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Overview

Short Timeline

Main research themes.

A very short introduction to quantum electrodynamics (QED)

Calculating Casimir forces by QED mode summation.

On the numerical calculation of classical optical forces.

Casimir forces from Matsubara-Green�s functions.

Boundary integral equations for Matsubara-Green�s functions.

Symmetries and reduction.

Regularization.
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Short Timeline
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Johannes Diderik Van Der Waals
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1873 Finite volume e¤ects and binary molecular interactions were
used by J. D. Van Der Waals to derive a generalized
equation of state

(p +
a
ρ
)(ρ� b) = kBT

where p, ρ,T are the pressure,density and temperature. The
coe¢ cients a and b are in general temperature dependent.
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Heike Karnerlingh Onnes
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1901 The virial expansion for the pressure of a many-particle
system in terms of the density was introduced by H. Onnes.

p
kBT

= ρ+ B2(T )ρ2 + B3(T )ρ3 + � � �

The virial coe¢ cients are determined by the nature of the
interaction forces between the individual molecules in the
system.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 7 / 85



1913 W. H. Keesom derive the averaged interaction energy
beween two molecules of permanent dipolemoments µ1and
µ2 at temperature T

U =

(
� 2
3

µ21µ22
R 6

1
kBT

kBT >>
µ1µ2
R 3

�2µ1µ2
R 3 kBT <<

µ1µ2
R 3

Keesom interpret Van der Waals forces ( causing deviations
from the perfect gas equation of state) using this orientation
e¤ect.
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1920-22 P. Debye and H. Fakckenhagen generalize the Keesom model
by including the e¤ect of molecular polarizabilities. For two
identical molecules with permanent dipolemoment,µ, and
polarizabilities,α, they predict an additional interaction
energy

U = �2αµ2

R6

The Van Der Waals forces is explain the in terms of this
induction e¤ect.
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1936 F. London use quantum mechanical zero point �uctuations
of a system of coupled electronic oscillators to derive an
interaction energy of the form

U =
�3�hωα2

4R6

beween molecules without permanent dipolemoment.
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1937 Hamaker derive the Van Der Waals-London forces between
spheres and between a sphere and an in�nite wall by
summing the dipole interaction energy over the volume of
the objects.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 11 / 85



1940-46 Verwey and Overbeek, building on Hamakers work, develop a
theory of stability of colloidal suspensions.The theory �ts the
experimental data only if the Van Der Waals-London
interaction potential between the colloidal particles falls o¤
faster than R�6.
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Hendrik Casimir
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1948 H. Casimir and D. Polder, acting on a suggestion by N.
Bohr, compute the interaction energy between two dipoles
using QED.

U = �23 �hcα1α2
4π

�
1
R7

�
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1948 H. Casimir predict, using mode summation in QED, that the
interaction energy between two parallel, perfectly conducting,
neutral metal plates,separated by a distance R is

U = � �hcπ2

720

�
1
R3

�
The principle of virtual work predicts an attractive force

F =
∂U
∂R

=
π2�hc
240

�
1
R4

�
Casimir interpreted this as the Zero-point pressure.
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1953 H. Casimir suggest that the zero-point pressure exerted on a
spherical, perfectly conducting shell, could provide the
required stabilizing force for the Abraham-Lorentz electron
model.

1956 E. M. Lifschitz computes the force of attraction between
dispersive dielectric halfspaces using Stochastic
Electrodynamics.

1956-1960 Experimental measurements of the force between parallel
plates by Sparnaay ,Derjaguin,Abrikosova,Kitchener,Proser
and several others con�rm Casimirs theoretical prediction.
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1961 Dzyalonshinskii, Lifschitz and Pitaevskii develop a general
theory of Van Der Waals forces using the recently (1955)
discovered Matsubara-Green�s functions.

1961 E. M. Lifschitz show that the Casimir force between
dispersive plates can be repulsive.

1968 T. H. Boyer compute the Casimir force on a perfectly
conducting spherical shell and �nd that it is repulsive. He
thereby invalidates Casimir�s electron model from 1956.

1969 Brown and Maclay compute local Casimir forces using the
Quantum Electrodynamical Stress Tensor.
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Main Research Themes since 1970

Physical factors in�uencing the attractive/repulsive aspect of the
Casimir force.(Dispersion,geometry,dimensions etc.)

The Holy Grail
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Casimir torque.

Timedependent Casimir forces.(Davies-Unruhe e¤ect)

T =
�ha
2πck

Casimir forces for other quantum �elds.(Hadron bag model,
Kaluza-Klein models,The GRID)
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Consequences of the Casimir force for nanoscale
engineering.(Stiction,frictionless bearings etc.)

Improved calculational tools and renormalization techniques.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 21 / 85



Consequences of the Casimir force for nanoscale
engineering.(Stiction,frictionless bearings etc.)

Improved calculational tools and renormalization techniques.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 21 / 85



A very short introduction to Quantum Electrodynamics

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 22 / 85



The Quantum Harmonic Oscillator

The Harmonic oscillator is a Hamiltonian dynamical system described by a
Hamiltonian

H =
p2

2m
+
1
2
mω2q2

The equations of motion are

dq
dt

=
∂H
∂p

=
p
m

dp
dt

= �∂H
∂q

= �mω2q
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Hamiltonian systems are quantized through the procedure of canonical
quantization. The dual pair of variables p and q are replaced by Hermitian
operators bp and bq that satisfy the commutation relation

[bq,bp] � bqbp � bpbq = i�h
The Hamiltonian function become the Hamiltonian operator

bH = bp2
2m

+
1
2
mω2bq2
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The equation of motion are the Heisenberg equations

i�h
dbq
dt

=
hbq, bHi = bp

m

i�h
dbp
dt

=
hbp, bHi = �mω2bq

These equations can be simpli�ed by introducing non-Hermitean operators
a and a† through

bq = i

r
�h
2m
(a� a†)

bp =

r
m�hω

2
(a+ a†)

These operators satisfy the commutation relationh
a, a†

i
= 1
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The Hamiltonian expressed in terms of a and a† is

bH = �hω(a†a+
1
2
)

The energy levels of the harmonic oscillator is determined by the Hermitian
operator N = a†a. Eigenstates and eigenvalues of N are determined by

N jni = n jni

The eigenvalues n are real and nonnegative since N is a positive hermitian
operator. The commutation relation for a and a† imply

a jni =
p
n jn� 1i

a† jni =
p
n+ 1 jn+ 1i

a and a† are the lowering and raising operators.
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Since the eigenvalues n are all nonnegative we must have

a j0i = 0

j0i is the ground state of the system

The eigenvalues n are nonnegative integers.

N is the number operator and jni are the number eigenstates.
The integer n counts the number of discrete excitations or "particles"
in eigenstate jni.
The energy levels are discrete

En = �hω(n+
1
2
), n = 0, 1, 2, ...
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Classical Electrodynamics

The Maxwell equations in a source free region are

r� E+1
c

∂B
∂t

= 0

r�B�1
c

∂E
∂t

= 0

r �B = 0

r � E = 0

Introducing vector and scalar potentials, A and ϕ we get

B = r�A

E = � ∂A
∂t
�rϕ
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And

r2ϕ = �r � ∂A
∂t�

1
c2

∂2

∂t2
�r2

�
A = r

�
r �A+ 1

c2
∂ϕ

∂t

�
Using the Coulomb (radiation) gauge,r �A =0, and assuming,ϕ = 0,since
there are no sources, we get simply�

1
c2

∂2

∂t2
�r2

�
A = 0

r �A = 0
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Solutions harmonic in time

A(x, t) = A(x)e�iωt +A�(x)e iωt

satisfy the boundary value problem

r2A(x)+k2A(x) = 0, k =
ω

c
r �A(x) = 0

The electric and magnetic �eld corresponding to a solution of the
boundary value problem (electromagnetic mode) are

E(x,t) =
1
c

�
dα(t)
dt

A(x)+
dα�(t)
dt

A�(x)
�

B(x,t) = α(t)r�A(x)+α�(t)r�A�(x)

where α(t) = α(0)e iωt .
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The electromagnetic energy in the mode is

H =
1
8π

Z
R3

�
E2(x) +B2(x)

�
dV

=
k2

2π
jα(t)j2

where the mode is assumed to be normalizedZ
R3
jA(x)j2 dV = 1

The complex equation of motion for the mode amplitude α(t) is
α00(t) = �ω2α(t). Introducing real quantities

q =
i

c
p
4π
(α� α�)

p =
kp
2π
(α+ α�)
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the equation of motion become Hamiltonian with dual variables p and q
and with Hamiltonian equal to the electromagnetic energy

H =
1
2

�
p2 +ω2q2

�
The amplitude of a electromagnetic �eld mode of frequency ω

m
Harmonic oscillator with mass m = 1 and frequency ω
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Quantization of an Electromagnetic �eld mode

We quantize a electromagnetic �eld mode by replacing the Harmonic
oscillator for the amplitude with the corresponding Quantum Harmonic
oscillator. This is equivalent to the replacement

α(t) !
r
2π�hc2

ω
a(t)

α�(t) !
r
2π�hc2

ω
a†(t)

The vector potential become the operator

A(x, t) =

r
2π�hc2

ω

�
a(t)A(x) + a†(t)A�(x)

�
The electric and magnetic �eld become operators

E(x, t) = i
p
2π�hω

�
a(t)A(x)� a†(t)A�(x)

�
B(x, t) =

r
2π�hc2

ω

�
a(t)r�A(x) + a†(t)r�A�(x)

�
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The Hamiltonian, or the energy operator, for the �eld mode become

H = �hω(a†a+
1
2
)

The energy eigenmodes are determined by the eigenmodes for the
number operator N = a†a.

The eigenmodes of the energy operator are jni where n = 0, 1, 2, ....
The eigenstate jni represents a n-photon excitation of the �eld mode.
The state j0i has no photons in the �eld but nevertheless has �nite
energy H = 1

2 �hω.

This is the zero-point state of the �eld mode.
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The E and B �eld operators does not commute with the number operator
+

The E and B �elds do not have a �xed value in a energy eigenstate

For a energy eigenstate jni we have

hE(x, t)i = hnjE(x, t) jni
= i

p
2π�hω

�
hnj a(t) jniA(x)� hnj a†(t) jniA�(x)

�
= 0

hB(x, t)i = hnjB(x, t) jni

=

r
2π�hc2

ω

�
hnj a(t) jnir �A(x) + hnj a†(t) jnir �A�(x)

�
= 0

using

hnj a(t) jni =
p
n hnjn� 1i = 0

hnj a†(t) jni =
p
n+ 1 hnjn+ 1i = 0
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For the electric �eld intensity we have

E2(x,t)

�
= hnjE2(x, t) jni
= �(2π�hω)fha(t)a(t)i (A(x))2

�
D
a(t)a†(t) + a†(t)a(t)

E
jA(x)j2

+
D
a†(t)a†(t)

E
(A�(x))2g

and

ha(t)a(t)i =
D
a†(t)a†(t)

E
= 0D

a(t)a†(t) + a†(t)a(t)
E
=

D
2a†(t)a(t) + 1

E
= 2n+ 1
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Thus we get 

E2(x,t)

�
= 4π�hω jA(x)j2 n+



E2(x,t)

�
0

where


E2(x,t)

�
0 is the intensity of the zero point �eld mode

E2(x,t)

�
0 = h0jE

2(x, t) j0i = 2π�hω jA(x)j2

The shape of the intensity pattern is determined by the classical
mode.

The visibility of the intensity pattern is determined by the number of
photons in the mode.
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Quantization of the Electromagnetic �eld

The electromagnetic �eld is expanded in a complete set of modes.

Each mode is a classical Harmonic oscillator and is replaced by a
Quantum Harmonic oscillator.

The lowering and raising operator corresponding to di¤erent modes
commute, [aµ, aµ0 ] = 0, [aµ, a †

µ0 ] = δµ,µ0

A(x, t) = ∑
µ

r
2π�hc2

ω

�
aµ(t)Aµ(x) + a†

µ
(t)A�µ(x)

�
E(x, t) = ∑

µ

i
p
2π�hω

�
aµ(t)Aµ(x)� a†

µ
(t)A�µ(x)

�
B(x, t) = ∑

µ

r
2π�hc2

ω

�
aµ(t)r�Aµ(x) + a†

µ(t)r�A�µ(x)
�
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The Hamiltonian for the �eld is

H = ∑
µ

�hωµ(a†
µaµ +

1
2
)

and the vacuum is determined by the condition

aµj0 >= 0

The vacuum state, or zero-point �eld, belong to an in�nite dimensional
Hilbert space called the Fock space.
The energy of the zero-point �eld is

U = h0jH j0i = 1
2
�h∑

µ

ωµ
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In what sense does electromagnetic zero-point �eld exist?

The entire universe, including any detector, is immersed in the
zero-point �eld. Therefore only deviations from the zero-point �eld
can be detected directly.

The �eld Hamiltonian can be replaced by a physical Hamiltonian

Hph = H � h0jH j0i

= �hω(a†a+
1
2
)� 1

2
�hω

= �hωa†a

H and Hph give the same Heisenberg equation of motion for a and a†,
thus the same physics.

The zero-point �eld induce a small shift in the energy levels of
hydrogen atoms interacting with the �eld. This Lamb-shift has been
detected experimentally(1947).
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For the Heisenberg equations of motion derived from a physical
Hamiltonian:

The zero-point �eld reappear in the form of the homogenous solution.
The homogenous solution is needed to maintain the commutation
relations over time.

In General Relativity the zero of energy is not arbitrary. The
zero-point �eld should give a space-time independent contribution to
the Stress Energy tensor and thereby contribute to the curvature of
space.

The introduction of physical objects and/or nontrivial topology
through boundary conditions will change the zero-point �eld:

Changes in the zero-point �eld will lead to forces between objects
(Casimir forces).
Casimir forces has been detected and agree with theory at the 5%
level(1997).
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Calculating Casimir forces by QED mode summation.
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Casimir force between parallel plates

L

L

d
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The modes of the cavity are determined by the equations

r2A(x)+k2A(x) = 0

r �A = 0

and the following boundary conditions at the walls of the cavity

n�A = 0

n � (r�A) = 0

The boundary conditions and the Helmholtz equation give

Ax = ax

r
8
V
cos(kxx) sin(ky y) sin(kzz)

Ay = ay

r
8
V
sin(kxx) cos(ky y) sin(kzz)

Az = az

r
8
V
sin(kxx) sin(ky y) cos(kzz)
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where

V = L2Lz ,a2x + a
2
y + a

2
z = 1

kx = lπ
L , ky =

mπ
L , kz =

nπ
d where l ,m, n are positive integers and

zero.

The divergence condition give

π

L
(lax +may ) +

π

d
naz = 0

Two independent modes when all integers are nonzero.
One independent mode if one of the integers is zero.

The frequency of a mode determined by integers (l ,m, n) is

ωlmn = πc

s�
lπ
L

�2
+
�mπ

L

�2
+
�nπ

d

�2
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The zero point energy is computed by assigning an energy 1
2 �hω to each

mode

U(d) =
�
∑
l ,m,n

�hω(kx , ky , n)

� �hcL2

π2

Z ∞

0

Z ∞

0
dkxdky

�
∑
n

r
k2x + k2y +

�nπ

d

�2
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Subtracting the energy when the plates are far apart we get

E (d) = U(d)� U(λd)

=
�hcL2

π2

Z ∞

0

Z ∞

0
dkxdky (

�
∑
n

r
k2x + k2y +

�nπ

d

�2
�λd

π

Z ∞

0
dkz
q
k2x + k2y + λ2k2z )

=

�
π2�hc
4d3

�
L2
 
1
2
F (0) +

∞

∑
n=1

F (n)�
Z ∞

0
dκF (κ)

!

where
F (x) =

Z ∞

0
dk
p
x + k2f

��π

d

�p
x + k2

�
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and where f (y) is a function with

f (y) = 1, y << km
f (y) = 0, y << km

where km is some cuto¤ wavenumber. Using the Euler-Maclaurin
summation formula

∞

∑
n=1

F (n)�
Z ∞

0
F (k) = �F (0)

2
� F

0(0)
12

+
F 000(0)
720

+ � � �

we �nd that only the F 000(0) term contribute and

U(d) = �
�

π2�hc
720d3

�
L2

The force per unit area is thus

F (d) =
π2�hc
240d4
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Casimir force on a perfect metal shell

­

R R

R R
S

λS

Where λ � R >> 1. De�ne renormalized energy by

U(S ,R, ga) =
1
2
�h∑

µ

ωµga(ωµ) < ∞

where ga(ω) is a cuto¤ function

lim
a�>∞

ga(ω) = 1

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 50 / 85



The Casimir energy is de�ned by

E (S) = lim
a!∞

lim
R!∞

(U(S ,R, ga)� U(λS ,R, ga))

and the corresponding Casimir force by

F (S) =
∂E
∂S

Where ∂
∂S represents di¤erentiation with respect to the parameters

describing the surface S .
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The Casimir force is tiny by macroscopic standards. For two plates of
area 1cm2 at a distance of 1µm the force is

F � 1.3 10�7 N

equivalent to the weight of a water droplet half a millimeter in
diameter.

However as the distance between object decrease down towards
nanometer scales the force become highly signi�cant.

The Casimir force is already a factor to be taken into account in the
production and operation of MEMS.

The force can be both attractive and repulsive and will play an ever
increasing role as engineering moves into the nanoscale regime.
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Extensions

Lossless dispersive slabs (The Lifschitz theory at zero temperature
rederived by Van Kampen using mode summation in 1961).

Nonisotropic materials (Casimir torque).

Solid metal objects.(Cuto¤ dependence!)

Problems

We need analytic expressions for the modes.

The Casimir energy must be independent of the cuto¤.

Can not easily be extended to lossy materials.

Hard to include temperature e¤ects.
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Some references for QED and Casimir forces

1 "Photons and Atoms. Introduction to Quantum Electrodynamics", C.
Cohen-Tannoudjii,J. Dupond-Roc,G. Grynberg.

2 "The Quantum Vacuum. An introduction to Quantum
Electrodynamics",P. W. Milonni.

3 "Physical manifestations of zero-point energy. The Casimir E¤ect",
K. A. Milton
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On the numerical calculation of classical optical forces
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The stationary Maxwell equations for dispersive dielectric materials are

r� E� iωB = 0
r�B+ iωε0µ0n

2E = j
r �B = 0

r � (ε0n2E) = ρ

where n = n(x, t) is the refractive index of the material. In regions of
constant refractive index we get stationary wave equations for E and B

�r� (r� E) +
�ω

c

�2
n2E = jE

�r� (r�B) +
�ω

c

�2
n2B = jB
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The optical force on an object with surface S in a vacuum is computed
according to

F =
Z
S
T(x) � ndS

where T(x) is the electromagnetic Stress Tensor

T = ε0EE+
1

µ0
BB�1

2
I
�

ε0E � E+
1

µ0
B �B

�
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Boundary Integral formulation of the stationary Maxwell equations

Any solution of the stationary Maxwell equations in a region V of constant
refractive index, satisfy certain integral identities. These integral identities
are derived using

1 A vector-matrix version of Green�s second identityZ
V
f(r� (r�ϕ)) � A�ϕ � (r� (r� A))g dV

=
Z

∂V
n � f(r�ϕ)� A+ϕ� (r� A)g dS

2 A Green�s function for the wave operator corresponding to outgoing
waves at in�nity

G (x, ξ) = g(x, ξ)I +
�

1
k20n

2

�
rrg(x, ξ)

g(x, ξ) = � e ik0njjx�ξjj

4πjjx� ξjj
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The integral identities are

E(ξ) = Ei (ξ)�
Z

∂V
fik0c(B� n) � G + (E� n) � (r� G )g dS

B(ξ) = Bi (ξ)�
Z

∂V

�
�i kn

2

c
(E� n) � G + (B� n) � (r� G )

�
dS

where

Ei (ξ) =
Z
V
G � jE dV

Bi (ξ) =
Z
V
G � jBdV

are the �eld generated by the sources in an in�nite homogenous medium
of the same index as in V .
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Scattering problem

j

V1

S n1

n0

V0
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Using the integral relations for the inside and the outside of all object we
�nd the following set of Müller scattering equations.

n2j E
�
j (ξ) + n

2
0E
+
0 (ξ) = 2n

2
0E
i (ξ)

�2
Z
Sj

n
ik0c(B+j � n) � (n2j Gj � n20G0) + (E+j � n) � (r� (n2j Gj � n20G0))

o
dS

+2∑
l 6=j

Z
Sl

�
ik0c(B+l � n) � (n20G0) + (E+l � n) � (r� (n20G0))

	
dS

B�j (ξ) +B
+
j (ξ) = 2B

i (ξ)

�2
Z
Sj

(
�i
k0n2j
c
(E+l � n) � (n2j Gj � n20G0) + (B+l � n) � (r� (Gj � G0))

)
dS

+2∑
l 6=j

Z
Sl

�
�i k0
c
(B+l � n) � (n20G0) + (E+l � n) � (r� G0)

�
dS
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Boundary conditions at interfaces

The magnetic �eld and the tangential component of the electric �eld
are continuous.
The normal component of the electric �eld satisfy

(n20E
+
j � n2j E�j ) � n = 0,

E�j and B
�
j can be eliminated and we have a closed system of

equations for the surface �eld values E+j and B
+
j .

The �elds can be decomposed into tangential and normal components

ϕi = (E� n)jSi ϕii =
2n20

n2j + n
2
0
(Ei � n)jSi

ψi = (B� n)jSi ψi
i = (B

i � n)jSi
ui = (E � n)jSi uii = (E

i � n)jSi
vi = (E � n)jSi v ii = (E

i � n)jSi
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The resulting system of integral equations is

ϕi (ξ) = ϕii (ξ) +∑
k

Z
Sk
fϕk (x) �Kik (ξ, x) +ψk (x) � Lik (ξ, x)g dS

ψi (ξ) = ψi
i (ξ) +∑

k

Z
Sk
fϕk (x) � Pik (ξ, x) +ψk (x) �Qik (ξ, x)g dS

ui (ξ) = uii (ξ) +∑
k

Z
Sk
fϕk (x) �Mik (ξ, x) +ψk (x) �Nik (ξ, x)g dS

vi (ξ) = v ii (ξ) +∑
k

Z
Sk
fϕk (x) � Rik (ξ, x) +ψk (x) � Sik (ξ, x)g dS

where

Lik (ξ, x) = �
2ik0c
n2i + n

2
0
(n2kGk (ξ, x)� n20G0(ξ, x))
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Computational strategy

1 Solve the coupled system for ϕi (ξ) and ψi (ξ).

2 Compute ui (ξ) and vi (ξ) from the formulas in terms of ϕi (ξ) and
ψi (ξ).

3 Reconstruct the electric and magnetic surface �elds from the identities

Ei (ξ) = ui (ξ)ni (ξ) + ni (ξ)�ϕi (ξ)

Bi (ξ) = vi (ξ)ni (ξ) + ni (ξ)�ψi (ξ)

4 Construct the Stress Tensor

Ti = ε0EiEi+
1

µ0
BiBi�

1
2

�
ε0Ei �Ei+

1
µ0
Bi �Bi

�
5 Compute the surface integral

Fi=
Z
Si
Ti (x) � nidS
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Numerical accuracy

Each surface is split into a large number of disjoint parts

Si = [jSij

The scattering equations for ϕi (ξ) and ψi (ξ) are required to hold a
collection of points ξij 2 Sij

ϕij = ϕiij +∑
kl

Z
Skl

�
ϕk (x) �Kik (ξij , x) +ψk (x) � Lik (ξij , x)

	
dS

ψij = ψi
ij +∑

kl

Z
Skl

�
ϕk (x) � Pik (ξij , x) +ψk (x) �Qik (ξij , x)

	
dS

A simple approximation scheme for the terms in the sums isZ
Skl

ψk (x) � Lik (ξij , x)dS � ψkl � Lijkl

where the tensor Lijkl is de�ned by

Lijkl =
Z
Skl
Lik (ξij , x)dS
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The same approximation applied to the other terms in the scattering
equations give us a set of linear algebraic equations.

ϕij = ϕiij +∑
kl
fϕkl �Kijkl +ψkl � Lijklg

ψij = ψi
ij +∑

kl
fϕkl � Pijkl +ψkl �Qijklg

For any realistic application this system must be solved by iteration.

A large fraction of the work consist of computing the matrix elements
and this makes the algoritm well suited for running on large parallel
clusters.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 66 / 85



The same approximation applied to the other terms in the scattering
equations give us a set of linear algebraic equations.

ϕij = ϕiij +∑
kl
fϕkl �Kijkl +ψkl � Lijklg

ψij = ψi
ij +∑

kl
fϕkl � Pijkl +ψkl �Qijklg

For any realistic application this system must be solved by iteration.

A large fraction of the work consist of computing the matrix elements
and this makes the algoritm well suited for running on large parallel
clusters.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 66 / 85



The same approximation applied to the other terms in the scattering
equations give us a set of linear algebraic equations.

ϕij = ϕiij +∑
kl
fϕkl �Kijkl +ψkl � Lijklg

ψij = ψi
ij +∑

kl
fϕkl � Pijkl +ψkl �Qijklg

For any realistic application this system must be solved by iteration.

A large fraction of the work consist of computing the matrix elements
and this makes the algoritm well suited for running on large parallel
clusters.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 66 / 85



Numerical tests

The implementation is tested on simple dielectric spheres and layered
spheres.

For these systems the exact solution of the scattering problem is
known. These are the Mie-solutions.
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Scaling behaviour of the boundary integral method

We consider N randomly places dielectric spheres.

The spheres has a radius of 1 micron and a refractive index of n = 2.

The resolution is 1800 points per sphere.

N Running times(sec) #cpu
1 45 2
2 65 5
3 68 10
4 70 17
5 71 26
6 73 37
7 90 50
9 105 82
12 119 145
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Casimir forces from Matsubara-Green�s functions

The basic elements in the description of Casimir forces using
Matsubara-Green�s functions was developed by
Dzyalonshinskii,Lifshitz and Pitaevskii in 1961.

The possibility of using numerical methods for the computation of the
required Green�s functions was �rst suggested by
Rodrigues,Joannopoulos,Johnson in 2006.

The force on an nonmagnetic object V with surface S and linear electric
response de�ned by ε = ε(x,ω) is given by

F =
Z ∞

0

�Z
S
T (x, x,w) � n dS

�
dw
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T is the stress tensor evaluated at imaginary frequencies

T (x, ξ,w) = ε(x,iw)GE (x, ξ,w) +
1

µ0
GB (x, ξ,w)

�1
2
Tr
�

ε(x,iw)GE (x, ξ,w) +
1

µ0
GE (x, ξ,w)

�
I

and GE and GB are the zero temperature Matsubara-Green�s functions.
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The Matsubara-Green�s functions are calculated from the following
equations

r�r� E(x, ξ,w) +
�w
c

�2
n2(x,iw)E(x, ξ,w) = δ(x� ξ)I

r�r�B(x, ξ,w) +
�w
c

�2
n2(x,iw)B(x, ξ,w) = r� (δ(x� ξ)I )�r

GE (x, ξ,w) =
�h2w2

π
E(x, ξ,w)

GB (x, ξ,w) =
�h

πc2
B(x, ξ,w)

The quantities B(x, ξ,w),n(x)�E(x, ξ,w) and n(x) � (n2(x,iw)E(x, ξ,w))
are continous across interfaces.
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Extensions

1 T is the stress tensor for a body in mechanical equlibrium.

2 Temperature e¤ects are included by making ε(x,ω,T ) a function of
the temperature. The formula for T is the same. The force formula
become

F =
T
4π

∞

∑
n=0

�Z
S
T (x, x,wn) � n dS

�
where wn = 2πnT are the Matsubara frequencies.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 72 / 85



Extensions

1 T is the stress tensor for a body in mechanical equlibrium.
2 Temperature e¤ects are included by making ε(x,ω,T ) a function of
the temperature. The formula for T is the same. The force formula
become

F =
T
4π

∞

∑
n=0

�Z
S
T (x, x,wn) � n dS

�
where wn = 2πnT are the Matsubara frequencies.

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 72 / 85



Remarks

The theory is based on a continuum description of materials whose
optical response is described by a dielectric function ε(x,ω,T ).

The dielectric function must be derived from experimental data or
calculated using many-particle theory (Hard!).

Main contribution to the Casimir force must come from wavelengths
that are large compared to interatomic distances.

The key elements in the theory are identities that relate correlation
coe¢ cients of components of the quantized
electromagnetic �eld to the Green�s function of the classical �eld
equations

�h2w2

π
E(x, ξ,w) = h0 jE(x,iw)E(ξ,iw)j 0i

Such identities are realizations of the �uctuation-dissipation theorem.
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Computational challenges

1 The source in the equations for E and B are highly singular for x = ξ.

2 In the force formula we need to evaluate the Matsubara-Green�s
functions at the singularity x = ξ.

3 For a given object we must solve the equations for all positions of the
source on the surface.

4 Possibilities for dimensional reduction is severely limited, the problem
is almost always 3D.
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Boundary Integral equations for Matsubara-Green�s functions.

The key element in deriving the boundary integral formulation for the
Matsubara-Green�s function is the following Green�s identity for matrix
�eld A and B.

t (r� (r� A))B �t A (r� (r� B))
= t �t (r� A)� B��t �tA� (r� B)�

where the transpose acts on the left pair of indices and where for matrices
we de�ne

(r� A)ij = εikl∂xk alj
(C �D)ijk = εjnmcindmk

Per Kristen Jakobsen () Lie seminar 07.05.2009 07/05 75 / 85



Using integral for of the identity we get the following boundary integral
equations for the Matsubara-Green�s functions

n21E1(η, ξ) + n20E0(η, ξ) = 2n2j E i (η� ξ)

� 2PVη

Z
S
f(n21G1 � n20G0)(n�A(x, ξ))

+ t (r� (n21G1 � n20G0))(n�E(x, ξ))gds

A1(η, ξ) + A0(η, ξ) = 2Ai (η� ξ)

� 2PVη

Z
S
f�w2(n21G1 � n20G0)(n�E(x, ξ))

+ t (r� (G1 � G0))(n�A(x, ξ))gds

Where η 2S , and j = 0, 1 if ξ 2Vj .
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The matrix function E ij (η�ξ) and Aij (η�ξ) are the Matsubara-Green�s
functions generated by the delta function source in the absence of the
scattering object

E i (η�ξ) = Gj (η� ξ)

Ai (η�ξ) = r�Gj (η� ξ)

for ξ 2Vj .
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Observations

There is another system of equations for the remaining two Green�s
functions B and C.

The Green�s functions Gj (r) are evaluated at imaginary frequency
and are thus exponentially decreasing in r = jjrjj.
The source functions has a nonintegrable singularity of strength 1

r 3 , as
ξ1 approach the surface S . By linearity the solution will have the
same singularity.

The force formula require us to compute the integral of E(η, η),
exactly at the nonintegrable singularity.

In order to compute the force we must solve the boundary integral
equations for all positions,ξ, of the source on the surface.
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Symmetries

Let G be the group of a¢ ne isometries of space. Thus g 2 G implies that
g(x)i = aijxj + bi

where at = a is an orthogonal matrix. Observe that the source functions
E i and Ai satisfy the relations

apkaqjE ipq(x) = E ikj (g�1(x))
jajapkaqjAipq(x) = Aikj (g�1(x))

These relations means that the sources are invariant under the action of
the group G . The Matsubara-Green�s functions are in general not invariant
under G . However if the surface S is invariant under a subgroup H � G
then the Matsubara-Green�s functions are also invariant under H. Thus for
all g 2 H we have

apkaqjEpq(x, y) = Ekj (g�1(x), g�1(y))
jajapkaqjApq(x, y) = Akj (g�1(x), g�1(y))
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Casimir force on symmetric objects

For g 2 H we have from the change of variable formula and the
invariance of the stress tensor, T , that the Casimir force f = (fi ) on
the object enclosed by the surface S is

fi =
Z
S
apiaqjTpq(x)aljnl (x)dS

If the surface is invariant under re�ection through the origin we have

aij = �δij

The force formula then immediately gives

f = 0

Thus there is no Casimir force on a sphere or a spherical shell, there is
however a Casimir stress.
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Reduction

1 Let S0 � S be a subset of points of S such that S0 generate the
whole of S under the action of the symmetry group H.

H(S0) = S

Then we only need to solve the equations for source locations in S0.
This can, depending on the nature of the subgroup H, lead to a
substancial reduction in computational e¤ort.

2 Let Hξ be the subgroup of H that �x a source location ξ. If Hξ is a
continous subgroup with Hξ(γ) = S where γ � S is a curve on S ,
the problem can be reduced to a 1D integral equation on γ.
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Regularization

The basic idea for regularizing the Matsubara-Green�s functions is to
subtract the (in�nite) contribution from the sources and consider the
di¤erence

4E(η, ξ) = E(η, ξ)� E i (η� ξ)

as the basic physical quantity.
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n214E1(η, ξ) + n204E0(η, ξ) = (n21 � n20)G1(η� ξ)+4E i (η� ξ)

� 2PVη

Z
S
f(n21G1 � n20G0)(n�4A(x, ξ))

+ t (r� (n21G1 � n20G0))(n�4E(x, ξ))gds

4A1(η, ξ) + 4A0(η, ξ) = 4Ai (η� ξ)

� 2PVη

Z
S
f�w2(n21G1 � n20G0)(n�4E(x, ξ))

+ t (r� (G1 � G0))(n�4A(x, ξ))gds

where the new sources are
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4E i (η� ξ) = �2PVη

Z
S
f(n21G1 � n20G0)(x� η)(n�Ai (x� ξ))

+t (r� (n21G1 � n20G0))(x� η)(n�E i (x� ξ))gds

4Ai (η� ξ) = �2PVη

Z
S
f�w2(n21G1 � n20G0)(x� η)(n�E i (x� ξ))

+t (r� (G1 � G0))(x� η)(n�Ai (x� ξ))gds
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Remarks

1 For the case when S consists of a �nite number of parallel plane
surfaces the boundary integral equations are regular in the limit
ξ ! η.

2 For general surfaces the integrand has a nonintegrable singularity.
Further regularization is needed.
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