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Abstract

The method of contact integrable extensions is used to find new
zero-curvature representation for Plebafniski’s second heavenly equation.
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1 Introduction
The second Plebaniski’s heavenly equation, [27],
Ugy = Uty + Uyy Uz _uzyn (11)

describes self-dual gravitational fields. This equation can be obtained as the
compatibility condition for the following system of PDEs, [10, 1], cf. [27, Eq.
(3.13)],
{ v = (Uys + A) Uy — U, vy, (1.2)
Vg = Uyy U, — (Uyz — A) 0y '
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with an arbitrary constant A. This condition is equivalent to the commutativ-
ity of four infinite-dimensional vector fields

~ _ o~ 0
D, = D,+ Z D, D} ((tyz +A) Vo1 — Uzz V1) 5
i,j>0 Vij
- _ - P
D:v = Dx -+ Z D;D‘; (uyy Vo,1 — (Uyz - )\) ’U1’0> v, K
i,j>0 Vi,
- , )
Dy = Dy —+ Z UH—Lj av—ij,
4,720 K

_ 0
. = Dt St g
where D;, D,, Dy and D, are restrictions of the total derivatives D,, D,, D,
and D, to the infinite prolongation of Eq. (1.1). This construction is called a
differential covering, [15] — [18], or zero-curvature representation. Dually Egs.
(1.2) can be defined by means of differential 1-form

W= dv+ (Vs vy — (Uyz+ ) ;) dt+((Uy — X) vy — 1y, v,) de—v, dy—v, dz (1.3)

called the Wahlquist-Estabrook form of the covering, [9]. In [25] we show that
this form can be inferred from a linear combination of Maurer-Cartan forms
of the contact symmetry pseudo-group of Eq. (1.1). In this paper we apply
to (1.1) the technique of contact integrable extensions (CIEs) proposed in [24].
We find CIEs of the structure equations of the contact symmetry pseudo-group
of Eq. (1.1). The analysis of these CIEs splits into two cases. In the first case
integration of the CIE gives Egs. (1.2), while in the second case we obtain new
covering of the second heavenly equation.

2 Symmetry pseudo-group of the second heavenly
equation

Let m: R® x R — R" be a vector bundle with the local base coordinates
(z',...,2™) and the local fibre coordinate u; then denote by J?(7) the bundle of
the second-order jets of sections of 7, with the local coordinates (a, u, u;, u;;),
i,j € {1,...,n}, 1 < j. For every local section (x, f(x)) of 7, denote by j2(f)
the corresponding 2-jet (z°, f(z),df(x) /0", 0% f(x)/0x'dz?). A differential 1-
form ¥ on J?(r) is called a contact form if it is annihilated by all 2-jets of
local sections: j(f)*9 = 0. In the local coordinates every contact 1-form
is a linear combination of the forms ¥y = du — w;dz*, ¥; = du; — uy; da?,
i,j € {1,..,n}, u;; = w;; (here and later we assume the summation con-
vention, so u;dxt = Y ¢ u;da’, etc.) A local diffeomorphism A: J*(7) —
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JA(m), A (2 u,ug, uig) — (80,10, 0;), is called a contact transformation
if for every contact 1-form 9 the form A*J is also contact. We denote by
Cont(J?()) the pseudo-group of contact transformations on J?(7).

Let H C REHD0H)M+D/3 he an open set with local coordinates a, b,
I, i, sij, wfj, Uik, 0, J, k € {1,...,n}, such that a # 0, det(b},) # 0, f’k’ f’“
Uijk = Ujik = Up;. Let (B}) be the inverse matrix for the matrix (bf), so
B bf = §i. We consider the lifted coframe

Qo =avy, ©;=¢g;iOy+aBry, Z'=c0,+ f*O,+0b d"

05 = a B} Bﬁ- (dugr — g dx™) + 555 O + wfj O, (2.1)

i < j, defined on J?(m) x H. As it is shown in [21], the forms (2.1) are Maurer—
Cartan forms for Cont(J?(7)), that is, a local dlffeomorphlsm A J (1) %
H — J?*(m) x H satisfies the conditions A* Oy = Oy, A* € = 0;,, A*Zi =
=i and A* (:)U = O,;; whenever it is projectable on J*(7), and its projection
A: J*(m) — J?*(r) is a contact transformation.

The structure equations for Cont(J?(r)) read

dOy = ®YAOy+Z' A6,

dO;, = OV ANOy+ O AO, +ZF Ay,

== BINT — DL AZF 4+ TN O, + T A O,

A0y = OF AOk; — BYA Oy + TP A Oy + T A Oy +E5 A By,

where the additional forms ®f, ®?, ®F, W, w4 T T}, and Oy depend on
differentials of the coordinates of f}C

Suppose € is a second-order differential equation in one dependent and n
independent variables. We consider € as a submanifold in J?(7). Let Cont(€)
be the group of contact symmetries for €. It consists of all the contact trans-
formations on J?(w) mapping & to itself. Let 1o: & — J?(m) be an embedding
and ¢ = 1o xid: ExH — J*(m) x H. Maurer—Cartan forms of the pseudo-group
Cont(&) can be obtained from the forms 6y = 1*0Oq, 0; = 1*0;, £ = *Z' and
0;j = 1*0,; by means of Elie Cartan’s method of equivalence, [3]-[6], [8, 13, 26],
see details and examples in [7], [20]—[25].

Using this method, we find the Maurer-Cartan forms and their structure
equations for the symmetry pseudo-group of Eq. (1.1). The structure equa-
tions have the following form:

dfo =1m5 N Og+ EX N Oy + EX N0y + E N Oy + EX NGy,

dby = (s —m) ANOL =13 A Og — Oug A3 +16 AOs+E N0y +E N O+ E3 N by
+&4 A 014,
dfy = —1py AN Oy + (15 — 14) AN Oz + (16 — 2 034) A O3 + O35 A Oy + E' N1+ Ny
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+E> N bys + & N s,
dos :%(771—2774—2775)/\93—772/\94+fl/\913+52/\923+§3/\‘933+f4/\9347
Ay = —ns NOs+ 5 (s — 20 +205) ANOs+E ANO1a+E* NO13+E N3y +E* N Oy,
gt =m AE +m NE,
de? =y NE +mu A€,
de® = Oy N EH — (776—2934)/\§2+%(775—711+2774)/\53+773/\547
dg* = —ng NE' — O3 NE +ma ANE>+ 5 (5 + 2 — ) AEY
dbi = —m2 AN +ma A2 +mz Az — i Ay +n5 N0 —2m A 01— 213 A\ 012
2044 NO1s +2n6 A Org — E Amaa — E Aoy — E Az — & A s,
df1y = —mo AN O1 + 12 Ay +n1u A3 — 07 Ay — o A0+ (05 — 11 — 1) A bro
+2 (5 — O34) A 013+ Os3 A1y — 13 A Oag — 04y Aoz — E Ampyr — €2 A g
—& Nms — & A,
615 = ma AOs — 1o Abs+ 3 (N5 — 1 — 1a) A bz — 12 A Ors — 13 A ag — 04y A s
1 A Osg — €' Nng — € Ams — & Amr — €4 A,
dbrq = ma AOs— 112 Ny — 203 NO13+ 5 (Na — 501+ 215) Abrg + (16 + O34) A O
—&' A — & Amr — & Ay — & A,
B35 = —ng N Oy + 110 A Oz + 17 N O3 — 1 Ay — 2113 A1z + 2035 A 13 — €' Ag
+(n5 — 21m4) A b2z + 2 (16 — 2634) A bag — & Ao — & Aig — E A s,
Aoz = 1o A O3 — 19 Ny — 212 NOy3+ 5 (0 — 51a 4 215) A Oos + (N6 — 3 034) A b33
—&' A — & A — & A — & Ay,
dbss = 5 (N5 +2m —4n4) N33 — 22 N3y — & Ampr — €2 Amg — & Amg — & Ao,
b3 = —n3 N33+ 5 (15 — 1m0 — 1a) Absg — 2 A aa — € At — E Ay — & Ao
—& Apa,
d0s = =203 \O3a+5 (N5 — A +200) ANOay—E A —E2 Ay — € Ama— & A,
dm = Az —ma ANE —mo AE,
dipy = (m —na) A1 — o AE =19 A EZ,
dns = (na —m) Ans+na ANE +ma AE,
dng = =12 Az +ma A&+ 1m0 A E7
dns = 0,
dng = 5 (N5 — 1 — M) A1js — N3 Alsg — iy A O+ 1y AE + 107 ANE 4 g A EP
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2 A EY
dnr = 5 (N5 —m —1a) A1z — 202 Ay — 03 Ais 416 Ao — 2112 A B33+ 21710 A O34
109 A Ogs + 1o A E' 4 120 NE + a5 A E + g A EY
dns = 5 (05 +201 —Tna) Ans — 302 A1 +116 Alg — 3110 N33 +4 09 ABsg + 124 NE!
127 NEX + s NE” + s AN EY,
dng = (m — 2n4) Amg — 312 Ao + 125 A E" + mos A E7,
dno = =212 Az — 13 A1l — Na Ao + o6 A E' A+ 15 A E2,
dmi =305 —m —n1) A — 2 Az — 203 Az +ng Az + o9 A +1ps AE°
126 A E¥ 4130 A EL + g A Bss + 2110 A Oag,
dma = —m Az — 2 Amia — 213 Ao + 3o A €'+ 26 A E7,
dms = % (05— T +2m2) Az — 303 A+ (76 42 034) Amia+ 3 12 ABag + 131 AE!
+iag A2+ 130 N E 112 A E
dmg = (2 —2m) Aa — 303 Ao + 032 AE + 130 A E2,
dims = 5275 =511 —21m) Ais — 21 Az — 13 A +2 16 ATz 1126 A 03 — 105 Abs
+110 A O13+ 19 A4 — 2112 Aoz — 2111 AOs3 43107 A0y 415 AOas+ 133 NE'
134 A E¥ + moa NE + mag N E,
dnie = 5 (1 —8n4+2n5) Anie— 312 A5 +2 106 A1s 4125 N3 —1og ABs+3 19 AO13
—3 1100234377 Alss+5 g Aa+13a AE' 4135 AE> +127 NE” +1ma AEY,
dmr =3 2ns —5m — 2m4) Az —n2 Amis — 2m3 A s + 216 A iy + 130 A 63
—a26 NOs—m2 N3 +2 010 N O1a — 114 AO23 — 113 NO33+ 1711 ANO34+217 Ny
+gs A&+ 133 AET + s AES g NET,
dms =3 (na — 8m +215) Ams — 313 Ay + 216 Az + 032 A b3 — 30 A 04
—3maNO13+3 12 AO1s— i3 A3 +3 711 Abaa+n3r AE 136 ANEX+ 129 NE®
+n31 A€
dmg = (M5 — 11— 20a) AN1o — 2102 Amja1 — 03 Ao + 316 A1iis — a5 A1 + 126 A O
123 N3 — 124 A Oy + 19 A b11+ 1710 A b12 + 17 A O1s +ns Ab1a — 2112 A oo
=211 Aba3— 2117 ANO33+ 4115 AOss+ 116 AOaa+13s ANE' + 139 NEZ + 134 NE®
+133 A €
dnzo = (05 — 31a) Ao — 3 (02 Ao — 16 A1) — Mg A 01 + 15 A O + 10a A O3
—127 A0y +3 (19 Ab12 +ng AO13— 1010 Abag — 17 AN O3 — 115 AO33+2 1716 A O34)
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+30 A&+ a0 A&+ 15 A&+ s AL
dngr = (M5 — 201 —na) A1 — N2 A2z — 2103 Ao + (316 — 2 034) A1z — 126 A O
+n30 AN + 1129 A O3 — 123 Ny + 2110 ANO11 — 12 Ab1a — 111 Abi3+217 N O1y
— 114 ANz — 113 Aoz — s AOs3 +2 115 AOag+ s AE' +nss ANEX + 133 NE
+n36 A &
dnag = (05 — 3m1) A nag — 3m3 A a1 + 316 A s — T30 A 01 + Mz A Og + 131 A Oy
—129 A\ 04 + 3 (M2 A 011 — g A O12 — iz A b1z + m11 A Ora + 117 A Oag)
Faa AE A 1y AER iz A ER e A EL (22)

For these equations, the non-zero reduced Cartan’s characters are s| = 16 and
sl = 4, the degree of indeterminancy is 7 = 24, therefore Egs. (2.2) are
involutive, and diffeomorphisms from the symmetry pseudo-group depend on
4 arbitrary functions of two variables.

In the next calculations we use the following Maurer—Cartan forms only:

0 = b3 by o,

0, = b% (bag U1 — oy Vo + (bog sy — by (Uys + ba)) U3
+(ba1 ttyy — o (uyz — ba)) Ua)
0y = b§ (=b12 U1 + b11 V9 + (b1 (uys + by) — biou,,) Vs
+(b12 (ty. — bs) — br1 uyy) Vy)
O3 = b3 (—byy V3 + b1aVy),
04 = by (b1 U3 — a2 Vy)
&' = by dt + byy dz,
£2 = by dt + byy dz,
€3 = by ((bag sz — by (uy, — by)) dt + (bag (. — by) — oy uy,) dx
b dy — by dz),
&t = by ((bn (tyr — bg) — brauy,) dt + (bia (uy, + by)
—b11 Uyy) dx — bia dy — b1y d2) ,

933 = b_ (bil 7933 -2 b11b12 1934 + b%? 644) ’
0
b B _ _
O34 = —b—3 (bn bo1 ¥33 — (D11b22 + b12bo1) Uss + b1abao 1944) 5
0
b B _ _
044 = b—3 (031 V33 — 2ba1bas Vsy + b3y Vaa)
0
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1
m = b_ (522 dbyy — bay db12)
0

1
—? ((bnb§1 Uyyy — bay (2 b11b2g + b12521) Uyyz — 512532 Uzzz
0

+bog (b11b22 + 2 b1obar) Uy, fl
—(b3,b91 Uyyy — b1y (b11bog + 2b12bo ) Uy,
+b12 (211092 + b1oba1) Uy.. — bisbas ) €7)

1
T2 = b_ (bn dbia — b2 dbn)
0

1
"’? ((b%bm Uyyy — b11 (1122 + 2 b1abor) Uy, — b2ybog Uy
0

+b12 (2 b11b22 + b12b21> uyzz) fl — (b:h uyyy — 3 b%lblg Uyyz -+ 3 bllb%Q Uyzz

_b?Q uzzz) 52) )

1 2 b22

M3 = b (b22d521 — b3odbyy — bardbas + 521b22db12) + b1 T
1
‘1’@ ((bgl Uyyy — 2021022 Uy, + ng Uyz:) ¢!

—(b11b21 Uyyy — (b11b2g + b12bay) Uy + biabas Uy.) 52) ;

1 b
M= (br2ba1 dbyy — bay dbyz — b1z dbay + by dbas) + b_21 2

0 11

1

+b b (((511522 + b12b21> Uyzz — b11b21 Uyyyyz — b12b22 Uzzz) 51
11bo
+(b%1 uyyz -2 b11b12 uyzz + b%Q“zzz) §2) )
dbs 1 9 bay
N5 =3 | — + — (b12ba1dbi1 — b11ba1dbia — b11biadboy + b1 dbas) + — 12
bz bi1bo b1
3
i 20 bi1b (((blleQ + 512521) Uyzz — bi1bay Uyyz — bi2b2o uzzz) fl
1100
+(b3, Uyyz — 2011012 Uy, + by Ussz) 52) ;

Ne = —b3 db4 + 034. (23)

In these forms, @ij = 15 V;; and by, bia, bar, baa, b3, by are arbitrary parameters
such that bo = b11b22 — b12b21 # 0 and b11 b3 % 0.
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3 Contact integrable extensions

To apply Eli Cartan’s structure theory of Lie pseudo-groups to the problem
of finding zero-curvature representations we use the notion of integrable ex-
tension. It was introduced in [2] for the case of PDEs with two independent
variables and finite-dimensional coverings. The generalization of the defini-
tion to the case of infinite-dimensional coverings of PDEs with more than two
independent variables is proposed in [24]. In contrast to [30, 2|, the start-
ing point of our definition is the set of Maurer—Cartan forms of the symmetry
pseudo-group of a given PDE, and all the constructions are carried out in terms
of invariants of the pseudo-group. Therefore, the effectiveness of our method
increases when it is applied to equations with large symmetry pseudo-groups.

Let & be a Lie pseudo-group on a manifold M. Let w!, ... , w™, m = dim M,
be its Maurer—Cartan forms with the structure equations

dw' = Aiyj T Aw’ + B;k Wl AWk, (3.1)

where v € {1,...,I'} for some I' > 0. The coefficients A’;, B}, = —Bj; in

these equations depend on the invariants U*, k € {1,...,A}, A > 0. The
differentials of the invariants satisfy equations

dU* = C} o, (3.2)

where C'Jf\ are functions of U". Consider the following system of equations

drt = Din’ AT+ EL T AT + Pl An’ + GLTT AW+ HE 7 AW
+1I W AWk, (3.3)
dve = Jiw + K7, (3.4)

for unknown 1-forms 79, ¢ € {1,...,Q}, n*, p € {1, ..., R}, and unknown func-
tions V<, e € {1,..., S} with some @Q, R, S € N. The coefficients Dy, ..., K¢ in
Egs. (3.3), (3.4) are supposed to be fucntions of U* and V7.

DEFINITION 1. The system (3.3), (3.4) is called an integrable extension of the
system (3.1), (3.2), if Egs. (3.3), (3.4), (3.1) T (3.2) together meet the involu-
tivity conditions and the compatibility conditions

d(dr?) =0, d(dVe) = 0. (3.5)

Egs. (3.5) give an over-determined system of PDEs for the coefficients
Dy, ..., KSin Eqgs. (3.3), (3.4). If this system is satisfied, the third inverse
fundamental Lie’s theorem in Cartan’s form, [3, §§16, 22-24|, [6], [29, §§16,
19, 20, 25,26|, 28, §§14.1-14.3|, ensures the existence of the forms 79, V¢,

the solutions to Eqs. (3.3), (3.4). In acccordance with the second inverse
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fundamenatl Lie’s theorem, the forms 79, w® are Maurer-Cartan forms for a
Lie pseudo-group $ acting on M x R<.

DEFINITION 2. The integrable extension (3.3), (3.4) is called trivial, if there
exists a change of variables on the manifold of action of the pseudo group
$ such that in the new coordinates the coefficients Ffﬁ, G, I? ik and

) ﬁj’
J5 are identically equal to zero, while the coefficients me E? and K ¢ are

mdependent of U*. Otherwise, the integrable extension is called nontrzvml

Let ¢ and &’ be a set of Maurer—Cartan forms of a symmetry pseudo-group
Lie(€) of a PDE &€ such that & are horizontal forms, that is, &' A ... A E™ # 0
on each solution of €, while ¢ are contact forms, that is, they are equal to 0
on each solution.

DEFINITION 3. Nontrivial integrable extension of the structure equations for
the pseudo-group Lie(€) of the form

dw? =TI A W™ 4 € A Q, (3.6)

qg,r € {1,...,N}, N > 1, is called a contact integrable extension, if the fol-
lownig conditions are satisfied:

(i) Qf € (07, wi)1in for some additional 1-forms wy;

(¢

(4ii

")1in for some ¢ and j;
0)11n for some ¢ and j;

¢ (w
Z (
Hq S <9?, 5 W w >11n

(iv

ORY:
)
)
(v) The coefficients of expansions of the forms Q2 with respect to {67, wj}
and the forms T4 with respect ot {6, &, w", w!'} depend either on the
invariants of the pseudo-group £ie(8) alone, or they depend also on a

set of some additional functions W,, p € {1,...,A}, A > 1. In the latter
case, there exist functions P17, @7, R’ and S¥ such that
AW, = PL 07 + Qpew’ + R, Wi+ S,; &, (3.7)

and the set of equations (3.7) satisfies the compatibility conditions

d(dW,) = d (Pl 07 + Quqw® + R}, w! + 5,;£7) = 0. (3.8)

pq=j

We apply this definition to the structure equations (2.2). We restrict our
analysis to CIEs of the form

4 22 4 9
(ZA¢9i+Z*Bij9ij+ZC’S?75+ZDj§j—I—ZEkwk> A W
+Z (Z Fiy. 0; +Z*ka 05 + ZHk wm> A EF, (3.9)

k=1 =0
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with two additional forms w; and wy; mentioned in the part (i) of Definition
3. In (3.9), > * means summation for all 7,5 € N such that 1 <i < j < 4,
(1,7) # (2,4). These equations together with Eqgs. (2.2) satisfy the requirement
of involutivity. We assume that the coefficients of (3.9) are either constants or
functions of additional invariants W, mentioned in the part (v) of Definition
3. In the latter case the differentials of W, meet the following requirement

4 7 4 9
de = pri 91 + Z*in]’ eij + Z Kps Ns + Zij é‘j + ZMpqwq- (310)
=0 Jj=1 q=0

s=22

Defintion 3 yields an over-determined system for the coefficients of (3.9)
and (3.10). The results of analysis of this system are summarized in the fol-
lowing theorem.

THEOREM 1.  There are no CIEs (3.9) with constant coefficients or CIEs
(3.9), (3.10) with one additional invariant Wy. Every CIE (3.9), (3.10) with
two additional invariants Wy, Wy is contact-equivalent either to

dwy = (w1 + Wi+ 5 (05 + 204 — m)) Awo + (Wi 035 — Oag + Wawn) A€

(W1 O35 — O34 + Wowi) AE2+wy AE> +wy AEY, (3.11)

AWy = Wiwy —wo — Wiy + Wing — ng + Wing + Zy (wo + Wa &2 + &3)
+Zy (Wo &' + &Y, (3.12)
AWy = 1 — O34+ 5 Wa (5 —m —a) + Z3 (W0+W2§2+§3)+Z4(W2§1+%11§g

or to
dwo = (w2 + Wins + 5 (s +2m — 1)) Awo + (030 — Wi 0aa + Wawn) A€

(033 — Wi 030+ Waw) A +wi ANE +wa A E, (3.14)
dW1:W1WQ—W1+W1771_772+W12773_Wln4+Zl(w0+W2€1+£4)
+Zo (Wa &' + &Y, (3.15)

AWy =1 — O34+ 5 Wa (5 = —na) + Zs (wo + Wa € + &1 + Zy (Wa €+ W, %),
(3.16)
where Zy, ... , Zy are arbitrary parameters.

The forms (2.3) in Egs. (3.11), (3.12), (3.13) and Egs. (3.14), (3.15),
(3.16) are known explicitly, therefore, in accordance with the third inverse
fundamental Lie’s theorem, the forms wy satisfying (3.11) or (3.14) can by

found by means of integration. This analysis splits into two cases — when
Zg =0 or Zg 7é 0.
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REMARK 1. When Z3 = 0 in Eq. (3.13) or Eq. (3.16), the functions W5
appear to be independent of the fibre coordinates of the covering. This entails
that one symmetry of Eq. (1.1) is unliftable to the fibre of the covering.
From results of [17, 14, 11, 12, 19| it follows that the corresponding covering
has a non-removable parameter. Thus the appearance of the non-removable
parameter in the covering can be deduced from the form of the CIE directly,
before integration of its equations.

The results of integration of Egs. (3.11), (3.12), (3.13) and Egs. (3.14),
(3.15), (3.16) are given in the following theorem.

THEOREM 2. When Zs = 0, every solution to Eq. (3.11) up to a contact
equivalence is

bobs

Wwo=7—7—" 77"
biav, — b1y Uy

(dv + (V2 vy — (Uye + A) V) dt 4+ (U, — X) vy — Uy, v,) dx
—v, dy — v, dz), (3.17)
whereas for Zs # 0 it is

bobs

Wgp = 7—7—"—""7—"—
big v, — b1y Vy

(dv 4 (Vs vy — (Uys + V) v,) dt + ((Uy, — V) vy, — Uy, v,) dx

—vydy —v,dz). (3.18)

The solutions to Eq. (3.14) can be obtained from (3.17) and (3.18) by the
following simple change of independent variables: (t,x,y,z) — (x,t,z,y).

When we put wy = 0, Eq. (3.17) gives the system (1.2), while Eq. (3.18)
defines new covering

U = (Uys + V) U, — Usz vy,
Vg = Uy Uy — (Uy, — V) 0y

for the second heavenly equation. These equations are nonlinear w.r.t. the
fibre variable v.

REMARK 2. Direct computation shows that the symmetry of Eq. (1.1) with
the infinitesimal generator X = ta% + x % is unliftable to a symmetry of
Egs. (1.2). Since e (uyy, Uyz, Usz) = (Uyy, Uy, uzs) and e (v, vy, vy, vy, 0,) =
(v, v¢ + Avy, vy + Av,, vy, v,), the parameter A in Egs. (1.2) can be obtained
by the action of e** to the system (1.2) with A = 0. Therefore, \ is the
non-removable parameter of the covering (1.2).
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