and Ẽ is obtained from E by prolongation-projection technique
(sometimes it is said that Ẽ is the involutive form of E , but this is not true, only a certain
prolongation of Ẽ is), then p̃ < p or [p̃ = p and σ̃ < σ]. Indeed, supplement of additional
equations shrinks the solution space.

For instance if we consider two second-order scalar differential equations on the plane

F
(
x, y, u(x, y), Du(x, y), D2u(x, y)

)
= 0, G

(
x, y, u(x, y), Du(x, y), D2u(x, y)

)
= 0,

such that F and G have no common complex characteristics, then the compatibility
condition of this system E can be expressed via the Mayer bracket ([KL1]): H = [F,G]E .
If H = 0, then p = 0, σ = 4. If H 6= 0, then p = 0 and σ ≤ 3, the equality being given by
the Frobenius condition for the system Ẽ = {F = 0, G = 0, H = 0}.

If the system has one common characteristic and is compatible, we have: p = 1, σ = 1.
Pairs of such systems are basic examples of Darboux integrability.

4. Evolutionary equations ut = L[u] provide interesting examples, which usually ”con-
tradict” the theory. Consider for instance the heat equation

ut = uxx.

12
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It is formally integrable and analytic. We can try to specify the initial condition u|t=0 =
ϕ(x) and then solve the Cauchy problem, so that we get p = 1, σ = 1. On the other hand
we can let u|x=0 = ψ0(t), ux|x=0 = ψ1(t) and then get p = 1, σ = 2.

If we calculate the numbers using our definitions of functional dimension and functional
rank (for instance, via Hilbert polynomial), it turns out that the second approach is
correct. Indeed with the first idea we come into trouble with certain Cauchy data: Let,
for instance, ϕ(x) = (1− x)−1, which is an analytic function around the origin. Then the
analytic solution should have the series

u(t, x) +
1

1 − x
+

2

1

t

(1 − x)3
+

4!

2!

t2

(1 − x)5
+ · · ·+

(2n)!

n!

tn

(1 − x)2n+1
+ . . .

which diverges everywhere outside t = 0. The reason why the second approach provides
no problem is because the line {x = 0} is non-characteristic and we can solve our first
order PDE by the classical method of Cauchy characteristics.

Remark however that in the standard courses of mathematical physics the heat equation
is solved with the first approach (by Fourier method). How is it possible?

Explanation is that we solve the heat equation then only for positive time t ≥ 0. Doing
the same method in negative direction blows up the solutions immediately (heat goes
rapidly to equilibrium, but we cannot predict even closest past)! We here are interested
in the solutions, which exist in an open neighborhood of the origin (like in Cauchy-
Kovalevskaya theorem), and this contradicts the first approach.

5. Similar problems arise with Cauchy problems in other PDEs systems: one usually
applies reduction or fixes gauge, but this can change dimensional characteristics.

For instance, consider the Cauchy problem for the Einstein vacuum equations, which is
a system of 10 PDEs of 10 unknown functions. The system is over-underdetermined (i.e. it
has compatibility conditions). In wave gauge [CB] its solution depends on several functions
on a 3-dimensional space, which are subject to constraint equations, so that p = 2. On
the other hand, the original Einstein system is invariants under diffeomorphisms and this
yields p = 4.

One should also be careful with Cauchy data in higher order, since then the definition
of characteristics becomes more subtle, see [KL5].

6. Consider a system E , which describes automorphisms of a given geometric structure.
The corresponding symbolic system is g ⊂ ST ∗⊗T . The automorphism group has maximal
dimension iff the system is formally integrable. Consider the examples, when the geometric
structure is symplectic, complex or Riemannian (all these structures are of the first order).

Let at first g be generated by g1 = sp(n) ⊂ T ∗ ⊗ T . Our tangent space T = TxM

is equipped with a symplectic structure ω, and we can identify T ∗ ω
' T and we get

g1 = S2T ∗ ⊂ T ∗ ⊗ T ∗. The prolongations are gi = Si+1T ∗ ⊂ SiT ∗ ⊗ T .
The system is easily checked to be involutive and the only non-vanishing Spencer δ-

cohomology groups are
H0,i(g) = Λi+1T ∗.

13
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Then one checks that the Euler characteristic is χ = 1 6= 0 and so b0 6= 0. Thus the
functional dimension is p = n. Indeed the characteristic variety is PCT ∗ because each
non-zero covector p is characteristic: p2 ∈ g1 ' S2T ∗. Next by a theorem from §6 one
calculates the functional rank

σ =
n−1∑

i=0

(−1)i

(
n

i+ 1

)
(−i)0

0!
= χ = 1.

This result is easy to verify: an infinitesimal symplectic transformation has a generating
function (Hamiltonian) and so it is determined by one function of n variables.

If we turn to (almost) complex structures J on M , then g1 = gl(n
2
,C) = T ∗⊗CT (space

of C-linear endomorphisms of T ) and the prolongations are gi = Si
C
T ∗ ⊗C T .

The characteristic variety is proper and one calculates that p = n
2
, σ = n. The system

is again involutive. The second Spencer cohomology is

H0,2(g) = Λ2
C
T ∗ ⊗C̄ T,

which is the space of C-antilinear skew-symmetric (2, 1) tensors (Nijenhuis tensors).
The last example is the algebra of Riemannian isometries (i.e. T is equipped with a

Riemannian structure) of a Riemannian metric q on M . The symbol is g1 = o(n) and the
prolongations are zero g2 = g3 = · · · = 0.

This system is not involutive. For instance,

H1,2(g) = Ker
(
S2Λ2T ∗ → Λ4T ∗

)

(the space of Riemannian curvatures) is non-zero (for n = dimT > 1). Since the system
is of finite type, the characteristic variety is empty and p = 0. The general solution
(isometry) depends on σ = (n+1)n

2
constants.

We recall, that the above dimensional conclusions are correct if the system E is integ-
rable, otherwise the space Sol(E) shrinks. In the above examples this means: the form ω
is closed (with just non-degeneracy we have almost-symplectic manifold); the structure J
is integrable (Nijenhuis tensor NJ vanishes); the manifold (M, q) has constant sectional
curvature (so it is a spacial form).
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