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Abstract

In this paper we discuss the problem of prior for the maximum entropy
principle. We show that stochastic relations can be used to constrain pri-
ors and in some case uniquely determine them. The principle of maximum
entropy turns stochastic relations into (over)determined systems of partial
difference equations for the partition function. All statistical consequences
of the stochastic relations are determined by the space of solutions of the
system.

Contents

1 Introduction 1

2 The principle of maximum entropy 3

3 The problem of prior in the maximum entropy principle 4

4 Stochastic relations 6
4.1 Stochastic relations for one random variable . . . . . . . . . . . . 7

4.1.1 Delta distribution . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Normal distribution . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Poisson distribution . . . . . . . . . . . . . . . . . . . . . 8
4.1.4 Gamma distribution . . . . . . . . . . . . . . . . . . . . . 9
4.1.5 Bernoulli and Binomial distribution . . . . . . . . . . . . 9

4.2 Stochastic relations for more than one random variable . . . . . . 10
4.2.1 The Multinomial distribution . . . . . . . . . . . . . . . . 10
4.2.2 Stochastic relations for the mean . . . . . . . . . . . . . . 11

1 Introduction

The problem of prior has been at the center of probability theory and statistics
from the very start. The general rules of probability theory tells us how to
compute probabilities for derived events from probabilities of primary events.
The problem of prior is concerned with the problem of assigning probabilities
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to primary events. The assignment is supposed to reflect an observers state of
knowledge about the primary events. The assignment should be the same for
different observers with the same state of knowledge but can be different for
observers with different states of knowledge [4]. In this sense probability assign-
ments are subjective [3],[1],[2]. The problem of the prior is how to turn states of
knowledge into probability assignments. The first solution to this problem was
used by the very founders of probability theory (Bernoulli and Laplace). If the
observers only knowledge about the primary events are their number, then a
uniform probability assignment should be used. This idea was later named the
principle of indifference by J. M. Keynes. Generalizing this idea to countably
infinite or even continuous spaces of primary events has turned out to be very
problematic. Laplace himself used such a generalization is his work on probabil-
ity theory. His probability distribution was uniform and not normalizable since
it was defined on the whole real line. Using a uniform distribution for repre-
senting indifference about a random variable on a finite interval on the real line
would seem to be more reasonable, at least it is normalizable. However even in
this case serious problems arise as the well known Bertrand’s paradox shows.
Problems and paradoxes arising from the various generalizations of the principle
of indifference to continuous random variables played no small part in the cre-
ation and for a long time complete dominance of the frequency interpretation[10]
of probability theory.

The principle of maximum entropy appears first in the writings by W. Gibbs
[6] on thermodynamics and statistical physics and later in the fundamental work
on information theory by Shannon [7]. However it was E. T. Jaynes [5] who
realized the real importance and general nature of the principle of maximum
entropy. In his hands it turned into a general method for turning prior knowl-
edge in the form of mean values for finite sets of random variables, into prior
probability assignments. For a time it looked as if the problem of prior was
essentially solved. However continuous valued random variables again turned
out to be the Achilles heel. For finite spaces of events the principle will give
a unique probability assignment, but when generalizing it to continuous ran-
dom variables an unknown probability measure appears. The meaning of this
measure became clear when it was realized that it is the maximum entropy
distribution corresponding to no constraints. Thus it was understood that in
order to apply the principle of maximum entropy one must start with a prior
distribution. The principle of maximum entropy could not determine the prior,
it could only tell us how to modify an already existing prior in order to satisfy
constraints in the form of mean values. It seemed as if one was back at square
one.

In this paper we will show that the principle of maximum entropy can be
used to turn stochastic relations into constraints on the prior distribution. In
some cases the relations will determine the prior uniquely but in general the
prior will be constrained by a system of partial differential equations. Solutions
to this system corresponds to possible priors in a many to one fashion. The
space of solutions of the system of partial differential equations can either be
described directly using constructive methods from the theory of ordinary and
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partial differential equations or, if this is impractical or impossible, the logical
consequences of the original stochastic relations can be derived and classified
by applying methods from the formal theory of differential equations to the
prolongation hierarchy of the system of equations.

2 The principle of maximum entropy

In this section we give a review of the maximum entropy principle for a finite
space of events. Let Ω = {x1, x2, ...., xn} be a finite space of primary events.
The algebra of possible events is the power set of Ω. A probability assignment
on the set of primary events is a set of numbers {pi} such that 0 ≤ pi ≤ 1
and

∑n
i=1 pi = 1. Let f1, ..., fk be real valued functions on Ω. The principle of

maximum entropy states that if the means of the functions f1, .., fk are known
< fi >= ci one should, among all probability assignments that satisfy the
constraints, pick the one that maximizes the entropy S = −∑n

i=1 pi ln pi. This
constrained maximization problem is solved by introducing Lagrange multipliers
λ0, λ1, ..., λk, one for each constraint < fi >= ci and one for the constraint∑n

i=1 pi = 1. The well know solution is

p =
e−
Pk

j=1 λjfj

Z(λ1, ..., λk)

where Z is the partition function and is given by

Z(λ1, ..., λk) =
n∑

i=1

e−
Pk

j=1 λjfj(i)

All mean values of random variables that are (polynomial) functionals of the
functions f1, .., fk can be expressed directly in terms of partial derivatives of the
the partition function. We have

< fi > = − 1
Z

∂λiZ

< fifj > =
1
Z

∂λiλj Z

etc. In fact a formalism completely analogous to the classical thermodynamic
formalism can be derived in this general setting. This point has been stressed
by Jaynes in particular. The Lagrange multipliers, λ, are computed from the
constraints values c by solving the system

∂λj Z(λ1, .., λk) = −cjZ(λ1, .., λk)

If there are no constraints the principle gives Z = n and we get the uniform
assignment

pi =
1
n
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The maximum entropy principle can thus be viewed as a generalization of
the principle of indifference. Since what we are doing is to fix the prior by
making it the extremum of the functional S it is natural to ask why this partic-
ular functional is used instead of some different functional. A different choice
would certainly lead to a different prior distribution so it is a highly relevant
question. We will not pursue this question here but just note that there are
other choices of functional possible and several are used in the literature, but
none has the naturality and simplicity enjoyed by the functional introduced by
Gibbs, Shannon and Jaynes.

3 The problem of prior in the maximum entropy
principle

The maximum entropy probability measure described in the previous section
appears at first sight to have solved the problem of prior, at least for the cases
when the observers state of knowledge consists of mean values of random vari-
ables on a finite space of events. However even in this simple setting there are
problems. If there are no constraints the maximum entropy principle predicts
that the correct prior is the uniform one. But what if the observer even before he
is presented with constraints have some information that amounts to a nonuni-
form probability measure? This measure can come from previous application of
the maximum entropy principle or from some other source. In the given form of
the maximum entropy principle this kind of prior measure can not be taken into
account. However the principle can be modified to include nonuniform prior
measures simply by considering {pi} to be the density of the maximum entropy
measure ν relative to the prior probability measure µ, not the measure itself.
Thus ν(i) = piµ(i) The problem is now to maximize

S = −
n∑

i=1

pi ln piµ(i)

subject to the constraints

n∑

i=1

fj(i)piµ(i) = cj

Maximizing the entropy now gives the following measure

ν(i) =
e−
Pk

j=1 λjfj(i)

Z(λ1, ..., λk)
µ(i)

and no constraints gives ν = µ. This solves the problem of how to include
nonuniform prior measures in the maximum entropy principle but at the same
time it reveals the true nature of the principle. It is a systematic way of mod-
ifying a given prior probability assignment so that it is consistent with new,
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previously unknown constraints in the form of mean values of random variables.
The principle in this new form has absolutely nothing to say about the prior.

It has been well documented in the literature that the maximum entropy
principle formulated directly in terms of probability measures as in the previ-
ous section can not be generalized to the case of continuous random variables.
For the continuous case the maximum entropy measure ν has to be absolutely
continuous with respect to the prior measure µ. This means that there exists a
probability density ϕ such that

ν(V ) =
∫

V

ϕdµ

The maximum entropy principle will now maximize the entropy functional

S(ϕ) = −
∫

ϕ ln ϕdµ

subject to the constraints
∫

fjϕdµ = cj j = 1, .., k

The method of Lagrange multipliers gives

ϕ =
e−
Pk

j=1 λjfj

Z(λ1, ..., λk)

where the partition function is

Z(λ1, .., λk) =
∫

Ω

e−
Pk

j=1 λjfj dµ

All formal rules for computing means of random variables using partial
derivatives of the partition function are the same as for the case of finite prob-
ability spaces. The maximum entropy principle can be generalized in many
directions, it can even be applied to the case when the random quantities cor-
respond to noncommuting observables as in quantum mechanics [9].

In most applications of probability theory in statistics there is no underlying
abstract probability space Ω and the random variables are not some functions
defined on this space. What one typically has is a finite number of real valued
random variables. Thus in the typical case Ω = Rn and the random variables are
just the coordinate function on Rn. The prior probability measure is a measure,
µ on Rn. For this case the formula for the partition function is

Z(λ1, .., λn) =
∫

Rn

e−
Pn

j=1 λjxj dµ(x1, .., xn)

The partition function is thus nothing else than the Laplace transform of the
prior measure. This relation can be inverted using the Fourier transform when
the prior measure has a density, ρ0 with respect to the standard measure on Rn.

ρ0(x1, ..xn) =
1

(2π)n

∫

Rn

Z(iλ1, .., iλn)ei
Pn

j=1 λjxj dλ1..dλn
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From these formulas it is clear that the maximum entropy principle has nothing
to say about the prior. It merely defines a transform between prior measures
and partition functions. However we will see in the next section that the trans-
form can be used to turn algebraic relations between statistical quantities into
constraints on the prior measure.

4 Stochastic relations

In probability theory and statistics random variables are studied by computing
statistical quantities. These are certain algebraic combinations of means of
functions of the random variables. A large set of such statistical quantities are
in use, some simple examples are (angle brackets signify the mean)

< x > The mean of x.
< x2 > − < x >2 The variance of x.
< x3 > −3 < x >< x2 > +2 < x >3 The third cumulant
< xy > − < x >< y > The cross variance of x and y.

All such quantities can systematically be expressed as functions of the form
F (q1, .., qk) where the variables qj are means of monomials in the random vari-
ables. We will define stochastic relations to be systems of equations for the
quantities qj .

Fi(q1, .., qk) = 0 i = 1, ..., s

Such relations are common in probability and statistics. Examples are zero
mean, fixed variance, uncorrelated variables and identities expressing higher
order cumulants in terms of lower ones. In the previous section we have seen that
the maximum entropy principle defines a Laplace transform that map the prior
measure to a partition function. As a direct consequence of this transformation
we can express means of monomials in the random variables in terms of partial
derivatives of the partition function

< xi1xi2 ..xir >=
(−1)r

Z
∂r

i1i2..ir
Z

This means that the maximum entropy principle turns stochastic relations
into systems of partial differential equations for the partition function and there-
fore indirectly imposes constraints on the prior measure. The problem is now
to describe the space of solutions of the system of partial differential equations.
In general not all solutions to the equations can correspond to prior measures.
From the definition of the partition function it is clear that

Z(0) = 1
D2Z(λ1, .., λn) ≥ 0
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must hold for any acceptable solution. Finding sufficient and necessary condi-
tion for partition functions to be the Laplace transform of a probability measure
is not a simple matter, but some results are known [8]. We will not discuss this
problem but rather try to explicitly construct the solution space or apply meth-
ods from the formal theory of differential equations. Typically, the solution
space is not a linear space and even when it is, the dimension could easily be
infinite. However, depending on the number and types of stochastic relations
the solution space can end up being parametrized by a finite set of parameters
or even be a single point. In this last situation the stochastic relations deter-
mine the prior uniquely. Note that in ordinary (parametric) statistics finite
parameter families of probability distributions (Gaussian, Poisson, Bernoulli,
t-distribution, etc) are assumed to apply in given situations. From the point
of view discussed in this paper this means that in ordinary statistics stochastic
relations constrain the solution space enough for it to be parameterized in terms
of a finite number of parameters. Nonparametric statistics correspond to the
situation when the solution space is so weakly constrained that it can not be
parameterized in terms of a finite number of parameters. Methods from the the-
ory of partial differential equations can in some cases parameterize such weakly
constrained solution spaces, not in terms of real numbers, but in terms of ar-
bitrary functions. However for such weakly constrained solution spaces there is
another powerful tool available. This is the formal theory of partial differential
equations. The main object of study in this theory is the infinite prolonged hier-
archy of the given systems of differential equations. Thus one studies the infinite
set of all differential consequences of a given system of equations. Each such
differential consequence can be converted back to a stochastic relation by using
the relation between mean of monomials and partial derivatives in reverse. One
therefore gets the corresponding hierarchy of stochastic relations that are con-
sequences of the original relations induced by the maximum entropy principle
and implemented through the Laplace transform.

In the remaining part of the paper we will discuss several examples that
illustrate the method that has been outlined in this and previous sections.

4.1 Stochastic relations for one random variable

Essentially all families of distribution in use in parametric statistics can be
derived from simple stochastic relations involving the mean, variance and skew-
ness. In this section we show some examples that support this statement.

4.1.1 Delta distribution

Let us consider the stochastic relation corresponding to a fixed mean. It is

< x > −q = 0.

The Laplace transform converts this into the ordinary differential equation

Zλ = −qZ.
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For this simple stochastic relation our system of partial differential equations is
a single linear ordinary differential equation. The solution space is linear and
parameterized by a single parameter

Z(λ) = ae−qλ.

The condition Z(0) = 1 fixes the parameter a to be one and we have a unique
solution. It is a simple matter to apply the inverse transform and show that the
corresponding prior measure is

µ = δ(x− q).

4.1.2 Normal distribution

The stochastic relation corresponding to constant variance is

var(x) = q

and the corresponding differential equation is

ZZλλ − Z2
λ − qZ2 = 0.

This is a second order nonlinear ordinary differential equation. The general
solution of the nonlinear equation that satisfies the requirement Z(0) = 1 is

Z(λ) = eaλ+ 1
2 qλ2

, a ∈ R.

and the corresponding measure has a density with respect to the standard mea-
sure on R given by

ρ(x) =
1√
2πq

e−
(x+a)2

2q .

which is the normal distribution.

4.1.3 Poisson distribution

Let us consider the stochastic relation

var(x) =< x > .

The corresponding differential equation is

ZZλλ − Z2
λ + ZZλ = 0.

This equation and most equations derived from stochastic relations simplify
considerably if we introduce a new function ϕ through Z = eϕ. The equation
for ϕ is

ϕλλ = −ϕλ.
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This equation is easy to solve and the corresponding family of partition
functions satisfying, as always, the constraint Z(0) = 1 is

Z(λ) = ea(e−λ−1).

The corresponding distribution is supported on Ω = {0, 1, 2, ....} and is of
the form

ρ(k) =
e−aak

k!
.

This is the Poisson distribution.

4.1.4 Gamma distribution

Let us consider a stochastic relation

var(x) =
1
k

< x >2 k > 0.

Expressed in terms of ϕ the corresponding differential equation is

ϕλλ =
1
k

ϕ2
λ.

The general solution of this equation gives the following family of partition
functions

Z(λ) = (1− aλ)−k a > 0.

The corresponding distribution is supported on Ω = (0,∞) and is

ρ(x) = xk−1 e−
x
a

akΓ(k)
.

This is the Gamma distribution

4.1.5 Bernoulli and Binomial distribution

Let the variance be the following quadratic function of the mean

var(x) =< x > (1− < x >).

The corresponding differential equation for ϕ is

ϕλλ = −ϕλ(1 + ϕλ).

The solution of the equation gives the following family of partition functions

Z(λ) = p + qe−λ p + q = 1.

The corresponding distribution is supported on Ω = {0, 1} and is given by
ρ(0) = p, ρ(1) = q. This is the Bernoulli distribution. If we generalize the
stochastic relation to

var(x) =< x > (1− 1
n

< x >).
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where n is a natural number we get the differential equation

ϕλλ = −ϕλ(1 +
1
n

ϕλ).

The partition function is found to be

Z(λ) = (p + qe−λ )n
p + q = 1.

The corresponding density is supported on Ω = {0, 1, ...n} and is given by

ρ(k) =
(

n

k

)
pkqn−k.

This is the Binomial distribution.

4.2 Stochastic relations for more than one random vari-
able

When the number of random variables becomes larger than one, stochastic
relations in general lead to systems of nonlinear partial differential equations.
Unless the number and type of relations is right, it is impossible to describe the
solution space in terms of a finite number of parameters. This lead us into the
domain of nonparametric statistics. This is the domain where the methods from
the formal theory of differential equations comes into play. It is not possible to
give nontrivial applications of the theory in this short communication, we will
limit ourselves to two simple examples.

4.2.1 The Multinomial distribution

Let x1, ...xn be n random variables and consider the following system of stochas-
tic relations

var(xi) = < xi > (1− 1
n

< xi >) i = 1, ..n

cov(xi, xj) = − 1
n

< xi >< xj > i, j = 1, ...n, i 6= j

The corresponding system of partial differential equations is

ϕλiλi = −ϕλi(1 +
1
n

ϕλi)

ϕλiλj = − 1
n

ϕλiϕλj

The second part of the system of equations has general solutions of the form
ϕ = n ln(θ) where θ(λ1, .., λn) =

∑n
i=1 θi(λi). Inserted into the first part of the

system this form of ϕ easily gives the partition function corresponding to the
multinomial distribution. This system of relations thus constrained the space
of solutions so much that it could be describes in terms of a finite number of
parameters.
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4.2.2 Stochastic relations for the mean

For a single random variable, stochastic relations involving only the mean gives
distributions located on a finite set of points. For more than one random variable
such relations gives rise to nonparametric statistics, or solution spaces parame-
terized by functions. The theory of partial differential equations can be used to
give a full description of these solution spaces. As an example of such a relation
consider the case of two random variables whose means are constrained to be
on a circle of radius r.

< x >2 + < y >2 = r2

The corresponding partial differential equation is in terms of ϕ

ϕ2
λ + ϕ2

µ = r2

The following Z is in the solution space

Z = er
√

λ2+µ2

This partition functions predicts that the following stochastic relation should
hold

var(x) =
(< y >

< x >

)2

var(y)

The partial differential equation has, however, infinitely many solutions.
The method of characteristics can be used to describe the complete solution
space. In order to derive stochastic relations that holds for all Z in the solution
space, these are the ones that can be said to be consequences of the of the
circle constrain, we should consider differential prolongations of the original
differential equation. The first prolongation is the system

ϕ2
λ + ϕ2

µ = r2

ϕλϕλλ + ϕµϕµλ = 0
ϕλϕλµ + ϕµϕµµ = 0

this system implies that

ϕλλ =
(

ϕµ

ϕλ

)2

ϕµµ

Translated into stochastic relations this is exactly the one we derived for
the special solution ϕ = r

√
λ2 + µ2 and it thus holds for all solutions. It is

of considerable interest to find a finite set of basic stochastic relations that
through some construction procedure implies all consequences of some given
system of stochastic relations. This is exactly the kind of question addressed in
the formal theory of partial differential equations and the tools developed there
can now through the maximum entropy principle be brought into the area of
nonparametric statistics.
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