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Abstract

In this paper, we show that the boundary integral method is highly efficient for the calculation
of optical forces on small dielectric and metallic objects. The boundary integral formulation
for the Maxwell equations is stated, and an implementation of the equations is described,
tested and used to derive new bistability results for two dielectric spheres in

counterpropagating incoherent laser beams.

PACS number: 42.50.wk

1. Introduction

A large class of computational problems in optics, and
photonics in particular, involves the scattering of light
by linear materials that have piecewise constant material
constants. In many cases, the light sources are approximately
monochromatic. It is furthermore typically the case in which
the values of the electric and magnetic field components are
only needed in a limited part of what is usually a noncompact
domain. This is particularly true for near-field optics and for
the calculation of resonances and optically induced forces.
Under these circumstances, domain-based methods like the
finite difference time domain method (FDTD) [18, 19, 21],
finite element methods [2, 9, 20] or Galerkin methods in
general have major shortcomings with respect to efficiency,
numerical stability and implementational complexity. The
basic source of the weaknesses is the presence of noncompact
domains and discontinuous coefficients in the Maxwell
equations. Both issues can be, and have been, addressed
and methods have been developed that to some extent solve
the problems. The noncompact domain problem has been
addressed by the development of the perfectly matched layer
(PML) [3, 8] where the computational domain is surrounded
on all sides by a layer that perfectly absorbs all waves and thus
in theory gives a perfect simulation of a noncompact domain.
In practice, a certain amount of tuning is however necessary
to balance the level of reflection against the computational
resources that are to be allocated to the computation inside
the layer. If this is not optimized carefully, one can easily end
up using a large fraction of the computational resources in
the PML layer. The presence of the layer certainly introduces
complexities in the implementation and purely mathematical
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issues that are not part of the actual physical model. The
problems stemming from the discontinuous coefficients have
been addressed by introducing nonuniform computational
grids and by the smoothing of the discontinuous domain
boundaries. In many situations, this takes care of the worst
problems but at, in many cases, a significant additional
complexity in the implementation and computational stability
and cost. Even if we assume that the domain methods are
perfected and that problems like the ones discussed here are
fully solved, we are still left with the fact that the domain
methods compute the fields at all points of the domain,
whereas the values are in many cases only needed in a small
part of the domain. This is an irreducible problem for any
domain-based method.

It is well known in other areas of computational physics,
but may not be so well known in computational photonics,
that for the type of computational problem described in this
paper, the method of choice is the boundary integral method
(BIM). In this method, the governing differential equations
are reformulated as integral equations involving unknown
fields only on the surfaces separating the domains defined by
constant material parameters. Since these surfaces typically
are compact whereas the whole domain is noncompact, we
have effectively removed one whole space dimension from the
problem. The fields at any particular point in the domain can
be computed from the field values on the bounding surfaces
by using certain integral identities. These calculations come
of course at an additional computational cost, beyond the
one required for the solution of the integral equations, and
if the values of the fields at all points in a large domain
are needed, the cost can be prohibitive. However, in few, if
any, experimental situations are the fields in large domains
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measured, or even of interest. Usually, the parameters
measured are collective parameters that can be calculated
from the surface values of the fields at low computational
cost. A typical example of this is the computation of optically
induced forces. We are aware of the fact that there are still
unresolved issues surrounding the calculation of such forces
and even their precise definition [5, 11]. We will here assume
that the forces can be calculated by using a stress tensor.
Usually for optical applications, we use the Minkowski stress
tensor but the point we are making here is in no way dependent
on the choice of this particular tensor. Calculation of the force
using the Minkowski stress tensor requires the values of all
the fields on the bounding surface defining the object and only
these values. In this sense, the BIM is optimal for computing
optical forces; one can compute exactly what is needed and no
more. The calculation of resonance curves can also be reduced
to a calculation involving the surface fields only and the BIM
is thus optimal for such calculation also.

The BIM is not however without problems of its own. The
two foremost are related to the singular behavior of Green’s
functions when the source point and the observation point
coincide and to the fact that, in many cases, discretization
leads to nonsparse nonsymmetric matrices whose matrix
elements are difficult to compute. The first problem
becomes more severe as the dimensionality of the problem
increases and is particularly severe for three-dimensional
(3D) electromagnetic scattering from dielectric and nonideal
conductors. The BIM equations for this case cannot be
said to be directly derived from the Maxwell equations
but are rather consistent with the Maxwell equations and a
natural regularization procedure. The BIM equations for the
electromagnetic case are usually called the Miiller scattering
equations [14, 15, 17], but we are aware of the fact
that there are other boundary integral formulations of the
Maxwell equations known in the research literature [6]. The
regularization procedure does not remove the singularity from
the BIM equation, but only makes it integrable. The issue
of how to handle the resulting 2D principal value integral
numerically is of central concern and will be addressed in
detail. The nonsymmetry and nonsparsity of the matrices
resulting from the discretization can not be evaded and must
be faced head on. The nonsymmetry, nonsparseness and
high computational cost of computing the matrices resulting
from any discretization of the BIM has traditionally been
considered as a major drawback, even a fatal one. There
used to be a certain amount of truth in this criticism, but
with the shift in computational platforms from serial to large
scale parallel clusters, this criticism has lost much of its
force. In fact, in a highly parallel computational environment,
it is desirable to shift the computational work from the
solution of linear systems to the computation of the matrix
for the system. This is because the computation of the matrix
elements is trivially 100% parallelizable whereas the solution
of the linear systems is not. Thus in the current computational
environment, it is actually preferable to shift the workload
from solving linear systems to computing the matrix for the
linear system and this is exactly what the BIM achieves.

The paper is organized in the following way. In section 2,
we formulate the Miiller scattering equations for multiple
scattering objects. Issues relating to the discretization,

numerical implementation and efficiency are discussed in
section 3. This section also contains a detailed comparison of
the exact Mie solution [4, 13] for single spheres and for two
concentric spheres [1]. We discuss both surface field values
and optical forces. The problem of optically induced forces
between dielectric spheres in counterpropagating incoherent
Gaussian beams has been discussed both experimentally and
numerically using the paraxial beam propagating method [12]
and the coupled dipole method [10]. In section 4, optical
forces are computed for the two-sphere system using the
BIM. Section 5 contains a summary. The Miiller scattering
equations are derived in the appendix.

2. The Miiller scattering equations

The basic mathematical model describing the type of
systems discussed in the introduction are the frequency
domain Maxwell equations for linear nonmagnetic dispersive
materials:

VxE—iwB =0,

V x B+ia)80,u0n2E =j,
V-B=0,
V- (gon’E) = p

The charge density p and the current density j represent
sources of the incoming fields in the scattering problem. The
refractive index n =n(w,X) can be both real or complex
and can thus model both dielectrics and metals in the linear
response regime. The fields are the frequency components
Ex,w) and B(x,w) of the time-dependent E and B
fields. Note that we use a sign convention where there is a
minus sign in the exponent of the inverse Fourier transform.

Let V; for j =1,2,...,q be ¢ homogeneous scattering
regions with bounding surfaces S;, these are usually compact
domains. Furthermore, let V{) be the region exterior to all the
objects V;, this is usually a noncompact domain. The Miiller
scattering equations for this situation are given by

W2 (&) +n2Ef () = 202 (6) — 2 /

{ikoc(B} x m)
S

(n3G; —ngGo) + (EY xm) - (V x (n5G; —n3Gy))} dS

+2)° / ikoc(Bf x m) - (n2Go)
I#]j

+(E} xn) - (V x (n5Go))} dS (1)

B () +B1(§) =2B'(5) —2 f

Sj

—n3Go)+ (B} xm) - (V x (Gj—Go))}dS

{ —i@(Ef X 1)
Cc

-(n2-G~

+2 Z/ {—1—(E+ x n) - (n§Go) + (Bf xn) - (V x Go)} ds.
I#]j 2)

In these integral equations, ko = ¢ and & is an arbitrary
point on the surfaces S;. The quantities E;" and B} are the
electric and magnetic fields evaluated infinitesimally close to
the inside of the bounding surface S;, and E; and B;T are
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the fields evaluated infinitesimally close to the outside of the
bounding surface S;.

The fields E' and B’ are the electric and magnetic fields
generated by the source in the absence of any scattering
object. These are by definition the incoming fields in
scattering theory. The matrix-valued quantities G;(x, &) are
the dyadic Green’s functions for the Maxwell equations in
regions of constant refractive index:

1
kon;
where I is the identity matrix and g;(x, &) is the following
Green’s function for the vector Helmholtz equation:

cikon,Ix—¢

gi(x,8)= —m~

Note that, for / = j, the surface integrals are Cauchy
principal value integrals since the dyadic Green’s function has
a singularity when x = &.

Using the fact that the magnetic field and the tangential
component of the electric field are continuous across an
interface between nonmagnetic materials and that the normal
component of the electric field satisfies

(n(z)E; — n?E;) -n=0,

E; and B; can be ecliminated and we have a closed
system of equations that can be solved for the surface
field values E7 and B;. The equations can be considerably
simplified by decomposing the fields into tangential and
normal components:

¢ = Exm)]s go;iziz—i%(E"xnns,,
Yi=®Bxwls  yi=® xnlg,
u; = B-m;, u) = (B )]s,
v =(E-n)ls vl = (E 0.

The resulting system of integral equations is as follows:

oi(6) = ¢:f(s)+2/s () K&, %)
X k

+Yi(X) - Lig (5, %)} dS, 3

w,-(s>=w;‘(s>+2/s (P (X) - Pi(&.%)
k k

+Y (%) - Qir(§, %)} dS, “

i (€) =u§(.§>+2/s {pe (%) - Mix (€, %)
k k

+Yr(x) - Ni(§, %)} dS,

vi (€) =vf(§>+Z/S {pe(®) - Rt (8, %)
k k

+Yp (X) - S (8, %)} dS,

where

2ik
LiE.%) = =55 n}Gu(. 0 — miGol§. X)), (5)
i 0

etc. We note that the normal components are decoupled from
the tangential components. The computational strategy is
to first solve the equations for the tangential components,
thereafter compute the normal components from the two last
equations and finally reconstruct the electric and magnetic
fields using the relations

E() =u(&)n() +n(§) x ¢(§),
B() = v(é)n() +n(&) x ¢ (§).

3. Numerical implementation

We discretize the Miiller scattering equations by splitting each
surface into a large number of disjoint parts

S,‘ =U j S,' j
and by selecting a corresponding collection of points &;; with

&ij € S;;. The scattering equations (3) and (4) are required to
hold at the collection of points &;;. Therefore,

@ij =¢fj+Z/S {oe®) - Ki (&7, %)
KV Su
+(X) - Lig (5, %)} dS,
vij = Wf;‘*Z/S {oe®) - Pix(8ij. %)
KV Su

+i(x) - Qir (&, %) } dS,

where ¢ =¢;(§;) and Y =), A
approximation scheme for the terms in the sums is

simple

/ Yu(X) - Lig (&5, X)AS ~ Yy - Lijuas
Ski

where the tensor L;;, is defined by

Lijkl=/ Lix(&ij,x)dS.
Ski

The same approximation applied to the other terms in
the scattering equations gives us a set of linear algebraic
equations:

Qij =i+ Z {out - Kijur + V- Lijua }
kl (6)

Vi =V, +Z {out - Pijia + Vi - Qijua }-
xl

For terms where (i, j) # (k, [), we use a 2D Gauss quadrature.
For terms with (i, j) = (k, [), which are the diagonal terms,
the integrand has a singularity in the integration domain
and the integrals must be solved as a 2D principal value
integral. This means that if D, is a circular disc of radius ¢
centred on the point &, then by definition

L,’j,‘jz lim L,’j(f,'j,X)dS.
eV JS—-D;
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It follows from the construction of the Miiller scattering
equations that all such principal value integrals exist and
thus the diagonal terms are finite. The diagonal terms are
calculated by using a further approximation that reduces them
to line integrals around the boundary of the surface §;;. We
illustrate how this is done by using the tensor L;;;;. Some

simple algebra gives
2ik
Lijiy = — ——— (| tim f a(r)ds | 1
ny+ng \[#—0Js;-p.

+ |:lim / p (2r )rrdsD, %)
e—0 Si;— D, r

wherer =x —§;;, 7 =||r|| and a(r), B(r) are certain functions
with a singularity at r = 0 that are derived from the dyadic
Green’s function. We now assume that the surface pieces S;;
are taken to be so small that they can be assumed to be
flat. The integrals in (7) are then integrals in a plane with
coordinate vector r = (x, y) and can be simplified by using
a version of Green’s theorem for plane regions. Note that we
have the following identities:

V- (g(r)r) =a(r),

V. (h(r)rrr) = @rr,

where
1 ’ / ! 7
g<r>=—2f Fa(r)dr,
r=Jo
1 " / ! ’
h(r):—4 r'g@’)dr.
r~Jo

Green’s theorem gives

lim oc(r)dS:/ g(r)r-nd/
e—0Js._p, a8i;
+ lim g()r-nd/
e—0 3D,
=/ g(r)r-ndl,
BS,',’
lim ﬂ(zr)rrdSz/ h(r)rrr -nd/
e—0Js._p, T 35S
+ lim h(r)rrr - nd/
e—>0 3D,

= / h(r)rrr -ndl.
S,

The integrals defining the functions g(r) and h(r)
can be solved in terms of elementary functions. The line
integrals around the boundary of S;; are solved numerically
using Gauss quadrature. The linear system (6) is nonsparse
and nonhermitean as is typical for the BIM. However, the
linear system is rather small (a few thousand equations
for micronsized spheres) and is effectively solved by using
the generalized minimum residual method (GMRES) [16].
We use a parallel implementation of GMRES developed by
CERFACS [7].
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Figure 1. BIM solution (line) and Mie solution (crosses) for the
electric field of a single sphere of index n = 1.5 and 2.0.

4. Validation of numerical implementation

Considering the mathematical status of the derivation of the
Miiller scattering equations and various approximations used
in deriving the linear algebraic system, it is important to solve
the equations for cases where exact solutions are known or
where the scattering problem has been solved by other means.
This will give an indication of the accuracy of the assumed
approximations.

4.1. Single spheres

We start with the classical case of a plane wave scattering
off a dielectric or metallic sphere. The exact solution is the
well-known Mie solution [4]. We assume that the plane wave
is polarized along the x-axis and that the wave vector points
along the positive z-axis. In figure 1, the exact solution is
compared with the boundary integral solution for a sphere
of diameter 2 um and with the incoming light having a
wavelength of 2 um. In the first row of figure 1, the sphere
has an index 1.5 and in the second row it has an index 2.0.
The index of the surrounding medium is in all cases 1.0. In
the left column of the figure, we compare the x-components of
the amplitude of the electric field | E, | that are infinitesimally
close to the outside of the sphere along a longitude of
the sphere. Theta is the longitudinal angle with respect to the
positive z-axis. The angle of latitude with respect to the
positive x-axis is 0 in this figure. The Mie solution is always
represented by crosses and the boundary integral solution by
lines. In the right column, we compare | E, | along the z-axis.
We compute the field along the axis using the following
integral relations:

E) =E (¢) +/S {ikoc(B* x m) - Gy
+E* xn) - (V x Go)} dS, (8)

E@¢) =— | {ikocB; xn)-G;+(E; xn)-(VxG;)}dS,

S;
©))
where equation (9) is applied inside the sphere and (8) outside
the sphere. Note that there is a break in the curves for the
on-axis fields where they cross the sphere surface. This is
because equations (8) and (9) have nonintegrable singularities
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Figure 2. BIM solution (lines) and Mie solution (crosses) for the
electric field of a single sphere of index n = 4 (top) and 2.0 +i7.0
(bottom).
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Figure 3. Force on a single sphere as a function of index. BIM
solution (line) and Mie solution (crosses).

at the surface. If for some reason values of the electromagnetic
field close to but not infinitesimally close to the surface are
needed, there will be a direct relation between the distance
to the sphere surface and the number of points we must use
in the discretization of the boundary integral equations. It is
important to note that the singularities in (8) and (9) play no
role in the calculations of forces and resonance curves as such
calculations only depend on the fields that are infinitesimally
close to the surface. In figure 2, the first row has the same
interpretation as that in figure 1 but here the index of the
sphere is 4. In the lower row, we compare the field along the
z-axes for a small aluminum sphere of radius 0.24 um with
incoming light of wavelength 0.65 um.

The figures show that our implementation of the
boundary integral equations is quite accurate. Only for a
sphere index of 4.0 is there any noticeable difference, and the
difference is small. In figure 3, we compare the z-component
of the optical force computed using the Mie solution and
the boundary integral equations for a range of indices for
the sphere. The Mie solution is as usual represented by
crosses.

4.2. Two concentric spheres

The scattering problem for two concentric spheres has
been solved by using the same approach as in the single

sphere case [1]. The Miiller scattering equations (1) and
(2) were derived under the assumption that the scattering
objects have zero intersection. For the case when we
have inclusion relations between the scattering objects, the
scattering equations are derived using the same approach, but
the equations will be slightly different. If scattering object
no. 1 with index n; is included in scattering object no. 2 with
index n, and if the outside of object no. 2 has index ng, the
equations are found to be

niE; (&) +n3Ef () = —2/ {ikoc(B} x m) - (171G —n3G>)

Sy

+(E} xn) - (V x (n1G —n3G,))} dS

—Z/S {ikoc(B3 x m)-(n3G>) + (E3 x n)-(V x (n3G»))} dS,
n3E; (€) + moE; (§) = 2ngE' (§)

-2 /S {ikoc(B} x m) - (13G> — nyGo)

+(E;2x n) - (V x 135G, —n3Go))} dS

+2/ {ikoc(B} x m)-(n3G>) + (E} x n)-(V x (n5G,))} dS,
M

B (5)+BI(¢) = —2f

k
{—i—O(E’l’ xn)- (3G, —n3G,)
Si c

+(BT xn)-(Vx (G| — Gz))} ds
—2/ {—i@(Eg X n)-(n%Gz) + (B; xn)-(V x (Gz))} ds,
S5 c

B; (6) + Bi(£) = —2/

k
{—i—O(E; xn) - (n3G, —n2Go)
S, c

+ (B3 xn)-(Vx (GZ—GO))}dS

+2/ {—i@(Eir X n)~(n%G2) + (B} xn)-(V x (Go))} ds.
] 4

The equations are solved for a fixed value, n; = 4, of the
index of the inner sphere and a range of values from 1.0 to
4.0 of the index n, of the outer sphere. The result is shown in
figure 4. The figure shows that for most values of the outer
index, the forces calculated by using the Mie solution and
the boundary integral solution are quite close. The enhanced
values of the force occur as expected at Mie resonances for
two concentric spheres. The actual error is a few percent for
most values of the outer index.

Comparison between a purely serial implementation and
a coarse grained parallel implementation running on four
cores shows a speedup by a factor of 3. This large speedup
is a result of the fact that in the boundary integral approach
to solving the Maxwell equations, a large fraction of the
work goes into calculating the matrix elements, and this
part of the calculation is trivially 100% parallelizable. The
scaling behavior of our algorithm for solving the Miiller
scattering equations was further investigated by implementing
the algorithm on a large cluster. The following table shows
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Figure 4. Force on a layered sphere as a function of the index of
the outer layer. BIM solution (line) and Mie solution (crosses).

the execution times on the cluster for N randomly placed
dielectric spheres. The spheres have a radius of 1 um and a
refractive index of n = 2. The resolution is 1800 points per
sphere.

N Running #cpu

times (s)
1 45 2
2 65 5
3 68 10
4 70 17
5 71 26
6 73 37
7 90 50
9 105 82
12 119 145

Few, if any, algorithms for solving the Maxwell equations
can match this efficiency.

5. Force between a pair of dielectric spheres

There have been a fair number of experimental and theoretical
investigations of the force between two dielectric spheres in
the field generated by two incoherent counter propagating
laser beams. In particular, the location and stability of force
equilibrium points have been of interest. In [12], the system
consisting of two spheres oriented along the axis of the
two counter propagating beams was investigated. The index
step between the spheres and the host (sugar water) was
chosen to be small in order to ensure that the light scattering
properties of the system could be described within the paraxial
approximation. This made it possible to simulate the system
by using a standard beam propagating code. The simulation
compared well with the experiment and both showed the
existence of a bifurcation diagram with up to three force
equilibria for variable index steps. The same system was
investigated in [10]. Here the system was simulated using
the coupled dipole method (CDM). This method does not
depend on the paraxial approximation and is in principle
exact. In practice, many of the same numerical issues arise
as in the BIM. Discretization typically leads to matrices that
are much larger than for the BIM for a fixed accuracy and this

Bifurcation diagram for twosphere equlibrium points

50

45

40

Distance

35

30

25
+

|III|IIH|III|II|III|III|II

12 14 16 18 20 22 24

Sphere index

Figure 5. Bifurcation diagram for two sphere equilibrium points.

is obviously an issue when linear systems are to be solved.
The CDM shows that backscattering is important and leads to
the existence of multiple closely spaced force equilibria that
makes comparison with the experiment difficult, as noted by
the authors in [10].

The effect of the backscatter can be avoided and cleaner
results can be obtained if the location of the source lasers is
rotated by 90° so that the beam is perpendicular to the axis
connecting the centers of the spheres. One should of course
defocus the beam such that any source-induced gradient force
effect is avoided and the measured forces are induced by light
scattering alone. In figure 5, we show a sample bifurcation
diagram for such a system computed by using the BIM. We
assume a single plane wave source polarized along the axis
connecting the centers of the two spheres, a background index
of 1.0, two spheres with diameter 2 um and a wavelength of
2 um for the incoming plane wave. A plus sign in a region
indicates that the spheres are attracted to each other and a
minus sign indicates that they are repelled. As we can see from
the diagram, there is a clear indication of the existence of the
three equilibria and regions of bistability. It is evident that the
geometry discussed here gives a better chance of comparison
between experiment and computation than the setup discussed
in [12] and [10].

6. Summary

In this paper, we have shown that the BIM is an effective
and accurate computational method for solving a range
of problems that are common in computational photonics.
For solving these types of problems, we believe that none
of the standard domain-based methods can compete with
the BIM with respect to efficiency and implementational
simplicity, especially in a parallel cluster-based computational
environment. The method has been tested on single spheres
and concentric spheres where exact solutions are available
and has been used to predict bistability for two spheres with
a geometry that differs from the one that was discussed
previously. This last result is, as far as we know, new.
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Appendix

The boundary integral formulation of the Maxwell equations
used in this paper is usually called the Miiller scattering
equations. The actual derivation of these equations is however
not easy to find in the literature and we therefore consider
it appropriate to include a detailed description of the
regularization procedure in this appendix to the paper. Other
boundary integral formulations of the 3D Maxwell equations
can be found in the literature [6], but we believe that for the
calculation of optical forces the Miiller scattering equations
are the best choice. It is formulated directly in terms of
the quantities of interest for force calculations, represents
the singularity in an explicit way in terms of principal
value integrals and is very efficient in the sense that for N
discretization elements we have 4N equations to solve.

In order to derive the Miiller scattering equations, we
need a version of the second Green’s identity. For a vector
field ¢ and a matrix field A, we have the following for an
arbitrary volume V with boundary 9 V':

/{(vX<VX¢>>~A—</)~<Vx<vXA)>}dV
1%

:/ n-{(Vxg)xA+px(VxA)}dS.
av

The second major ingredient we need is the fundamental
solution G(x,&) of the operator L(p)=—-V XV xep+
kon?¢, corresponding to outgoing waves at infinity. With our
sign convention for the Fourier transform, this is

1
G(x, ) =g, )1+ (2—2> VVg(x,§),
kyn
where [ is the identity matrix and g(x, &) is a fundamental
solution for the vector Helmholtz equation, given as
eikonlx—¢|
drlx—&|°

The matrix function G(x, &) is a well-known dyadic
Green’s function and satisfies by constructing the equation

g(x,8) =

—VXVxG+kon’G =8x—§)I,
V.-G=0, x=#E&.

Using ¢ = E and A = G in the vector—matrix Green’s identity,
we obtain the following by using the equations LE = j; and
LG=6(x—-¢&)l.

[E(x)a(x—g)dsz"(g)+/ n-{(VxE)xG
\%4 v

3
+E x (V x G)}dS,

where we have defined

Ei($)=/ G-jedV.
Vv

If we assume & € V, we obtain the following fundamental
integral identity for the electromagnetic field:

E(g):E"(s)+/ n-{(VxE)xG+Ex (VxG)}dS.
A%

Using the Maxwell equations and some standard vector
calculus, the integral identity can be written as

E() =E'(§) —/ {ikoecB xn)-G+(E xn)-(VxG)}dS.
av

In a similar way we obtain for the magnetic field

2
B() =B"(s>—/ { M B .6
v Cc

+Bxn)-(Vx G)}dS.

In these two equations £ is an arbitrary point inside the
volume V. Note however that the equation for the dyadic
Green’s function holds for all &, also those that are not inside
the volume V. Assuming £ is outside the volume, we obtain
two additional integral identities that play a crucial role in the
derivation of the Miiller scattering equations:

0=E"(.§)—/ {ikoc(B xn)-G+(E xn)-(V x G)}dS,
aV

2
0=B"(.§)—/ {—ili(Exn)-G+(an)~(Vx G)}dS.
v c

These last two integral identities express what is traditionally
called the Oseen extinction theorem and is the solution to a
historically important problem concerned with the behavior of
electromagnetic waves when they cross a boundary between
two materials with different refractive indices. Note that the
only assumptions involved in deriving the integral identities
are that the field satisfy the stationary Maxwell equations
inside the volume V, where the refractive index n is constant.

Let V; for j =1,2,..., g be g homogeneous scattering
regions with bounding surfaces S;; these are usually compact
domains. Furthermore, let V be the region exterior to all
the objects V;; this is usually a noncompact domain. From
the general integral identities for the electromagnetic field we
obtain

E(s):_[ {ikoc(BJfXn).Gj+(EJTxn).(V><Gj)}dS,

S/
) q
0=E’(€)+Z/ {ikoc(Bf x n) - Go
=18

+(E] xn) - (V x Go)} dS
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for§ e V;withj=1,2,...,
identities

q.For & € Vy, we get the integral

q
E€) =E'(¢)+ Zfs {ikoc(B] xm) - Go
=1 !
+(Ef xn) - (V x Go)} dS,

oz—/ {ikoc(B; xm)- G +(E; xn)-(V x Gj)}ds,
S

Jj

where as usual the bounding surface at infinity gives no
contribution. Here E; and B are the electric and magnetic
fields evaluated infinitesimally close to the inside of the
bounding surface §;, and E;' and B; are the fields evaluated
infinitesimally close to the outside of the bounding surface
S;. The function G; is the dyadic Green’s function in a
homogeneous region with constant index »n;. In an exactly
analogous manner, we obtain from the magnetic integral
identities the following relations:

/ { kon 3
B()=— —1—(E xm)-G;
Sj

+(B; xmn)-(V x Gj)}dS,

n)'Go

i ! k() Ny
O:B(§)+Z/S —i—"(E,
=1 !

+(B} xn) - (V x Go)}dS,

for £eV; with j=1,2,...
integral identities

B(S)—B’(§)+Z/ {

,q. For £ € V), we obtain the

’(El n) - Gy

+(B xn)- (V x GO)}dS,
2

R
Oz—/ —1—(E xmn)-G;
Sj

+(B_]T xmn)-(V x Gj)}dS.
The fields E and B’ are defined as
B = [ Go-jeav.
Vo
B = [ Go-jsa?.
Vo

and are the electric and magnetic fields at & generated by the
source in the absence of any scattering objects. This is by
definition the incoming field in scattering theory. Note that
the tangential components of both the electric and magnetic
fields are continuous across the bounding surface §; so that
we can use E} and Bj in all integral expressions.

It is easy to see either from the derivation of the integral
identities or by direct differentiation under the integrals that
any choice of the fields E;' and B; whatsoever will, through
the integral identities, produce electric and magnetic fields
that satisfy the Maxwell equations at every point that is not on
the bounding surfaces and the radiation condition at infinity.
Naively, the physical solution to the scattering problem should
be selected by requiring that the limit of the fields when we
approach the bounding surfaces §; from the inside and the
outside should be equal to E;, B, Ej and B;T. The problem
of regularization is that these limits do not exist because the
integrand has a nonintegrable singularity on the surface when
x = £. The regularization proceeds in two steps. First, we
recall that the inside and outside dyadic Green’s functions at
the bounding surface S; are

G(x,8) =g, $)1+< )VVg_;(X,S),

2,2
kon;

1
Go(x, &) = go(x, 5)1+<k

0 0

) VVeo(x, §).

The nonintegrability of the singularity at x =& arises
from the last term in the two expressions. Inside the bounding
surface S;, we have two integral identities, one involving G ;
and the other involving Gy. The first step in regularization
consists of taking a linear combination of these two integral
identities that cancels the most singular part in the dyadic
Green’s function. Doing this for both the magnetic field and
the electric field for all bounding surfaces gives the following
set of integral identities:

n?E(é) = n2E (§) — fs.{ikOC(B; X n) - (n?Gj —n3Go)
+(E} xm) - (V x (n?Gj —nyGo))}dS

q
+y / likoc (B} x m)(n3Go)
=175

+ (Ef xn) - (V x (n5Go))} dS

B(§)=Bi(§)—/
Sj

{—1—(E+><n) (n5G; —n3Gy)

+(BF xn)- (Vx (G, — GO))}dS

+Z/ {—1—(B+xn) (n2Go)
+(Ef xn)-(V x Go)} ds

that holds for all £ that are not on the bounding surfaces. Since
we are now cancelling the worst singularities, it is possible to
get finite answers when & approach the bounding surfaces S;.
However, we must specify precisely how the limit is taken.
Let & be a point on the bounding surface S; andlet§® =& +ca
be a straight line through & with direction along the vector a
and where positive values of ¢ correspond to points inside the
surface S;.

Let D, be a disc of radius ¢ and center £ on the surface,
S; and let S, be the rest of the surface, so that we have
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S; = D US;. Any surface integral over S; can now evidently
be split into a sum of two pieces, one over D, and one over
the rest of the surface S,. When we let ¢ — 0, the contribution
over the disc D, will in the limit give a finite contribution
that we compute by using an asymptotic expression for the
integrand close to its singular point. The integral over S,
will in the same limit by definition become the principal
value integral at the point £ on the surface. This gives us the
following set of integral equations for the surface values of the
electric and magnetic fields:

WS © =06~ [ fikoe®; w036, ~niGy)
+ (E’T xn)-(V x (I’l?Gj —H%Go))}ds

+y / {ikoc(Bf x m) - (nGo) + (Ef x m)
I#]
2 2

(V% 13Go) S F L0 B (bn—(b-m) ),

2

. k
BT(S)ZB’(E)—/ {—1ﬂ(E+xn) (n G, —n3Go)
S

+(B} xm) - (V x (Gj—Go))}dS

+Z/ :—i%(Bl*xn)-(néGo)
I#]

+(E xn)-(Vx Go)}dS

2 2
I’lj— ()

i (b-m)I),

F 4 Bj-(bn-
where b is a vector that depends on the vector a and the surface
integrals are the principal value integrals. Now we come to the
second part of the problem of regularization. The equations
for the surface fields depend on the way the limit is taken
and we are thus not directly able to select one unique solution
to the scattering problem. The regularization is completed by
noting that the limit-dependent term in the equations occurs
with an opposite sign when we consider limits from the
inside and the outside. Thus the limit-dependent terms can be
cancelled if the limit ¢ — 0 is taken of the sum of the inner
and outer integral identities. This final step gives the Miiller
scattering equations:

3] () +ngEj (§) = 2n3E! (§) —2 /

{ikoc(BY x m)
Sj

{(3G; —nyGo) +(E} xn) - (V x (n5G; —ngGo)) }dS

+2 Z / ikoc(Bf x m) - (n2Go)
I#]j

+(E] xn) - (V x (n{Go))} dS

B; (6)+Bj6) = 2B'6) 2 [

kol’l%
—1i—(E; xn)
S; ¢

.(l’l?Gj —n3Go)+ (B xn) - (Vx (G, — GO))}dS

+ZZ/ {—1—(BJr x ) - (n5Go) + (Ef xm) - (V x GO)}
I#]
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