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Abstract. In this note we discuss some formal properties of uni-
versal linearization operator, relate this to brackets of non-linear
differential operators and discuss application to the calculus of aux-
iliary integrals, used in compatibility reductions of PDEs.

Introduction

Commutator [∆,∇] of linear differential operators ∆,∇ ∈ Diff(π, π)
in the context of non-linear operators F, G ∈ diff(π, π) is up-graded to
the higher Jacobi bracket {F, G}, which plays the same role in com-
patibility investigations and symmetry calculus.1

The linearization operator relates non-linear operators on a bundle
π with linear operators on the same bundle, whose coefficients should
be however smooth functions on the space of infinite jets. The latter
space is the algebra of C -differential operators and we get the map

` : diff(π, π) → C Diff(π, π) = C∞(J∞π)⊗C∞(M) Diff(π, π),

defined by the formula [KLV]

`F (s)h = d
dt

F (s + th)|t=0, F ∈ diff(π, π), s, h ∈ C∞(π).

However it does not respect the commutator:

[`F , `G] 6= `{F,G}.

Example: Consider the scalar differential operators on R, so that
π = 1 and J∞(π) = R∞(x, u, p = p1, p2, . . . ). Choose

F = p2, G = p + c · x; {F,G} = 2c p =⇒ `{F,G} = 2cDx.

If we commute `F = 2pDx and `G = Dx, we get: [`F , `G] = −2p2Dx,
so that we observe an anomaly.

There are two reasons for this. The first is that the operator of
linearization disregards non-homogeneous linear terms, which are im-
portant for the Jacobi bracket. The second is the non-linearity itself.

1MSC numbers: 35A27, 58A20; 58J70, 35A30.
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The goal of this note is to discuss reasons and consequences of this
anomaly (this also plays a significant role in investigation of coverings
and non-local calculus [KKV]).

Acknowledgement. The results were obtained and systematized
during the research stay in Max Planck Institute for Mathematics in
the Sciences, Leipzig, in April-May 2007.

1. Anomaly via Hessian

The Jacobi bracket of non-linear operators F, G ∈ diff(π, π) is ex-
pressed via linearization as follows:

{F,G} = `F G− `GF.

We also consider the evolutionary operators defined by duality:

�F G = `GF.

Since `G is a derivation in G, �F is a derivation (satisfies the Leibniz
rule) and their union can be treated as the module of vector fields.
These operators have no anomaly, i.e. the map � : C∞(J∞π) →
Vect(J∞π) is an anti-homomorphism:

[�F ,�G] = −�{F,G}.

This instantly implies Jacobi identity for the bracket {F, G}, so that(
diff(π, π), {, }) is a Lie algebra [KLV].
The operators of universal linearization and evolutionary differenti-

ation do not commute and this leads to the following

Definition. The Hessian operator diff(π, π)×diff(π, π) → C Diff(π, π)
is defined by the formula

HessF G = [�G, `F ].

We will also write HessF (G,H) = HessF G(H) for F,G, H ∈ diff(π, π)
and note that HessF ≡ 0 for linear operators F , because in this case
`F = F , which reduces the claim to the commutation of left and right
multiplications.

Next we note that the Hessian HessF is symmetric:

Lemma 1. HessF (G,H) = HessF (H, G).

Indeed:

HessF (G,H) = �G`F H − `F�GH = �G�HF − `F `HG,

so that

HessF (G,H)− HessF (H, G) = [�G,�H ]F − `F{H,G}
= −�{G,H}F − `F{H, G} = 0.
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Now we can express the anomaly of linearization via the Hessian:

Proposition 2. [`F , `G]− `{F,G} = HessG F − HessF G.

Indeed we have:

[`F , `G]H = `F�HG− `G�HF

= �H(`F G− `GF )− HessF (H, G) + HessG(H, F )

= �H{F, G} − HessF (G, H) + HessG(F, H)

= `{F,G}H + (HessG F − HessF G)H.

Finally let us express the Leibniz identity for non-linear operators
and the Jacobi bracket. For linear operators it is well-known, but for
non-linear ones there’s an anomaly:

Proposition 3. {F, `GH} = `{F,G}H + `G{F, H} − HessF (G,H).

This is obtained as follows:

{F, `GH} = `F `GH − �F `GH

= [`F , `G]H + `G(`F − �F )H − HessG(F, H)

= `{F,G}H + `G{F, H} − HessF (G,H).

2. Coordinate expressions

A local coordinate system (xi, uj) on π induces the canonical coordi-
nates (xi, pj

σ) on the space J∞π, where σ = (i1, . . . , in) is a multi-index
of length |σ| = i1 + · · ·+ in. The operator of total derivative of multi-
order σ (and order |σ|) isDσ = Di1

1 · · · Din
n , whereDi = ∂xi+

∑
pj

τ+1i
∂pj

τ
.

The linearization of F = (F1, . . . , Fr) is `F = (`(F1), . . . , `(Fr)) with

`(Fi) =
∑

(∂pj
σ
Fi) · D[j]

σ ,

where D[j]
σ denotes the operator Dσ applied to the j-th component of

the section from C∞(π).
The i-th component of the evolutionary differentiation �G corre-

sponding to G = (G1, . . . , Gn) equals

� i
G =

∑
(DσGj) · ∂pj

σ

[i],

where ∂pj
σ

[i] denotes the operator ∂pj
σ

applied to the i-th component of

the section from C∞(π).
3



Then i-th components of the Jacobi bracket is given by

{F, G}i =
∑(Dσ(Gj) · ∂pj

σ
Fi −Dσ(Fj) · ∂pj

σ
Gi

)
.

These formulas are known [KLV]. It is instructive to demonstrate the
Jacobi identity in coordinates. For this we need the following assertion.

Lemma 4. In canonical coordinates on J∞π:

∂pi
σ
Dτ =

∑
Dτ−κ∂pi

σ−κ

(the difference of multi-indices σ − κ is defined whenever κ ⊂ σ),
the summation is by κ counted with multiplicity. More generally for

vector differential operators if D[j]
σ is the operator Dσ acting on the j-th

component, then the above formula holds true for such specification.

This follows from iteration of the formula [∂pj
σ
,Di] = ∂pj

σ−1i

. Thus

{F, {G,H}} =
∑

FpσDσ−κ(Gpτ )Dτ+κ(H)−FpσDσ−κ(Hpτ )Dτ+κ(G)

−GpσpτDτ (H)Dσ(F ) + HpσpτDτ (G)Dσ(F )

− (GpσDσ−κ(Hpτ−κ)−HpσDσ−κ(Gpτ−κ))Dτ (F ),

which yields
∑

cyclic{F, {G,H}} = 0.
Now we write the Hessian:

HessF (G,H) =
∑

FpσpτDσG · DτH,

and its symmetry in G,H and vanishing for linear F is obvious.
The compensated Leibniz formula can be written as follows:

{F, `GH} − `{F,G}H − `G{F,H} =
∑

FpσDσ−κ(Gpτ )Dτ+κ(H)−(GpσpτDτ (H)Dσ(F )+Gpτ ∂pσDτ (H))Dσ(F )

−(FpσpτDσ(G)+Fpσ∂pτDσ(G))Dτ (H)+(GpσpτDσ(F )+Gpσ∂pτDσ(F ))Dτ (H)

−Gpσ (Dσ−κ(Fpτ )Dτ+κ(H)−Dσ−κ(Hpτ )Dτ+κ(F )) = −HessF (G,H)

and the anomaly in commuting linearizations is:

[`F , `G]− `{F,G} =
∑

FpσDσ−κ(Gpτ )Dτ+κ(H)−GpσDσ−κ(Fpτ )Dτ+κ(H)

−(FpσpτDσ(G)+Fpσ∂pτDσ(G))Dτ (H)+(GpσpτDσ(F )+Gpσ∂pτDσ(F ))Dτ (H)

= HessG(F, H)− HessF (G,H).

This gives an alternative proof of Propositions 3 and 2.
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3. Auxiliary integrals

Definition. An operator G ∈ diff(π, π) is called an auxiliary integral
for F ∈ diff(π, π) if

{F,G} = `λF + `µG

for some operators λ ∈ diff(π, π) and µ 6∈ C Diff(π, π) · F \ {0}. The
set of such G is denoted by Aux(F ).

It is better to denote Auxµ(F ) the space of G satisfying the above
formula with some fixed µ ∈ diff(π, π), because it is a vector space.
Then Aux(F ) = ∪µ Auxµ(F ). We can assume ord(µ) < ord(F ) for
scalar operators, i.e. rank π = 1.

With certain non-degeneracy condition for the symbols of F,G the
following statement holds:

Theorem 5. A non-linear differential operator G is an auxiliary inte-
gral for another operator F iff the system F = 0, G = 0 is compatible
(formally integrable).

The generic position condition for the symbols of F, G is essential. If
π = 1 is the trivial one-dimensional bundle, this condition is just the
transversality of the characteristic varieties CharC(F ) and CharC(G)
in the bundle PCT ∗M (after pull-back to the joint system F = G = 0
in jets); in this form it is a particular form of the statement proved
in [KL2]. For rank π > 1 the condition is more delicate and will be
presented elsewhere.

Notice that Aux0(F ) = Sym(F ) is the space of symmetries of F .
This is a Lie algebra with respect to the Jacobi bracket. It can be
represented as a union of spaces

Symθ(F ) = {H : `F H = `θ+HF}, θ ∈ diff(π, π),

which are modules over Sym0(F ). More generally we have the graded
group: Symθ′(F ) + Symθ′′(F ) ⊂ Symθ′+θ′′(F )

Let us assume G ∈ Auxµ(F ), H ∈ Symθ(F ), i.e.

{F, G} = `λF + `µG, {F, H} = `θF.

Then denoting adH = {H, ·} = `H − �H we get:
5



adF{G,H} = {adF G,H}+ {G, adF H}
= −{H, `λF + `µG}+ {G, `θF}

= `{λ,H}F +`λ{F,H}+HessH(λ, F )+`{µ,H}G+`µ{G,H}+HessH(µ,G)

− `{θ,G}F − `θ{F,G} − HessG(θ, F )

= (`{λ,H} + [`λ, `θ]− `{θ,G} + HessH λ− HessG θ)F + `µ{G, H}
+ (`{µ,H} − `θ`µ + HessH µ)G.

Thus {G,H} is an auxiliary integral for F if `θ`µ = `{µ,H}+HessH µ
(the ”iff” condition means the difference annihilates G), which can be
written as

µ ∈ Ker[(`θ + `adH
− HessH) ◦ ` ].

Such a pair θ ∈ sym∗(F ) = Sym(F )/ Sym0(F ), H ∈ Symθ(F ) deter-
mines the action of the second component

adH : Auxµ(F ) → Auxµ(F ).

Also since

`{µ,H}G = �G{µ,H} = �G�H(µ)− �G`H(µ) = (�H − `H)�G(µ)

−�{G,H}µ−HessH(G,µ) = − adH �G(µ)−HessH(µ,G)− `µ{G,H},
we have:

`µ{G,H}+ (`{µ,H} − `θ`µ + HessH µ)G = −(adH +`θ)`µG.

Thus if H ∈ Symθ(F ), i.e. (adH +`θ)F = 0, and µ ∈ Ker[(adH +`θ)◦` ],
i.e. (adH +`θ)`µ = 0, then

adH : Auxµ(F ) → Sym(F ).

4. Symmetries and compatibility

It has been a common belief that if G ∈ Sym(F ), then the system
F = 0, G = 0 is compatible, which forms the base of investigation for
auto-model solutions. This is however not always true.

Example: Let F,G be two linear diagonal operators with constant
coefficients. Then {F, G} = 0 (in this case the Jacobi bracket is the
standard commutator), so that G is a symmetry of F . However the
system F = 0, G = 0 is usually incompatible: for generic F, G of
the considered type the only solution will be the trivial zero vector-
function.

More complicated non-diagonal operators are possible, but it would
be better to consider non-homogeneous linear operators. Then if the
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coefficients are constant and generic, the linear matrix part commute,
but the system F = 0, G = 0 may have no solutions at all.

For instance if we take

F =

[
(D2

x −Dy) 0
0 (DxDy + 1)

]
·
[
u
v

]
−

[
1
0

]
,

G =

[
(DxDy − 1) 0

0 (D2
y −Dx)

]
·
[
u
v

]
+

[
0
1

]
,

then {F, G} = 0, so that G ∈ Sym(F ), while the system F = 0, G = 0
is not compatible, and moreover its solutions space is empty.

Thus the flow ut = G(u) on the equation F = 0 has no fixed points
(no auto-model solutions). Here t is an additional variable (x is the
base multi-variable for PDEs F = 0 and G = 0), so that G ∈ Sym(F )
can be expressed as compatibility of the system

F (u) = 0, ut = G(u),

while symmetric solutions correspond to the stationary case ut = 0, i.e.
compatibility of the system F (u) = 0, G(u) = 02.

However if the non-degeneracy condition assumed in Theorem 5 is
satisfied, then auto-model (or invariant) solutions exist in abundance,
namely they have the required functional dimension and rank as Hilbert
polynomial (or Cartan test [C]) predicts, see [KL4].

Remark. Symmetric solutions are the stationary points of the evolu-
tionary fields and they are similar to the fixed points of smooth vector
fields on Rn, which must exist provided the vector field is Morse at
infinity. The non-degeneracy condition plays a similar role.

Many examples of auto-model solutions and their generalizations can
be found in [BK, Ol, Ov], non-local analogs use the same technique and
similar theory [KLV, KK, KKV].

Compatible systems correspond to reductions of PDEs and are some-
times called conditional symmetries by analogy with finite-dimensional
integrable systems on one isoenergetic surface [FZ]. But the rigorous
result must rely on certain general position property for the symbol
of differential operators, otherwise it can turn wrong [KL2, KL3]. The
method based on this approach makes specification of the general idea
of differential constraint and is described in [KL1].

2I am grateful to S.Igonin and A.Verbovetsky for an enlightening discussion
about the results of [KL2, KL3] and the symmetry condition.
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5. Conclusion

In this note we described the higher-jets calculus corresponding to
symmetries and compatible constraints, basing on the Jacobi brackets.
Another approach to integrability of vector systems is given by minimal
overdetermination and it uses multi-brackets of differential operators

{· · · } : Λm+1 diff(m · 1,1) → diff(m · 1,1)

introduced in [KL3], which are governed by the non-commutative Plücker
identity.

Following this approach a minimal generalization of symmetry for
F = (F1, . . . , Fm) ∈ diff(π, π) with π = m ·1 is such G ∈ diff(π,1) that

{F1, . . . , Fm, G} = `θ1F1 + · · ·+ `θmFm.

With certain non-degeneracy assumption [KL3] this implies that the
overdetermined system F = 0, G = 0 is compatible (formally inte-
grable).

A more advanced algebraic technique would yield another higher-
jets calculus producing anomaly that manifests in non-vanishing of the
expression

{`F1 , · · · , `Fm+1} − `{F1,··· ,Fm+1}.

Implications for vector auxiliary integrals and generalized Lagrange-
Charpit method follow the same scheme.
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