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Abstract

We suggest a method to quantize basic wave operators of Relativistic Quantum
Mechanics (Laplace, Maxwell, Dirac ones) without using canonical coordinates. We
define two-parameter deformations of the Minkowski space algebra and its 3-dimensional
reduction via the so-called Reflection Equation Algebra and its modified version. Wave
operators on these algebras are introduced by means of quantized partial derivatives
described in two ways. In particular, they are given in so-called pseudospherical form
which makes use of a q-deformation of the Lie algebra sl(2) and quantum versions of
the Cayley-Hamilton identity.
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1 Introduction

By noncanonical quantization we mean a quantization which does not use canonically conju-
gated coordinates or fields looking like the Darboux coordinates. A passage from the algebra
Sym(g) to the algebra U(g~) is an example of such a quantization. Hereafter, the notation
g~ stands for the Lie algebra with the bracket ~ [ , ] where ~ ∈ K is a parameter and g is a Lie
algebra over the ground field K with the bracket [ , ]. In virtue of the PBW theorem there
exists a g-covariant1 linear map α : Sym(g) → U(g~) which induces isomorphisms on each
homogeneous component Sym(k)(g) → Gr(k) U(g~) where Gr U(g~) is the graded algebra
associated to the filtered algebra U(g~). Explicitly, this map can be defined as follows: to
an element p(x1, ..., xn) ∈ Sym(g) where {xi} is a basis in the algebra g and p is a symmet-
ric polynomial in xi the map α associates the element p(x̂1, ..., x̂n) ∈ U(g~). Hereafter the
variables with hat (for example, x̂i) are treated to be elements of the algebra U(g~) whereas
those without hat are assumed to be commutative.

This map enables us to introduce a new g-covariant product in the algebra Sym(g)

f ?h g := α−1(α(f) ◦ α(g)), ∀f, g ∈ Sym(g)

where ◦ is the product in the algebra U(g~). The Poisson counterpart of the product ?h is
the linear Poisson-Lie bracket { , }PL associated to the Lie bracket [ , ].

By assuming a Lie algebra g to be gl(n) we can further deform the algebra U(g~)
into a two-parameter algebra L~,q which is called the modified Reflection Equation Alge-
bra (mREA). Its explicit description is given in section 3. The algebra L~,q as well as its
specialization at ~ = 0 (denoted Lq and called the Reflection Equation Algebra (REA)) is

1We assume g to act on itself by the adjoint action extended onto the algebras in question via the Leibnitz
rule.
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covariant w.r.t. the Quantum Group (QG) Uq(sl(n)). Moreover, the Poisson counterpart
of this two-parameter deformation is a Poisson pencil generated by the linear Poisson-Lie
bracket and another one which corresponds to the deformation Sym(gl(n)) ⇒ Lq. Observe
that this Poisson pencil admits a restriction to the space Sym(sl(n)). The quantum counter-
part of the restricted Poisson pencil can be introduced via quotienting the algebra L~,q over
the ideal generated by a central element (the quantum trace). We denote this quotient by
SL~,q and its specialization at ~ = 0 by SLq.

The passage from the algebra Sym(gl(n)) to that Lq or L~,q (resp., an analogous passage
from Sym(sl(n)) to SLq or SL~,q) is also an example of noncanonical quantization. We call
it q−(resp., (~, q)-)quantization in contrast with the ~-quantization consisting in the above
mentioned passage from Sym(g) to U(g~). Note that a map α : Sym(gl(n)) → L~,q (resp.,
α : Sym(sl(n)) → SL~,q), similar to that above, and consequently a product ?~,q can be also
defined for a generic q but it is not covariant w.r.t. the action of either classical or quantum
group.

In this article we are dealing with the coordinate algebra K[R4] of the Minkowski space
R4, its (~, q)-quantization, and its two specializations: at q = 1 (~-quantization) and at ~ = 0
(q-quantization). All algebras in question are real (i.e. K = R) but sometimes we need their
complexification: in this case we put K = C.

Now we explicitly describe the quantum algebra arising from the ~-quantization of the
algebra K[R4]. To this end we consider a map R4 → u(2) ∼= u(2)∗ defined as follows

(t, x, y, z) 7→
(

t + z x + i y
x− i y t− z

)
.

Hereafter i =
√−1. This map enables us to identify the coordinate algebra K[R4] of the

Minkowski space with the symmetric algebra Sym(u(2)). This is the reason why we treat the
enveloping algebra U(u(2)~) to be an ~-quantum counterpart of the algebra K[R4]. As for
the q− and (~, q)-counterparts of this algebra their explicit description is given below. Also,
we deal with ”sl-reductions” of these algebras which are deformations of the algebra K[R3].

In the present paper we suggest a method of defining analogs of the main wave operators
of Relativistic Quantum Mechanics (Laplace, Maxwell, and Dirac ones) on all mentioned
algebras without using canonical coordinates.

Note that q-analogs of the Minkowski space algebra and these operators were considered
in a number of papers [OSWZ], [AKR], [MM], [M], [K], [P]. In contrast with all these papers
we realize a two-parameter quantization (deformation) of the initial commutative algebras
(even for the ~-quantization our method seems to be new). Besides, by developing elements
of differential calculus on the q-Minkowski space algebra and its sl-reduction we use a new
method of defining partial derivatives and other braided vector fields needed for construction
of q-deformed operators. the definition of q-deformed operators.

Recall that the classical Laplace operator is associated to a metric2 on a regular variety.
On the Minkowski space its explicit form is

∆K[R4] = ∂2
t − ∂2

x − ∂2
y − ∂2

z .

In this case it is also called d’Alembertian.
As for the classical Maxwell operator, it is defined on the space Ω1(R4) of one-differential

forms where it reads

MwK[R4](ω) = ∂ d ω = ∆(ω)− d ∂(ω), where ω ∈ Ω1(R4), ∂ = ∗−1 d ∗,

d is the de Rham operator, and ∗ is the Hodge one. Note that the original Maxwell equations
are defined on the space Ω2(R4) of two differential forms but they can be readily reduced to
the Maxwell operator in the form above.

2Note that we employ the term ”Laplace operator” in a large sense by admitting that the metric coming
in its definition can be indefinite.

2



Observe that Ω1(R4) can be presented as a free K[R4]-module K[R4]⊕4 if we identify the
differential form α dt+β dx+γ dy + δ dz with the column (α β, γ, δ)T. Hereafter the symbol
T stands for the transposition. Then the Maxwell operator becomes

MwK[R4]




α
β
γ
δ


 =




∆K[R4](α)
∆K[R4](β)
∆K[R4](γ)
∆K[R4](δ)


−




∂t

∂x

∂y

∂z


 (∂t − ∂x, −∂y, −∂z)




α
β
γ
δ


 .

It is easy to see that the vectors (∂tϕ, ∂xϕ, ∂yϕ, ∂zϕ)T belong to the kernel of the Maxwell
operator. This is an expression of the gauge freedom of the Maxwell equation MwK[R4](ω) = 0.

The Dirac operator in its classical version reads

Dir = γ0 ∂t + γ1 ∂x + γ2 ∂y + γ3 ∂z

where γi, i = 0, 1, 2, 3 are the Dirac matrices.
By using a map α : K[R4] ∼= Sym(u(2)) → U(u(2)~) we can push any operator Op :

K[R4] → K[R4] forward to the quantum algebra in question by putting

Opα(x) =: α Op α−1(x) ∀x ∈ U(u(2)~).

In particular, in this way the partial derivatives can be transferred to the algebra U(u(2)~).
By doing so, we get u(2)-covariant ~-counterparts of the above mentioned operators. How-
ever, the images of the partial derivatives defined in this way in the algebra U(u(2)~) are not
subject to the Leibnitz rule any more.

As for the q- and (~, q)-counterparts of the algebra K[R4] we can also push any operator
Op : K[R4] → K[R4] forward to these algebras by using an analog of the above map α.
However, under this way of proceeding the images of the above wave operators in the quantum
algebras lose their covariance property. So, we introduce q-analogs of the wave operators
without using any map α but only by analogy with the classical case. As a result, we get
”q-wave operators” in question which are invariant (covariant) w.r.t. the QG Uq(sl(2)) action.

Observe that in order to define such operators on q-analogs of the algebras K[R3] and
K[R4] we first introduce ”partial q-derivatives” on them. We do it without using any version
of the Leibnitz rule. Instead, we employ a special ”q-symmetrized” form of elements of these
algebras. Also, we present the q-derivatives in the so-called pseudospherical form which is
close to a formula expressing the usual partial derivatives in terms of the spherical coordinates.

Emphasize that this form of partial q-derivatives allows us to get q-analogs of the Laplace
and Maxwell operators on the quantum hyperboloid (cf. [DG2]). Besides, we employ a
noncommutative version of the Cayley-Hamilton identity valid for a matrix which comes in
definition of the algebra in question. In particular, this identity allows us to find a quantum
analog of the radius (squared).

Again, emphasize particularities of our approach to quantization of the algebras and
operators in question.

• Our quantum algebras arise from a two-parameter deformation of the initial commu-
tative algebras.

• We do not use any form of the Leibnitz rule in defining q-analogs of partial derivatives
and other vector fields.

• We realize q-analogs of the operators in question in the so-called pseudospherical form.

• A noncommutative version of the Cayley-Hamilton identity is essentially involved in
our q-calculus.

We hope our approach to be useful for quantizing gauge models different from electrody-
namics.
Acknowledgement. The work of D.G. is partially supported by the grant ANR-05-BLAN-
0029-01. The work of P.S. is partially supported by the RFBR grant 08-01-00392-a and by
the joint DFG-RFBR grant 08-01-91953.
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2 ~-quantization of wave operators

In this section we consider an ~-quantization of the algebra K[R4] and the wave operators. Let
α : Sym(u(2)) ∼= K[R4] → U(u(2)~) be the map mentioned in Introduction which identifies
elements presented in completely symmetrized form in both algebras. It is known that
the image of the subalgebra Sym(u(2))u(2) (which is formed by elements invariant w.r.t.
the action of the Lie algebra u(2)) under the map α is not isomorphic to the subalgebra
U(u(2)~)u(2) (in similar notations) which is the center of the algebra U(u(2)~). However, for
a large class of Lie algebras g there exist another g-invariant map of the algebra Sym(g) into
U(g) such that its restriction to the subalgebra Sym(g)g gives an isomorphism Sym(g)g ∼=
U(g)g. This was shown by M.Duflo [D] with the use of the character formula.

We suggest another (purely algebraic) method of constructing such a map for the case
g = u(2). First of all, observe that

Sym(u(2)) ∼= Sym(su(2))⊗K[t] and U(u(2)~) ∼= U(su(2)~)⊗K[t̂]

where t̂ is a central element of the Lie algebra u(2). The multiplication table of the algebra
u(2)h is assumed to be

[x̂, ŷ] = ~ ẑ, [ŷ, ẑ] = ~ x̂, [ẑ, x̂] = ~ ŷ, [x̂, t̂] = [ŷ, t̂] = [ẑ, t̂] = 0.

Recall that the hat marked letters stand for the elements of NC algebra U(su(2)~).
So, in order to construct an isomorphism with the desired properties it suffices to do

so for the algebras Sym(su(2)) and U(su(2)~). Namely, given such a map on the algebra
Sym(su(2)) we can extend it to the algebra Sym(u(2)) by assuming it to be identical on the
factor K[t] (we identify the generators t in the both algebras). In what follows we also use
the notation K[R3] for the algebra Sym(su(2)).

Each of the algebras K[R3]su(2) and U(su(2)~)su(2) is generated by the only Casimir
element, namely by

CasK[R3] = x2 + y2 + z2 and CasU(su(2)~) = x̂2 + ŷ2 + ẑ2

respectively. Here {x, y, z} are the (commutative) generators of K[R3] corresponding to the
generators {x̂, ŷ, ẑ}.

Now we introduce an isomorphism Υ : K[R3]su(2) → U(su(2)~)su(2) setting by definition

Υ(x2 + y2 + z2) = x̂2 + ŷ2 + ẑ2 − ~
2

4
1, (2.1)

where the symbol 1 at the last summand denotes the U(su(2)~) unit element. As a conse-
quence of the above definition, Υ(p(x2 +y2 +z2)) = p(x̂2 + ŷ2 + ẑ2− ~2

4 1) for any polynomial
p in one variable.

The necessity of the shift by −~2/4 in the right hand side of (2.1) can be justified by
the following reason. Let us consider an isomorphism of vector spaces K[R3] and su(2) given
explicitly by the correspondence

(x, y, z) 7→ L =
( −iz −ix− y
−ix + y i z

)
.

This matrix satisfies the CH identity

L2 + (x2 + y2 + z2)Id = 0

which defines the characteristic equation on the spectrum of the matrix L:

µ2 + (x2 + y2 + z2) = 0. (2.2)

The roots µ1 and µ2 of this equation treated as elements of an algebraic extension of the
algebra Sym(su(2)) are the eigenvalues of the above matrix L.
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Quite similar considerations can also be done for the case of NC algebra U(su(2)~).
Namely, consider a matrix L̂ with noncommutative entries

L̂ =
( −iẑ −i x̂− ŷ
−i x̂ + ŷ i ẑ

)
.

As can be easily verified by a straightforward calculation, the matrix L̂ satisfies the CH
identity of the form

L̂2 − ~ L̂ + (x̂2 + ŷ2 + ẑ2)Id = 0.

This leads to the characteristic equation on the ”spectrum” of the matrix L̂

µ̂2 − ~ µ̂ + (x̂2 + ŷ2 + ẑ2) = 0. (2.3)

The roots µ̂1 and µ̂2 of this equation are the elements of an algebraic extension of the centrum
Z(U(su(2)~)).

Now the map Υ can be prolonged onto the abovementioned algebraical extensions by the
following rule

Υ(µi) = µ̂i − ~21,

where the last summand in this formula is motivated by the relations µ1 + µ2 = 0 and
µ̂1 + µ̂2 = ~1. Note, that this map is ambiguously defined at the level of spectral values
µi since their numbering is arbitrary. But this ambiguity does not affect the action of Υ
on the symmetric polynomials in the spectral values. Namely, to any symmetric polynomial
p(µ1, µ2) ∈ Sym(su(2)) the map Υ associates the only element

p(µ̂1 − ~21, µ̂2 − ~21) ∈ Z(U(su(2)~)).

In particular, this leads to formula (2.1).
In the sequel we also need a noncompact counterpart of the algebra su(2), namely that

sl(2), and the corresponding CH identity. In the complexification su(2)C ∼= sl(2)C of the Lie
algebra su(2) we consider the basis (b̂, ĥ, ĉ) where

x̂ =
i(b̂ + ĉ)

2
, ŷ =

ĉ− b̂

2
, ẑ =

iĥ
2

.

Then the commutation relations in terms of the new generators read

[ĥ, b̂] = 2~ b̂, [ĥ, ĉ] = −2~ ĉ, [b̂, ĉ] = ~ ĥ.

Note that in the enveloping algebra of su(2)C ∼= sl(2)C we have the following connection of
two forms of the Casimir element

CasU(sl~(2)) =
ĥ2

4
+

b̂ ĉ + ĉ b̂

2
= −(x̂2 + ŷ2 + ẑ2) = −CasU(su~(2)).

In the new basis the matrix L̂ takes the form

L̂ =

(
ĥ
2 b̂

ĉ − ĥ
2

)

while the CH identity reads

L̂2 − ~ L̂−
(

ĥ2

4
+

b̂ ĉ + ĉ b̂

2

)
Id = 0.

Now, we treat µ̂i and µi to be roots of the equations

µ̂2 − ~ µ̂−
(

ĥ2

4
+

b̂ ĉ + ĉ b̂

2

)
= 0 and µ2 −

(
h2

4
+

b c + c b

2

)
= 0
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respectively. Finally, the map Υ can be expressed in terms of the algebras K[R3]sl(2) and
U(sl(2)~)sl(2).

On the next step, we extend the map Υ to the whole algebra K[R3] by assuming Υ to be
linear sl(2)-covariant and setting by definition

Υ(bk p

(
h2

4
+

b c + c b

2

)
) = b̂k p

(
ĥ2

4
+

b̂ ĉ + ĉ b̂

2
+
~2

4
1

)
,

where p is a polynomial in one variable and k is any positive integer number. By this con-
dition the map Υ is uniquely defined on the whole algebra K[R3]. In order to show this
fact, we observe that bk is the highest weight element of the irreducible sl(2)-submodule
Vk ⊂ K[R3] with the integer spin k . Explicitly, this submodule is spanned by the elements
bk, C(bk), C2(bk), ..., C2k(bk) where B,H, C are standard generators of the algebra sl(2) act-
ing on the algebra K[R3] by the vector fields arising from the adjoint action. By passing to
the generators x, y, z (resp., x̂, ŷ, ẑ) in the complexification of the both algebras we get an
isomorphism Υ : K[R3] → U(su(2)~).

Now, we observe that the partial derivatives in commuting variables x, y, z can be pre-
sented as follows

∂x =
y Z − z Y

r2
+

x

r
∂r =

y Z − z Y

ρ
+ 2 x ∂ρ , c.p. (2.4)

where c.p. stands for the cyclic permutation x → y → z → x, ρ = r2 = (x2 + y2 + z2) and

X = z ∂y − y ∂z , c.p.

This looks like a passage to the spherical coordinates (r is the radial variable in the space
R3) but instead of the angle derivatives we use the vector fields X, Y, Z defined above.
Since at each point (x, y, z) ∈ R3 these fields are tangent to the sphere of the radius r =√

x2 + y2 + z2, they are not independent but subject to the relation

xX + y Y + z Z = 0,

and, besides, they commute with the derivative ∂r in the radial variable r. Also, note that

∂r x =
x

r
, ∂r y =

y

r
, ∂r z =

z

r
, (2.5)

or on passing to the derivative in the variable ρ

∂ρ x =
x

2ρ
, ∂ρ y =

y

2ρ
, ∂ρ z =

z

2ρ
. (2.6)

With the use of the vector fields X, Y, Z and the derivative ∂ρ we present the Laplace
operator on the space K[R3] as follows

∆K[R3] =
X2 + Y 2 + Z2

r2
+

1
r2

∂r(r2 ∂r) =
X2 + Y 2 + Z2

ρ
+ 6∂ρ + 4ρ∂2

ρ . (2.7)

Since ρ appears in the denominator of this formula we have to enlarge our algebra by adding
the negative powers ρm, m = −1,−2, ... to it. More precisely, we should pass to the algebra

A = Sym(su(2))⊗K[ρ−1]/〈ρ ρ−1 − 1〉

where the notation 〈A〉 stands for the two-sided ideal generated by a given subset A of an
algebra.

As a vector space, the algebra A is isomorphic to the direct sum of the su(2)-modules

A ∼=
⊕

k≥0

Vk ⊗K[ρ, ρ−1]. (2.8)
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The basis in the algebra A coming from the above isomorphism is formed by elements

ρm Cl(bk), k ∈ Z+, m ∈ Z, l = 0, 1, ..., 2k

and will be called canonical in what follows. If an element of the algebra A is expanded in
this basis we say that it is represented in the canonical form.

On the other hand, we correspondingly enlarge the algebra U(su(2)~), adding an inverse
element to the central element ρ̂ = CasU(su~(2)) − ~2

4 1 and passing to the quotient

A~ = U(su(2)~)⊗K[ρ̂−1]/〈ρ̂ρ̂−1 − 1〉.

Note, that as an su(2)-module the algebra A~ is isomorphic to A and can be expanded into
the direct sum of su(2)-modules analogous to (2.8).

Then, we extend the map Υ onto the whole algebra A in the natural way by setting

Υ(gρm) = ĝρ̂m, m ∈ Z, ∀g ∈ Vk,

where ĝ ∈ Vk ⊂ U(su(2)~) is the element corresponding to g as explained above. So, the
extended map Υ establishes a bijection between the algebras A and A~.

Let us denote the images of the partial derivatives ∂x, ∂y, ∂z in the algebra U(su(2)~)
under the map Υ by ∂x̂, ∂ŷ, and ∂ẑ respectively. It would be interesting to get their explicit
form in intrinsic terms of the algebra A~. However, the image of the Laplace operator (2.7)
can be presented explicitly. We use the notation ∆U(su(2)~) for this image.

Proposition 1 The following relation holds

∆U(su(2)~)f =
(

X2 + Y 2 + Z2

ρ̂
+ 6∂ρ̂ + 4ρ̂ ∂2

ρ̂

)
f (2.9)

where we assume that f ∈ A~ is written in the canonical form and the su(2)-generators
X, Y, Z are represented in the algebra U(su(2)~) as the adjoint action operators.

As for the action of the derivative ∂ρ̂ on the elements of A~ presented in the canonical
form, we define it to be

∂ρ̂(ĝρ̂m) =
kĝ

2ρ̂
ρ̂m + mĝρ̂m−1

for any ĝ ∈ Vk ⊂ U(su(2)h). The first summand of the above expression stems from the
classical formulae (2.6).

The formula for ∆U(su(2)~) is nothing but the Υ-image of the Laplace operator (2.7).
However, we would emphasize once more that (2.9) is only applicable to the elements f ∈ A~
presented in the canonical form. Also, note that the operator X2 + Y 2 + Z2 is scalar and its
eigenvalue on the component Vk is equal to − (k+1)(k+3)

4 .
Let us pass to the four-dimensional space algebra. First, we add the negative powers of

ρ in the algebras we are dealing with, i.e. we consider the quotient algebras

Ã = K[R4]⊗K[ρ−1]/〈ρρ−1 − 1〉 and Ã~ = U(u(2)~)⊗K[ρ−1]/〈ρ̂ρ̂−1 − 1〉.

Then we can define a map Υ̃ : Ã → Ã~ which is the extension of Υ considered above. Since
the map Υ̃ identifies the subalgebras K[t] in the both algebras Ã and Ã~ the derivative ∂t̂ in
t̂ in the algebra Ã~ acts in the same way as the classical derivative ∂t.

Now we are able to explicitly present the ~-analogs of the Laplace, Maxwell and Dirac
operators on the algebra Ã~ (we call them ~-Laplace, ~-Maxwell, and ~-Dirac operators
respectively). Being the Υ̃-image of the Laplace operator in the algebra Ã, the ~-Laplace
operator reads as follows

∆U(u(2)~) = ∂2
t̂
− ∂2

x̂ − ∂2
ŷ − ∂2

ẑ .

Also, the ~-Maxwell and ~-Dirac operators are defined by the same formulae as in the
classical case (see Introduction) but the derivatives ∂t, ∂x, ∂y and ∂z should be respectively
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replaced by their images ∂t̂, ∂x̂, ∂ŷ, and ∂ẑ which are to be applied to vectors composed of
the elements of the algebra A~.

Mostly, the properties of these ”~-operators” are classical. Thus, similarly to the classical
Maxwell operator, the kernel of its ~-counterpart consists of the elements of the form

KerMwU(u(2)~) = {(∂t̂ϕ, ∂x̂ϕ, ∂ŷϕ, ∂ẑϕ)T | ∀ϕ ∈ A~}.

This is true since the ~-Laplacian commutes with the derivatives ∂t̂, ∂x̂, ∂ŷ and ∂ẑ in virtue
of their definition.

As for the ~-Dirac operator DirU(u(2)~) = γ0 ∂t̂ + γ1 ∂x̂ + γ2 ∂ŷ + γ3 ∂ẑ, its square equals
∆U(u(2)~) Id since the operators ∂t̂, ∂x̂, ∂ŷ, ∂ẑ commute with each other.

3 q-Minkowski space algebra and its truncated version

Now we pass to the ”braided counterparts” of the algebras and operators considered in the
last section. The term ”braided” refers to objects related to a braiding. An operator

R : V ⊗2 → V ⊗2

is called a braiding if it satisfies the quantum Yang-Baxter equation

(R⊗ Id)(Id⊗R)(R⊗ Id) = (Id⊗R)(R⊗ Id)(Id⊗R).

All factors in this relation are operators acting in the space V ⊗3.
In this paper we mainly deal with a braiding coming from the QG Uq(sl(2)). In this case

the space V is a two dimensional fundamental Uq(sl(2))-module. As is well known, upon
fixing a basis {x1, x2} in the space V , the aforementioned braiding is represented by the
matrix

R = Rq =




q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q


 . (3.1)

in the corresponding basis {x1⊗x1, x1⊗x2, x2⊗x1, x2⊗x2} of the space V ⊗2. Besides, the
operator R satisfies the second order relation

(qId−R)(q−1Id + R) = 0.

Such type braidings are called the Hecke symmetries. The parameter q is assumed to be
generic. At q = 1 (this value is not excluded) this symmetry becomes involutive: R2

q=1 = Id.
With any braiding R we associate an algebra generated by the unity and elements lji , 1 ≤

i, j ≤ n = dim V subject to the relations

R(L⊗ Id)R(L⊗ Id)− (L⊗ Id)R(L⊗ Id)R = 0. (3.2)

Here L = ‖lji ‖ is the n×n matrix with entries lji . This algebra is called the reflection equation
algebra (REA) associated with the braiding R and will be denoted Lq(n). Below we constrain
ourselves to the two dimensional case with the braiding R defined in (3.1). General properties
of REA and its representation theory can be found in [GPS].

Note that the algebra Lq(2) is a graded quadratic one (i.e. it is determined by the
homogeneous quadratic relations on the generators). Besides, for a generic q we have
dimL(k)

q (2) = dimSym(k)(gl(2)) where the index (k) stands for the degree k homogeneous
components of these algebras. S. Majid, U. Meyer [MM] and P. Kulish [K] suggested to
consider Lq(2) with the braiding (3.1) as a q-analog of the Minkowski space algebra3.

3Often one introduces an involution in the complexification of this algebra and then considers it as a
q-analog of Sym(u(2)). However, this algebra cannot be realized as a real one. This is the reason why we
prefer to deal with the q-analogs of the algebras Sym(gl(2)) and Sym(sl(2)).
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Now, we consider the structure of relations (3.2) in more detail. Introducing the following
notations for the entries of the matrix L

L =
(

l11 l21
l12 l22

)
=

(
a b
c d

)
, (3.3)

we get that in the basis {a, b, c, d} the system (3.2) reduces to six independent relations

qab− q−1ba = 0 q(bc− cb)− (q − q−1)a(d− a) = 0
qca− q−1ac = 0 q(cd− dc)− (q − q−1)ca = 0
ad− da = 0 q(db− bd)− (q − q−1)ab = 0.

(3.4)

It would be more convenient for us to work in another basis of Lq. Let us pass to the set
of generators {l, h, b, c} where l = q−1a + qd, and h = a− d. As a consequence of (3.4) we
get the following relations for the new generators

q2hb− bh + (q − q−1)lb = 0 bl − lb = 0
q2ch− hc + (q − q−1)lc = 0 cl − lc = 0
2q q (bc− cb) +

(
q2 − 1

)
h2 + (q − q−1)lh = 0 hl − lh = 0.

(3.5)

Now, consider a quadratic-linear version of the algebra Lq defined as follows

q2hb− bh + (q − q−1)lb = 2q ~b bl − lb = 0
q2ch− hc + (q − q−1)lc = 2q ~c cl − lc = 0
q2q (bc− cb) +

(
q2 − 1

)
h2 + (q − q−1)lh = 2q ~h hl − lh = 0.

(3.6)

Hereafter, 2q = q + q−1. We denote the above agebra L~,q(2) and call it the modified REA
(mREA). Emphasize that at q = 1 we have Lq=1(2) ∼= Sym(gl(2)) and Lq=1,~ ∼= U(gl(2)~).

Taking into account the evident relation Lq(2) = Lq,~=0(2) we could, at the first glance,
treat Lq(2) to be a ”q-commutative” algebra and L~,q(2) to be a ”q-noncommutative” one.
However, unless q = ±1, the algebras Lq(2) and L~,q(2) are isomorphic to each other: this
isomorphism is realized by a change of the basis lji → lji − ~

q−q−1 δj
i 1. Thus, we cannot dis-

tinguish the ”q-commutative” algebra from the ”q-noncommutative” one. Below we consider
other nonisomorphic candidates for the role of q-counterparts of the algebras Sym(gl(2)) and
U(gl(2)h) respectively.

With this purpose, we note that at q2 6= 1 the central element l enters the defining
relations of the algebras Lq(2) and L~,q(2) in a specific way (see the left columns of (3.5) and
(3.6)). It is just this property of the algebras in question which leads to the isomorphism
Lq(2) ∼= L~,q(2) at q2 6= 1.

To overcome this obstacle we first pass to the quotient algebras (”sl-reduction”)

SLq(2) = Lq(2)/〈l〉 and SL~,q(2) = L~,q(2)/〈l〉.

Emphasize that, having killed l, we get nonisomorphic algebras SLq(2) and SL~,q(2) which
can be with more evidence called respectively q-commutative and q-noncommutative ones.
Besides, SLq(2) and SL~,q(2) are respectively one-parameter and two-parameter deforma-
tions of the algebra K[R3].

Thus, the algebra SL~,q(2) is generated by the elements b, h, c subject to the system of
relations

q2hb− bh = 2q~ b, 2q q(bc− cb) + (q2 − 1)h2 = 2q~h, q2ch− hc = 2q~ c. (3.7)

The corresponding relations on the SLq(2) generators can be obtained from the above ones
by setting ~ = 0.

Denote by L and SL the following K-linear spans of generators :

L = span(b, h, c, l) and SL = span(b, h, c).
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Also, consider a q-skew-symmetric subspace Iq
− ⊂ SL⊗2 given by the linear span

Iq
− = span(q2h⊗ b− b⊗ h, 2q q(b⊗ c− c⊗ b) + (q2 − 1)h⊗ h, q2c⊗ h− h⊗ c). (3.8)

These notations allow us to present the algebra SLq(2) as a quotient T (SL)/〈Iq
−〉 where

T (SL) is the free tensor algebra of the space SL.
Note that the space L can be endowed with an action of the QG Uq(sl(2)) in such a way

that the subspace SL ⊂ L becomes a Uq(sl(2))-submodule (the quantum group trivially acts
on the central element l) as well as the subspace Iq

− becomes a Uq(sl(2))-submodule of the
Uq(sl(2))-module SL⊗2. Moreover, the algebras Lq(2) and SLq(2) can be endowed with the
corresponding action of Uq(sl(2)) and their algebraic structure is compatible with this action,
that is Lq(2) and SLq(2) have the structure of Uq(sl(2))-algebras. The reader is referred to
[DG1] for an explicit description of all these actions.

Now we consider new q-analogs of the algebras Sym(gl(2)) and U(gl(2)~) constructing
them as the tensor products L̃q(2) = SLq(2)⊗K[l] and L̃~,q(2) = SL~,q(2)⊗K[l]. These new
algebras differ slightly from Lq(2) and L~,q(2): in order to get the defining relations of their
generators it suffices to remove the linear in l terms from the relations in the left columns of
(3.5) and (3.6). Thus, we have

L̃q(2) = T (L)/〈Ĩq
−〉, Ĩq

− = span(Iq
−, l ⊗ b− b⊗ l, l ⊗ h− h⊗ b, l ⊗ c− c⊗ l). (3.9)

Finally, we get two nonisomorphic algebras: ”q-commutative” algebra L̃q(2) and ”q-
noncommutative” one L̃~,q(2) which are respectively one-parameter and two-parameter de-
formations of the commutative algebra Sym(gl(2)). The algebra L̃~,q(2) will be called the
truncated mREA while the algebra L̃q(2) will be referred to as the truncated REA. (Simi-
lar algebras with close properties can be defined for any ”skew-invertible” Hecke symmetry,
cf. [GPS].) The algebra L̃q(2) related to the Hecke symmetry (3.1) will be also called the
truncated q-Minkowski space algebra and denoted Kq[R4].

Below we describe some of the properties of Kq[R4]. However, we begin with its quotient
Kq[R3] = Kq[R4]/〈l〉. Evidently, Kq[R3] = SLq(2). Observe that the space SL⊗2 is a direct
sum of the q-skew-symmetric space Iq

− and the q-symmetric space Iq
+ which can be presented

as a direct sum Iq
+ = V2 ⊕ V0 where

V0 = span(q−1b⊗ c +
1
2q

h⊗ h + qc⊗ b),

V2 = span(b⊗ b, q2b⊗ h + h⊗ b, q3b⊗ c− qh⊗ h + q−1c⊗ b, q2h⊗ c + c⊗ h, c⊗ c).
(3.10)

The subspaces V0 and V2 are respectively spin 0 and spin 2 Uq(sl(2))-modules. Since
Iq
+

⋂
Iq
− = {0}, then the projection of the second degree component SL(2)

q (2) of the alge-
bra SLq(2) onto the space Iq

+ is well defined. Therefore, any element a ∈ SL(2)
q (2) has a

unique image in the space Iq
+. This image we shall call the q-symmetric form of the element

a.
The point is that any homogeneous element of the algebra SLq(2) of degree > 2 can

be also presented in a q-symmetric form. More precisely, for homogeneous elements of the
third, the fourth (and so on) degrees the corresponding q-symmetric form is identified with
an element from the intersections of the following subspaces

SL ⊗ Iq
+

⋂
Iq
+ ⊗ SL ⊂ SL⊗3

SL⊗2 ⊗ Iq
+

⋂SL ⊗ Iq
+ ⊗ SL

⋂
Iq
+ ⊗ SL⊗2 ⊂ SL⊗4

(and so on).

(3.11)

On expanding any given element of the algebra SLq(2) into a sum of homogeneous ones we
can present this element in a q-symmetric form. The homogeneous elements of the degree 0
and 1 are considered to be in the q-symmetric form by definition.

10



The above procedure of ”q-symmetrization” can be explicitly done via projectors related
to the Birman-Wenzl-Murakami algebra (cf. [OP] for the definition). Here we want only to
remark that this method is valid for all sl-reduced REA associated with Hecke symmetries
of the Temperley-Lieb type4.

A remarkable property of the spaces Iq
+ and Iq

− is that they are orthogonal to each other
w.r.t. a Uq(sl(2))-covariant pairing SL⊗2 ⊗ SL⊗2 → K. We start the construction from the
space SL and define a pairing SL ⊗ SL → K on the basis elements by the rules

〈b, c〉 = q−1, 〈h, h〉 = 2q, 〈c, b〉 = q (3.12)

(all other terms are trivial). This pairing is Uq(sl(2))-covariant and is unique up to a common
factor. Thus, the space SL is autodual: its dual space is isomorphic to the space itself and
this isomorphism is Uq(sl(2))-covariant.

Now we extend this paring to the map SL⊗2 ⊗ SL⊗2 → K as follows

〈u⊗ v, w ⊗ z〉 := 〈u, z〉 〈v, w〉 ∀u⊗ v, w ⊗ z ∈ L⊗2. (3.13)

Note that in a similar way, i.e. without any transposing, the pairing can be extended onto
the spaces SL⊗k ⊗ SL⊗k for any k ≥ 3 and this extended pairing is Uq(sl(2))-covariant.

Proposition 2 The spaces Iq
− and Iq

+ are orthogonal to each other with respect to the pairing
(3.12) - (3.13).

Proof. By direct computations it is easy to check that the generator q−1b⊗c+ 1
2q

h⊗h+qc⊗b

of the space V0 is orthogonal to the space Iq
−. It is also evident that 〈b ⊗ b, z〉 = 0 for all

z ∈ Iq
−. Observe that b⊗b is the highest weight element of the Uq(sl(2))-module V2. Applying

the descending element Y ∈ Uq(sl(2)) to the relation 〈b ⊗ b, z〉 = 0 and taking into account
the Uq(sl(2))-covariance of the pairing we deduce that 〈u, z〉 = 0 for any u ∈ V2 and any
z ∈ Iq

−. Therefore, Iq
+ = V0 ⊕ V2 is orthogonal to Iq

−.

A decomposition of the space L⊗2 similar to that above can be done as follows. We
present this space as a direct sum of two complimentary subspaces

L⊗2 = Ĩq
− ⊕ Ĩq

+

where Ĩq
− is defined in (3.9) and Ĩq

+ is as follows

Ĩq
+ = Iq

+ ⊕ span(l ⊗ l, l ⊗ b + b⊗ l, l ⊗ h + h⊗ l, l ⊗ c + c⊗ l).

Then we extend the pairing (3.12) to the space L demanding 〈l, l〉 6= 0 to be an arbitrary
nonzero number and l to be orthogonal to other generators. Then the spaces Ĩq

+ and Ĩq
− will

be orthogonal to each othe with respect to the extended pairing. Below we explain the role
of this property in computing relations between the q-derivatives.

4 Partial q-derivatives

In this section we discuss the problem of introducing q-analogs of the partial derivatives on
the algebras in question. Remark that in general, there is no way to introduce a reasonable
analog of the partial derivative on a NC algebra. Nevertheless, if such an algebra is related
to a braiding, one often defines a q-analog of derivative by using one or another form of
transposing ”functions” and derivatives and the Leibnitz rule. In this section we introduce
q-derivatives in another way.

4If the initial Hecke symmetry is of a more general form, an analog of the space Iq
+ and the procedure of

q-symmetrization in the related REA is suggested in [GPS]. But a rigorous construction of the corresponding
projectors is only done for the homogeneous components of the degree ≤ 3. By passing to the sl-reduced
algebra, i.e. by killing the central element l, we can conjecturally get the q-symmetrization procedure for
elements of the sl-reduced REA.
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First, consider the algebra SLq(2) and define an action of the q-derivatives ∂q
b , ∂q

h and ∂q
c

on the generators b, h and c in the classical manner:

∂q
b b = ∂q

h h = ∂q
c c = 1, ∂q

b h = ∂q
b c = ∂q

h b = ∂q
h c = ∂q

c b = ∂q
c h = 0. (4.1)

Besides, we naturally assume that these q-derivatives kill elements of the ground field.
Second, in order to define the action of the derivatives on higher degree elements we

present these elements in the q-symmetric form discussed in the previous section. It suffices
to consider only homogeneous elements of degree m ≥ 2. Let fm ∈ SLq(2) be an arbitrary
element of the degree m and fsym

m be the corresponding symmetric form. Then we put by
definition

∂q
afm = m (∂q

a ⊗ Id⊗(m−1))fsym
m , a = b, h, c. (4.2)

The above foormula means that we apply the partial q-derivative only to the first factor of
the element fsym

m . In so doing we need only formulae (4.1). Thus, neither any transposition
of elements from SLq(2) and the q-derivatives nor the Leibnitz rule are involved in our
definition.

Passing to the algebra L̃q(2) we should also define the derivative ∂q
l . It can be done in

the classical manner. By contrary, in the algebra Lq(2) defining such a q-derivative is a more
complicated problem since l enter the first column of the relations (3.5) (cf. [DG2]).

Our immediate aim is to find relations between the q-derivatives. In order to make these
relations more clear we consider another basis in the space spanned by the q-derivatives:

Dc := q∂q
b , Dh := 2q∂

q
h, Db := q−1∂q

c . (4.3)

Remark 1 The sense of this basis becomes clear when comparing the definition of the partial
q-derivatives (4.1) with pairing (3.12). Thus, we see that on the linear component of SLq(2)
the partial q-derivative ∂q

b up to a factor q−1 coincides with the action of the pairing with
the generator c: ∂q

b a = q−1〈c, a〉. Therefore, the operators Dc, Dh, Db in (4.3) act on the
linear component as a pairing with the corresponding generator: Daz = 〈a, z〉, a = b, h, c.

Proposition 3 On the algebra SLq(2) the partial q-derivatives defined in (4.3) satisfy the
relations

q2Dh Db −Db Dh = 0
2q q(Db Dc −Dc Db) + (q2 − 1)Dh Dh = 0 (4.4)

q2Dc Dh −Dh Dc = 0.

Note, that these relations coincide with the defining relations of the algebra SLq(2) ( see (3.7)
with ~ = 0) if we replace its generators by the corresponding q-derivative: b → Db and so on.

Proof. In virtue of definition of q-derivative (4.2) we have to prove the proposition for the
q-symmetric elements fsym of SLq(2). Therefore, we first prove that the left hand sides
of relations (4.4) are zero operators on the subspace Iq

+ (see (3.10)). But this is a direct
consequence of the Proposition 2 since the left hand side of (4.4) are formally coincide with
the basis of Iq

− defined in (3.8) while the action of q-derivatives (4.3) coincide with the pairing
(3.12) (see Remark 1).

The general case now follows from the specific form of fsym which belongs to the inter-
sections of the form (3.11).

For the case of the algebra L̃q(2) we should add q-derivative ∂q
l in the classical manner

and this q-derivative will commute with the other ones. However, finding relations between
partial q-derivatives on the algebra Lq(2) is a more complicated problem.

Remark 2 The above q-derivatives are related in the usual way to the de Rham operator
associated with the algebra Lq = Symq(L). Here L = span(lji ), Symq(L) = Lq(n), n ≥ 2.
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Let us introduce this operator by using the method of the paper [G]. In this paper there was
considered the complex

∧k
(V )⊗ Symm(V ) →

∧k+1
(V )⊗ Symm−1(V ),

where V is a space endowed with a Hecke symmetry (say, that coming from Uq(sl(n))) and
all elements of the spaces Symm(V ) (resp.,

∧k(V )) are presented in the q-symmetric (resp.
q-skew-symmetric) form. The differential d acting in this complex is given by

d ((yi1 ⊗ ...⊗ yik
)⊗ (xj1 ⊗ ...⊗ xjm)) = mP+(yi1 ⊗ ...⊗ yik

⊗ xj1)⊗ (xj2 ⊗ ...⊗ xjm),

where P+ is the operator of q-symmetrization. (In contrast with [G] we have introduced in
this operator the factor m.)

Upon fixing k = 0 and applying the differential d to an element f =
∑

j xj⊗gj ∈ Symm(V )
we get

d f = d (
∑

j

xj ⊗ gj) = m
∑

j

d xj ⊗ gj ,

where d xj is merely another form of the fact that the terms xj belong to the factor
∧1(V ) ∼=

V . It is natural to define the q-derivatives in the algebra Symq(V ) by ∂q
xj

f = gj .
This method can be applied for the definition of the de Rham complex associated with

the algebras Lq(n) and SLq(n), once the elements of these algebras can be presented in
the q-symmetric form. It is easy to see that the partial q-derivatives on the algebra SLq(2)
arising from this approach coincide with those defined above (see (4.1)).

Now, we want to present the q-derivatives in a form similar to (2.4) or rather that related
to the Lie algebra sl(2) (cf. [DG2]).

However, first, we enlarge the algebra SLq(2) by adding the central generator ρ−1
q where

ρq = CasKq [R3] =
1
2q

(
q−1 b c +

h2

2q
+ q c b

)

is a q-analog of the sl(2)-Casimir element. So we introduce algebras

Aq = SLq ⊗K[ρ−1
q ]/〈ρqρ

−1
q − 1〉 and Ãq = L̃q ⊗K[ρ−1

q ]/〈ρqρ
−1
q − 1〉.

Our immediate aim is to define the q-derivative ∂q
ρq

in the algebra Aq. By imitating formula
(2.6) (more precisely, its sl(2)-analog) we set

∂q
ρq

b =
b

2 ρq
, ∂q

ρq
h =

h

2 ρq
, ∂q

ρq
c =

c

2 ρq
.

Also, we assume that this derivative is subject to the usual Leibnitz rule. It is easy to see
that this way of introducing the derivative ∂q

ρq
is compatible with the defining relations of

the algebra Lq(2).
In order to get a q-analog of formulae (2.4) we need q-analogs of the infinitesimal rotations

X, Y and Z or, more precisely, q-analogs of the infinitesimal hyperbolical rotations arising
from the adjoint action of the algebra sl(2). They can be found from a q-analog of the sl(2)
Lie bracket defined as follows. There exists a unique (up to a nontrivial factor) Uq(sl(2))-
morphism

[ , ] : SL ⊗ SL → SL.

In the explicit form it reads

[b, b] = 0, [b, h] = −w b, [b, c] = w q
2q

h, [h, b] = w q2 b,

[h, h] = w (q2 − 1)h, [h, c] = −w c, [c, b] = −w q
2q

h, [c, h] = w q2 c, [c, c] = 0
(4.5)

where w ∈ K is an arbitrary non-trivial factor.
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By definition, the adjoint action corresponding to this bracket reads: ad (x) . y = [x, y]
for any x, y ∈ SL. Thus, we have three operators Bq = ad (b), Hq = ad (h), Cq = ad (c). In
the basis {b, h, c} they are represented by the following matrices

Bq = w




0 −1 0
0 0 q

2q

0 0 0


 Hq = w




q2 0 0
0 q2 − 1 0
0 0 −1


 Cq = w




0 0 0
− q

2q
0 0

0 q2 0




(4.6)

Proposition 4 The operators Bq, Hq and Cq satisfy the relation

q−1bCq +
hHq

2q
+ qcBq = 0. (4.7)

Note that at q = 1 these operators turn into the classical ones if we put w = 2. Also,
note that we can choose the factor w in such a way that the operators (4.6) would realize a
representation of the algebra SL~,q(2) defined in formulae (3.7).

One can extend the action of operators Bq, Hq and Cq on the higher components of the
algebra Lq(2) such that the relation (4.7) will be valid. This extension can be constructed via
the same method as was used for the q-derivatives. Presenting a homogeneous element of the
degree m fm ∈ L~,q(2) in the q-symmetric form fsym

m we apply the operators (4.6) to the first
factor of the fsym

m with subsequent multiplication by m (see formula (4.2)). Observe, that at
any homogeneous component of the degree m of the algebra Lq(2) the extended operators
Bq, Hq and Cq (we shall keep the same notation for them) will satisfy the commutation
relations looking like (3.7) but the coefficients in the r.h.s. of these relations will depend on
m.

The operators Bq, Hq and Cq as well as all their combinations αBq +βHq +γCq, α, β, γ ∈
SLq(2) are called the tangent braided vector fields. Thus, all such fields form a left SLq(2)-
module M which is the quotient of the free Lq(2)-module Lq(2)⊕3 over the submodule

M̄ = {ϕ(q−1bCq +
hHq

2q
+ qcBq), ∀ϕ ∈ Lq(2)}.

Consider the following tangent braided vector fields

Bq = w−1(q2hBq − bHq),

Hq = w−1(q2q(bCq − cBq) + (q2 − 1)hHq),

Cq = w−1(q2cHq − hCq).

Here w is the factor entering the definition of bracket (4.5). The following proposition is
proved in [DG2].

Proposition 5 The following operator equalities are valid on the space SL

Db =
q−2

2qρq
Bq +

2b

2q
∂ρq , Dh =

q−2

2qρq
Hq +

2h

2q
∂ρq , Dc =

q−2

2qρq
Cq +

2c

2q
∂ρq . (4.8)

Consequently, the same relation is valid on the whole algebra SLq(2) since in our defi-
nition of extended q-derivatives and tangent braided vector fields we use the action of the
corresponding operator only on the first factor of a q-symmetric element. As for the deriva-
tive ∂q

ρq
, a similar way for its action is valid as well. Thus, we get that formulae (4.8) are

valid on the whole algebra SLq(2).
The form (4.8) of the q-derivatives is called pseudospherical.
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5 q- and (~, q)-quantization of the wave operators

We first consider a q-quantization of the wave operators. In order to define a q-analog of
the Laplace operator on the space Kq[R3] we replace each generator in the Casimir element
CasKq[R3] by the corresponding partial derivative b → Db and so on. Thus, we get the
operator

∆Kq [R3] =
1
2q

(
q−1 Db Dc +

(Dh)2

2q
+ q Dc Db

)
. (5.1)

As for the Laplace operator on the algebra Kq[R4] we have a one parametric freedom in
its definition. Namely, we put

∆Kq [R4] = εD2
l +

1
2q

(
q−1 Db Dc +

(Dh)2

2q
+ q Dc Db

)
,

where ε = ±1. Note that at the classical point q = 1 the signature of the corresponding
quadratic form is (2, 2) or (3, 1) in dependence of ε. Here the derivative Dl acts nontrivially
only on the central element l: Dll = const 6= 0 (this reflects the fact that we have a freedom
in the normalization of the pairing 〈l, l〉 = const 6= 0). We leave to the reader checking that
these q-Laplace operators are Uq(sl(2))-invariant ones.

Now, we pass to the definition of the q-Maxwell operator on the algebras Kq[R3] and
Kq[R4]. Respectively, they are given by the following formulae

MwKq [R3]




α
β
γ


 =




∆Kq [R3](α)
∆Kq[R3](β)
∆Kq [R3](γ)


− 1

2q




Dc

Dh

Db


 (q−1Db,

Dh

2q
, qDc)




α
β
γ




MwKq [R4]




α
β
γ
δ


 =




∆Kq [R4](α)
∆Kq [R4](β)
∆Kq [R4](γ)
∆Kq [R4](δ)


− 1

2q




Dc

Dh

Db

Dl


 (q−1Db,

Dh

2q
, qDc, 2qεDl)




α
β
γ
δ


 .

Here α, β, γ ∈ Kq[R3] (resp., α, β, γ, δ ∈ Kq[R4]).
It is easy to see that a column (Dcϕ, Dhϕ, Dbϕ)T (resp., (Dcϕ, Dhϕ, Dbϕ, Dlϕ)T) be-

longs to the kernel of the operator MwKq [R3] (resp., MwKq [R4]).

Remark 3 Note, that making a linear transformation of the basis of the one-form space
we pass to an equivalent Maxwell operator AMwKq [R3]A

−1, where A is an invertible 3 × 3
numerical matrix. With an appropriate choice of this matrix we can get the kernel of the
transformed q-Maxwell operator consisting of the one-forms (∂q

b ϕ, ∂q
hϕ, ∂q

cϕ)T. Therefore,
we can treat the operator ϕ → (∂q

b ϕ, ∂q
hϕ, ∂q

cϕ)T as a q-analog of the gradient, whereas the
corresponding operator ∂ becomes

(α, β, γ)T → 1
2q

(q−1∂q
c α + 2q∂

q
hβ + q∂q

b γ).

In order to describe a q-analog of the Dirac operator we need a q-version of the Cayley-
Hamilton identity for the matrix L (3.3) composed of the REA generators. More precisely
we are interested in the sl-reduced version of this matrix. We get this sl-reduced matrix from
(3.3) by passing to the basis {b, h, c, l} and then killing l. Thus, we have

L =

(
q h
2q

b

c −h
2qq

)
= b

(
0 1
0 0

)
+ h

(
q
2q

0
0 −1

2qq

)
+ c

(
0 0
1 0

)
. (5.2)

The following CH identity can be checked by straightforward computations

L2 − 1
2q

(
q−1 b c +

h2

2q
+ q c b

)
Id = L2 − ρqId = 0. (5.3)
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Here the elements b, h and c are the SLq(2) generators.
Consider the 4× 4 matrix with entries belonging to the algebra L̃q(2)

εl

(
02 I2
I2 02

)
+ b

(
σb 02

02 −σb

)
+ h

(
σh 02

02 −σh

)
+ c

(
σc 02

02 −σc

)
(5.4)

where 02 and I2 are respectively the trivial and unity 2 × 2 matrices, and the matrices
σb, σh, σc are the multipliers of b, h, c in formula (5.2).

Assuming l, b, h, c to be the L̃q(2) generators we get that the square of matrix (5.4) equals
(l2 + ρq)I4. Now, replacing the generators l, b, h, c by the corresponding partial derivatives
we get the q-Dirac operator:

εDl

(
02 I2
I2 02

)
+ Db

(
σb 02

02 −σb

)
+ Dh

(
σh 02

02 −σh

)
+ Dc

(
σc 02

02 −σc

)
. (5.5)

Note that at q = 1 we get an operator which differs from the classical Dirac operator
because we deal with a deformation of the Lie algebra sl(2) instead of su(2) (for the reason
indicated above in the footnote 3).

Of course in order to apply the q-derivatives given in the pseudospherical form (4.8) we
have to replace the algebra L̃q(2) by the quotient Ãq = L̃q(2)⊗K[ρ−1

q ]/〈ρqρ
−1
q − 1〉. In the

sequel we also need its (~, q)-counterpart Ã~,q = L̃~,q(2)⊗K[ρ−1
q ]/〈ρqρ

−1
q − 1〉.

Now we pass to (~, q)-quantization of the wave operators. Here we use the same scheme
as for the ~-quantization. First, we define a Uq(sl(2))-covariant map Υ : Ãq → Ã~,q similar
to that considered in section 2. For this we need the CH identity for the matrix L̂, which
has the same form as L in (5.2) but composed of the SL~,q(2) generators (3.7). In order to
differ these generators from SLq(2) ones we again use the hat notations. So, with the use of
(3.7) one can verify the folloving CH identity

L̂2 − q−1~L̂− 1
2q

(
q−1 b̂ ĉ +

ĥ2

2q
+ q ĉ b̂

)
Id = 0. (5.6)

The eigenvalues of the matrices L and L̂ are treated to be the roots of the equations
induced by identities (5.3) and (5.6) respectively

µ2 − 1
2q

(
q−1 b c +

h2

2q
+ q c b

)
= 0, µ̂2 − q−1~µ̂− 1

2q

(
q−1 b̂ ĉ +

ĥ2

2q
+ q ĉ b̂

)
= 0.

Also, for a generic q the finite spin Uq(sl(2))-modules V q
k analogous to Vk above are well de-

fined in the both algebras. The module V q
k is spanned by the elements bk, Y (bk), Y 2(bk), ..., Y 2k(bk)

where X,H, Y are now the standard generators of the the QG Uq(sl(2)).
For the case of algebras Kq[R3] and SL~,q(2) we put

Υ(bkp(µ1, µ2)) = b̂kp(µ̂1 − q−1~
2

1, µ̂2 − q−1~
2

1),

where p is a symmetric polynomial in two variables. In particular, we have

Υ
(

1
2q

(q−1 b c +
h2

2q
+ q c b)

)
=

1
2q

(
q−1 b̂ ĉ +

ĥ2

2q
+ q ĉ b̂

)
− (q−1~)2

4
1.

The extension of this map up to a Uq(sl(2))-covariant map Ãq → Ã~,q is evident.
With the use of map we can push the q-derivatives forward to the algebra Ã~,q: ∂̂q

a =
Υ∂q

aΥ−1, a = b, h, c. Then, replacing the q-derivatives ∂q
b ... by their q-noncommutative

analogs in formulae for all q-operators in question we get their (~, q)-counterparts. Thus, the
passage from q-counterparts of wave operators to (~, q)-ones is completely analogous to the
~-quantization.
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