ANOMALY OF LINEARIZATION
AND AUXILIARY INTEGRALS.

BORIS KRUGLIKOV

ABSTRACT. In this note we discuss some formal properties of uni-
versal linearization operator, relate this to brackets of non-linear
differential operators and discuss application to the calculus of aux-
iliary integrals, used in compatibility reductions of PDEs.

INTRODUCTION

Commutator [A, V] of linear differential operators A,V € Diff(m, 7)
in the context of non-linear operators F, G € diff(r, 7) is up-graded to
the higher Jacobi bracket {F,G}, which plays the same role in com-
patibility investigations and symmetry calculus.!

The linearization operator relates non-linear operators on a bundle
7 with linear operators on the same bundle, whose coefficients should
be however smooth functions on the space of infinite jets. The latter
space is the algebra of %-differential operators and we get the map

¢ diff(r, ) — € Diff (7, 1) = C*(J*1) ®@ceo(ary Diff (7, 7),
defined by the formula [KLV]
Up(s)h = LF (s + th)|io, F e diff(m,7), s,he C™(n).
However it does not respect the commutator:
[lr, La] # Liray-

Example: Consider the scalar differential operators on R, so that
m=1and J®(r) = R®(x,u,p = p1,p2,...). Choose

F=pG=ptc-a; {FG}=2p = lpg =2D,.

If we commute {p = 2pD, and {5 = D,, we get: [(p,lg] = —2py D,,
so that we observe an anomaly.

There are two reasons for this. The first is that the operator of
linearization disregards non-homogeneous linear terms, which are im-
portant for the Jacobi bracket. The second is the non-linearity itself.

IMSC numbers: 35A27, 58A20; 58J70, 35A30.
Keywords: Linearization, evolutionary differentiation, compatibility, differential
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The goal of this note is to discuss reasons and consequences of this
anomaly (this also plays a significant role in investigation of coverings
and non-local calculus [KKV]).
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during the research stay in Max Planck Institute for Mathematics in
the Sciences, Leipzig, in April-May 2007.

1. ANOMALY VIA HESSIAN

The Jacobi bracket of non-linear operators F,G € diff(w,7) is ex-
pressed via linearization as follows:

{F,G} =lpG — (F.
We also consider the evolutionary operators defined by duality:
IrG = (g F.

Since (¢ is a derivation in G, 9 is a derivation (satisfies the Leibniz
rule) and their union can be treated as the module of vector fields.
These operators have no anomaly, i.e. the map 9 : C*(J>®7) —
Vect(J*°m) is an anti-homomorphism:

[9F, 96l = —Oray-
This instantly implies Jacobi identity for the bracket {F, G}, so that
(diff(w,7), {,}) is a Lie algebra [KLV].
The operators of universal linearization and evolutionary differenti-
ation do not commute and this leads to the following

Definition. The Hessian operator diff (w, ) x diff (7, 7) — € Diff (7, 7)
is defined by the formula

HGSSF G = [9@7 EF]

We will also write Hessp(G, H) = Hessp G(H) for F, G, H € diff(m, 7)
and note that Hessp = 0 for linear operators F', because in this case
(r = F', which reduces the claim to the commutation of left and right
multiplications.

Next we note that the Hessian Hessp is symmetric:

Lemma 1. Hessp(G, H) = Hessp(H, G).
Indeed:
Hessp(G,H) = OclpH —lpDcH = 995 F — (plyG,
so that
Hessp(G, H) — Hessp(H, G) = [9¢, Ou|F — (p{H,G}
= -9 emF —lp{H,G} =0.



Now we can express the anomaly of linearization via the Hessian:
Proposition 2. [(p,{g] — l{pcy = Hessq F' — Hessp G.

Indeed we have:

Wp, lo|H =lpOuyG — LOuF
= 9y (lpG — lgF) — Hessp(H, G) + Hessq(H, F)
= 9y{F,G} — Hessp(G, H) + Hessq(F, H)
= lpcyH + (Hessg F — Hessp G)H.
Finally let us express the Leibniz identity for non-linear operators

and the Jacobi bracket. For linear operators it is well-known, but for
non-linear ones there’s an anomaly:

Proposition 3. {F,{cH} = lpcyH + (c{F, H} — Hessp(G, H).

This is obtained as follows:

(F lcH} = lploH — OplcH
= [fp,gg]H —Fgg(gp — SF)H — HGSSG(F, H)
= e{Eg}H + g@{F, H} — HGSSF(G, H)

2. COORDINATE EXPRESSIONS

A local coordinate system (x%,u/) on 7 induces the canonical coordi-
nates (z',p]) on the space J*7, where o = (i1, ... ,4,) is a multi-index
of length |o| =iy + -+ + i,. The operator of total derivative of multi-
order ¢ (and order |o|) is D, = D' - - - Di», where D; = 0+ pi+liap1.

The linearization of F' = (Fy,..., F,) is {p = (((Fy), ..., L(F,)) with

U(F) =) (0, F)-DY,

where DC[,]] denotes the operator D, applied to the j-th component of
the section from C*°(7).

The i-th component of the evolutionary differentiation 9g corre-
sponding to G = (G1,...,G,) equals

9% =Y (DsGy)- 0,1,

where 8pj [ denotes the operator 8p£ applied to the i-th component of

the section from C>(m).
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Then i-th components of the Jacobi bracket is given by
{F,G}i =) (Ds(G))- 0, Fs = Do(Fy) - 0,5 Gy).

These formulas are known [KLV]. It is instructive to demonstrate the
Jacobi identity in coordinates. For this we need the following assertion.

Lemma 4. In canonical coordinates on Jr:
Opi Dy = E DT,,ﬁsz{

(the difference of multi-indices o — s is defined whenever »x C o),

the summation is by s counted with multiplicity. More generally for
vector differential operators if DY is the operator D, acting on the j-th

component, then the above formula holds true for such specification.

This follows from iteration of the formula [0,;,D;] = 0,; . Thus

po'fl,b-

{FAG H}} = Z FPUDO'_%(GPT) DT+%(H)_FpaDa—%(HpT) D:4.(G)
= Gpop, Dr(H) Do (F) + Hy,p, Dr (G) Do (F)
- (GpaDU—%<HpT7%) - Hpa,Da—%(GpP%)),DT(F%
which yields > {F,{G,H}} = 0.

Now we write the Hessian:
Hessp(G, H) = Y Fp,p, DyG - D, H,

and its symmetry in G, H and vanishing for linear F' is obvious.
The compensated Leibniz formula can be written as follows:

{F lgH} — lipgyH — le{F,H} =
Y F, Do (Gy,) Do H)—(Gy,p, Do (H) Dy (F) 4Gy, 8y, D (H)) Do (F)
~(Fpop. Do (G)+F, 0p, Do (G)) D (H) +(Gpyp, Do (F) 4Gy, 0p, Do (F)) D (H)
— Gy, (Do—se( Fp, ) Dryse(H) = Dy s(Hp, ) Drye( F)) = — Hessp(G, H)

and the anomaly in commuting linearizations is:

Up, la) = Upay =
Z FpaDU—%(GpT) DT+%(H) o GpaDU—%(FpT) DT-I-%(H)
_(FPGPTDU(G)+FPG apv— DU(G))DT(H>+(GPUPTDG(F)+GPU aPT,DU<F))DT(H)
= Hessg(F, H) — Hessp(G, H).

This gives an alternative proof of Propositions 3 and 2.
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3. AUXILIARY INTEGRALS

Definition. An operator G € diff (7, ) is called an auziliary integral
for F € diff(m,7) if

{F,G} = (,F + 0,G

for some operators \ € diff(w,7) and p ¢ € Diff(w,7) - F'\ {0}. The
set of such G is denoted by Aux(F).

It is better to denote Aux,(F) the space of G satisfying the above
formula with some fixed p € diff (7, 7), because it is a vector space.
Then Aux(F) = U, Aux,(F). We can assume ord(u) < ord(F) for
scalar operators, i.e. rank 7w = 1.

With certain non-degeneracy condition for the symbols of F,G the
following statement holds:

Theorem 5. A non-linear differential operator G is an auxiliary inte-
gral for another operator F' iff the system F = 0,G = 0 is compatible
(formally integrable).

The generic position condition for the symbols of F, G is essential. If
7 = 1 is the trivial one-dimensional bundle, this condition is just the
transversality of the characteristic varieties Char®(F) and Char®(Q)
in the bundle PT*M (after pull-back to the joint system F = G = 0
in jets); in this form it is a particular form of the statement proved
in [KLy]. For rank7 > 1 the condition is more delicate and will be
presented elsewhere.

Notice that Auxo(F) = Sym(F') is the space of symmetries of F.
This is a Lie algebra with respect to the Jacobi bracket. It can be
represented as a union of spaces

Symy(F) ={H : {pH = ly, nF}, 6 € diff(m, 7),

which are modules over Sym(F'). More generally we have the graded
group: Sym9/<F) + Symeu (F) C Sym9/+9// (F)
Let us assume G € Aux,(F), H € Sym,(F), i.e.

(F.G} = 0,F +(,G,  {F H}=1{F.

Then denoting ady = {H, -} = {y — Dy we get:
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adp{G,H} ={adp G, H} + {G,adr H}
= —{H,0LF+(,G} +{G,{yF}
=Ll F+H0O{F, Hy+Hessy (A, F) 4+, myG+C,{G, H}+Hessy (11, G)
— gy B — Lp{F,G} — Hessq(0, F)
= (Lpxmy + [x, bo) — lyo,cy + Hessy A — Hessq 0)F + (,{G, H}
+ (Uipmy — Lol + Hessy p1)G.
Thus {G, H} is an auxiliary integral for F if lyl,, = {1, gy + Hessy p

(the "iff” condition means the difference annihilates G), which can be
written as

p € Ker[(€g + laq,, — Hessy) o £].
Such a pair 6 € sym*(F) = Sym(F)/Sym,(F), H € Sym,(F') deter-
mines the action of the second component
adg : Aux,(F) — Aux,(F).

Also since

Uiy G = a{p, HY = 969 (1) — 9aln (1) = (9n — Lr) Ia(n)
— (¢ myit —Hessy (G, ) = —ady 9¢(p) —Hessy (i, G) —€,{G, H},
we have:

(AG, HY 4+ (Uu,my — Lol + Hessy 1)G = —(ady +409)(,G.

Thus if H € Symy(F),i.e. (ady +0y)F =0, and pu € Ker[(ady +¢g)ol],
ie. (ady +¥€p)l, =0, then

ady : Aux,(F) — Sym(F).

4. SYMMETRIES AND COMPATIBILITY

It has been a common belief that if G € Sym(F'), then the system
F =0,G = 0 is compatible, which forms the base of investigation for
auto-model solutions. This is however not always true.

Example: Let F,G be two linear diagonal operators with constant
coefficients. Then {F,G} = 0 (in this case the Jacobi bracket is the
standard commutator), so that G is a symmetry of F'. However the
system F = 0,G = 0 is usually incompatible: for generic F,G of
the considered type the only solution will be the trivial zero vector-
function.

More complicated non-diagonal operators are possible, but it would

be better to consider non-homogeneous linear operators. Then if the
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coefficients are constant and generic, the linear matrix part commute,
but the system F' = 0, G = 0 may have no solutions at all.
For instance if we take

P [@g ; D,) (Dxpg N 1)1 . m _ H |

_ (DD, —-1) 0 u 0
G_[ 0 (D2—D,)| |v| T 1]
then {F,G} = 0, so that G € Sym(F'), while the system F'=0,G =0
is not compatible, and moreover its solutions space is empty.

Thus the flow u; = G(u) on the equation F' = 0 has no fixed points
(no auto-model solutions). Here t is an additional variable (x is the
base multi-variable for PDEs F' = 0 and G = 0), so that G € Sym(F))
can be expressed as compatibility of the system

Fu) =0, u =G(u),

while symmetric solutions correspond to the stationary case u; = 0, i.e.
compatibility of the system F(u) = 0,G(u) = 0%

However if the non-degeneracy condition assumed in Theorem 5 is
satisfied, then auto-model (or invariant) solutions exist in abundance,
namely they have the required functional dimension and rank as Hilbert
polynomial (or Cartan test [C]) predicts, see [KLy].

Remark. Symmetric solutions are the stationary points of the evolu-
tionary fields and they are similar to the fized points of smooth vector
fields on R™, which must exist provided the vector field is Morse at
infinity. The non-degeneracy condition plays a similar role.

Many examples of auto-model solutions and their generalizations can
be found in [BK, Ol, Ov], non-local analogs use the same technique and
similar theory [KLV, KK, KKV].

Compatible systems correspond to reductions of PDEs and are some-
times called conditional symmetries by analogy with finite-dimensional
integrable systems on one isoenergetic surface [FZ]. But the rigorous
result must rely on certain general position property for the symbol
of differential operators, otherwise it can turn wrong [KLg, KL3]. The
method based on this approach makes specification of the general idea
of differential constraint and is described in [KL].

I am grateful to S.Igonin and A.Verbovetsky for an enlightening discussion
about the results of [KLy, KL3] and the symmetry condition.
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5. CONCLUSION

In this note we described the higher-jets calculus corresponding to
symmetries and compatible constraints, basing on the Jacobi brackets.
Another approach to integrability of vector systems is given by minimal
overdetermination and it uses multi-brackets of differential operators

{3 AT diff(m - 1,1) — diff(m - 1,1)

introduced in [KL;], which are governed by the non-commutative Pliicker
identity.

Following this approach a minimal generalization of symmetry for
F = (F,...,F,) ediff(r,7) with m = m-1is such G € diff(r, 1) that

{Fl, .. .,Fm,G} = gglFl + ct e +£9mFM'

With certain non-degeneracy assumption [KLg| this implies that the
overdetermined system F' = 0,G = 0 is compatible (formally inte-
grable).

A more advanced algebraic technique would yield another higher-
jets calculus producing anomaly that manifests in non-vanishing of the
expression

{€F17 to 7€Fm+1} - e{FL”' Fmg1}-

Implications for vector auxiliary integrals and generalized Lagrange-
Charpit method follow the same scheme.

REFERENCES

[BK] G.W. Bluman, S. Kumei, Symmetries and differential equations, Appl.
Math. Sci. 81, Springer, 1989.

[C] E. Cartan, Les systemes différentiels extérieurs et leurs applications
géométriques (French), Actualités Sci. Ind. 994, Hermann, Paris (1945).

[FZ] W.I Fushchych, R.Z. Zhdanov, Conditional symmetry and reduction of par-
tial differential equations, Ukrain. Math. J. 44 (1992), 970-982.

[KKV] P. Kersten, I.S. Krasilschik, A. Verbovetsky, Hamiltonian operators and
¢*-coverings, J. Geom. and Phys., 50 (2004) 273-302.

[KLV] I.S. Krasilschik, V. V. Lychagin, A. M. Vinogradov, Geometry of jet spaces
and differential equations, Gordon and Breach (1986).

[KL;] B.S. Kruglikov, V.V. Lychagin, A compatibility criterion for systems of
PDEs and generalized Lagrange-Charpit method, A.1.P. Conference Proceed-
ings, Global Analysis and Applied Mathematics: International Workshop on
Global Analysis, 729, no. 1 (2004), 39-53.

[KLo] B.S. Kruglikov, V.V. Lychagin, Mayer brackets and solvability of PDEs —
I1, Trans. Amer. Math. Soc. 358, no.3 (2005), 1077-1103.

[KLs] B.S. Kruglikov, V.V. Lychagin, Compatibility, multi-brackets and inte-
grability of systems of PDEs, prepr. Univ. Tromsg 2006-49; ArXive:
math.DG/0610930.

8



[KL4] B.S. Kruglikov, V.V. Lychagin, Geometry of Differential equations, in:
D. Krupka, D. Saunders, Handbook of Global Analysis (2007); prepr.
THES/M/07/04.

[KK] LS. Krasilshchik, P.H.M. Kersten, Symmetries and recursion operators for
classical and supersymmetric differential equations, Kluwer (2000).

[O]]  P.Olver, Applications of Lie groups to differential equations, Graduate Texts
in Mathematics, 107, Springer-Verlag, New York (1986).

[Ov] L.V.Ovsiannikov, Group analysis of differential equations, Russian: Nauka,
Moscow (1978); Engl. transl.: Academic Press, New York (1982).

INSTITUTE OF MATHEMATICS AND STATISTICS, UNIVERSITY OF TROMS®, TROMS®
90-37, NORWAY.
E-mail address: kruglikov@math.uit.no



