SYMMETRY, COMPATIBILITY
AND EXACT SOLUTIONS OF PDES

BORIS KRUGLIKOV

ABSTRACT. We discuss various compatibility criteria for overde-
termined systems of PDEs generalizing the approach to formal
integrability via brackets of differential operators. Then we give
sufficient conditions that guarantee that a PDE possessing a Lie
algebra of symmetries has invariant solutions. Finally we discuss
models of equations with large symmetry algebras, which eventu-
ally lead to integration in closed form.

INTRODUCTION

Overdetermined systems of PDEs always have compatibility condi-
tions. If these are satisfied, the system is called formally integrable (we
assume regularity throughout the paper) and we can formally param-
etrize the space of solutions [Cs, BCG?, KL,)].

For Frobenius type systems the compatibility conditions are just
equalities of mixed derivatives. For instance (we denote the partial
derivatives as usual by indices) the system £ on R?*(z!, 2?)

{Fij twij = fij(x,u,0u) |i,j = 1,2}
has compatibility conditions

D1 (F12) = Dy(F11) D1(f12) = Da(f11)
& dé€.
{ D (Fas) = Ds(Fr2) Di(fao) = Da(fra)
In general this is wrong. For example, consider the following system &£
on RY(z% 2t 22, 23)

F1 . U3 = U2 + f1<l’,u, 8u),
U = ugg + fo(x, u, Ou), (1)
F3 Do Ugy = U T+ f3(l'7u, (9u)

Equalities of the mixed derivatives do not yield compatibility here,
because the first compatibility condition involving only two equations
is of order 3 (the syzygy operators are of the second order), and so it
involves the 2nd derivatives of f.

&
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There exists however one compatibility condition of order 2 (involv-
ing only first derivatives of f):

Dl(Fl) + DQ(FQ) + Dg(Fg) =0 mod¢€.

In Section 1 we discuss how to calculate the compatibility conditions.
This is related in the next Section to classical and higher symmetries,
and we discuss the question of existence of invariant solutions.

Consider a PDE £ and a subalgebra G C sym(€); at this point we
restrict to the local extrinsic (point, contact or higher) symmetries. In
general it is not true that £ has G-invariant solutions, as was noticed
in [K;]. The simplest counter-example constitute linear systems with
the symmetry being shift by a nonzero solution.

Another example is given by a pair of constant coeflicients non-
homogeneous linear scalar PDEs. They commute and so they are sym-
metries of each other. Generically the PDEs are compatible, but this
does not happen always (e.g. uz, = 1,u, = 0). Similar story happens
for matrix differential operators and symmetries.

In Section 2 we demonstrate that this is a consequence of either de-
generacy or higher dimensionality of the symmetry algebra compared to
the amount of independent variables. We will prove that under certain
genericity conditions the symmetry is compatible with the equation.
This yields (a similar result is proven by another approach in [IV]):

Provided the symbols of £ and G are generic, the system
& has G-invariant solutions.

In Section 3 we discuss implications that existence of a large sym-
metry group has on the solution space of a PDE system. At this point
we need to consider intrinsic symmetries. Relations between extrinsic
and intrinsic symmetries are given by Lie-Backlund type theorems, see
[AI, KLV, AKO, AK], and this relates this integrability problem with
what is discussed above (see also [L;, Ky, Ga, BCA] for applications of
symmetries and generalizations).

We will concentrate on exact solvability of ODEs and PDEs and
discuss relations with Darboux integrability via examples. Informally
a lot of symmetry implies exact integrability, more precisely this holds
true for maximal symmetric models (can fail for sub-maximal cases).

We will briefly discuss some symmetric models. Relations of inte-
grability to transformations and differential substitutions in PDEs is
central in [Lo, K3, Ky] for the case when the system £ depends on 1
function of 1 argument (so called Lie class w = 1). This applies in the
other cases too, but will be considered elsewhere.

The paper is organized so that all sections can be read independently.
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1. COMPATIBILITY, DIFFERENTIAL SYZYGIES AND BRACKETS

An overdetermined system of differential equations can be viewed
geometrically as a finite sequence of submanifolds & C J*(x) in jets

with 5,@1 D &, where m: EE — M is a vector bundle and 5']&17)1 denotes

the prolongation (locus of the derivatives of functions specifying &_1).
Formal integrability is equivalent to the claim that all projections

Trt1k | Ex+1 — & are submersions. Then we can define £ = lim &.

Let T be the model tangent space for independent variables and N
the model tangent space for dependent variables. Define the symbols
of order k as g, = Ker(dmyy—1 : TE — TE—1) C S*T* @ N and
let ¢ = @gr be the symbol bundle over £. For k greater than the
(maximal) order [ of £ we can define g, = S*!T* ® g, N S*T* @ N.

The Spencer é-cohomology group H**(€) is the cohomology of the
complex g, ® A*(T*) with symbolic de Rham differential over & [S].

The formal theory of differential equations identifies obstructions
to formal integrability (compatibility conditions) as certain elements
W, € H"12(€) (structural functions or Weyl tensors). For geometric
problems H*?(£) is the space of curvature/torsion tensors [KL;].

Another way to look at this is to regard compatibility conditions as
differential syzygies, i.e. relations between generators of £.

If the generators are (nonlinear) differential operators Fj, i.e. £ =
{Fi[u] =0,..., F.[u] = 0}, then the symbolic spaces can be expressed
through the symbols of linearizations of these operators (we will use
the notation o for the symbol)

g=Ker{oc(lr),...,0(lp)} C ST*® N.

It turns out that ¢* = @®gj is an ST-module, where the latter is
viewed as the algebra of polynomials on 7. This is called the symbolic
module of the system ¢g* = Mzg.

Definition 1. Differential operator G from the left differential ideal
(F) is called a differential syzygy for the system & if its symbol is the
usual syzygy for the symbolic module Mg.

If € is linear we can consider (F) as the left module over the al-
gebra Diff(1,1) of scalar linear differential operators (on the trivial
rank 1 bundle 1 over M). In the nonlinear case, the algebra should
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be changed to the algebra of @-differential operators % Diff(1,1) =
C™(Ex) @coe(ary Diff(1,1), see [KLV].

Thus to each differential syzygy there corresponds a symbolic syzygy,
but the reverse problem

SyzZygy L differential Syzygy,

is not uniquely solvable. We would like to have solutions with nice
algebraic properties (quantizations).

Let fi = o({p,) € ST ® N* be symbols of the differential operators
defining £ and let > g;f; = 0 be a syzygy, with g; € ST being some
polynomials on T* with k; = deg(f;) = ord(F;).

Choose any ¢-differential operators G; with o(G;) = g;. Then the
corresponding differential syzygy has the form

VzZGioFi.

The order of this operator is k — 1, where k£ = max;{ord(G;) + k;} is
called the order of the syzygy.

Non-uniqueness comes through the lower order terms in G;. So the
class V mod J;_1(F) is well defined, where

J(F) ={>_ Q0 F;:ord(Q;) <t —ki}.

Denote by [S] the equivalence class S mod Ji—1(F') of the differential
syzygy S = q(s), where k is the order of the syzygy.

Theorem 1 ([KLy]). An overdetermined PDE system & is formally in-
tegrable iff for a basis {s;} of symbolic syzygy the corresponding classes
of differential syzygies vanish [S;] = 0.

This follows from the fact that the Spencer d-cohomology group
H 12(€) equals the corresponding graded second cohomology group
for projective resolution of the symbolic module Mg, i.e. it can be
enumerated via a basis of symbolic syzygies.

There are two basic approaches to construct the arrow g:

1. Construct differential syzygies successively in order k, i.e. ac-
cording to passage & --+ &i1. This corresponds to prolongation-
projection approach having origin in E.Cartan’s equivalence method.

2. Successive identification of differential syzygies involving two op-
erators Fj, F;, three or more. This represents compatibility as Massey
products [KL4| and is related to deformation of the symbolic module
M (or to the corresponding noncommutative D-module £*).

We will elaborate the first idea for PDE systems with nice character-
istic variety Char®(€) = {¢€ € PCT* : rank[o(¢F)(£)] < m = dim N}.
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Now I want to present the explicit form of compatibility conditions
for certain generic overdetermined systems of PDEs. We start with the
scalar case m = 1 (single u); n = dim M is arbitrary.

Jacobi bracket {F,G} of scalar (non-linear) differential operators
F,G € diff(1,1) is defined via the linearization operator as follows:

(F.G} =G — (5 F.

If ord F =k, ordG = [, then ord{F,G} =k + 1 — 1.

Let (z',u,), 1 <i <mn, o = (i1,...,i,), be the "canonical” coordi-
nates on the jet-space, D; = 0,5+ ugﬂj Oyi the total derivative w.r.t.
2/ and let D, = DI .. .Di» be the operator of higher total derivative.
Then the Jacobi bracket writes

{F,G} =) Dy(F)d,,(G) = Do(G)dy, (F),
We define the Mayer bracket of F}, F; by the formula
[E> F’]]g = {E> F}} mod jki+kj_1(F)'

For first order scalar operators these are respectively the classical La-
grange and Mayer brackets.

Theorem 2 ([KL;]). Consider a scalar system €& C J*(M) given by
r < n differential equations Fi[u] =0, ..., F.[u] =0, such that for each
point x € £ the characteristic varieties for the equations F; are jointly
transversal, i.e. codim [Chargk (&) C IED(T;M)C} =r.
Then the system is formally integrable iff all the Mayer brackets van-
ish:
[F,File =0, 1<i<j<r.

Koszul complex is the minimal resolution of the symbolic module Mg
for complete intersections, whence the symbolic syzygies are generated
by commutators. Thus the arrow g associates the higher Jacobi bracket
{,} to the commutator [,] (and so can be treated as a quantization).

If the condition of complete intersection is violated, then the con-
clusion of the theorem may turn to be wrong. Indeed, in example (1)
the compatibility conditions [Fy, Fs|e = 0, [Ea, Esle =0, [E3, E1]e =0
should hold, but they do not form a basis in differential syzygy module.
There is only one basic vector, as indicated, but it has lower order. In
fact, it is easy to see that the above system is not a complete intersec-
tion: the characteristic variety is the normal cubic

Char®(€) = {€ € CP? |46 = &5, 6160 = &o&s, &obo = &}
={[N*: NN 1]|)eCl
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We can however have other explicit formulae for scalar non-complete
intersections. Let us point out one example. The following statement
can be proved similarly to Theorem 2 (and it follows from Theorem 1).

Theorem 3. Consider the system
E={FioGj+...=0]i=1...r,j=1...s}

where dots stay for the lower order terms. It has reducible characteristic

variety Char®(€) = {o(lr) = 0} U {o(lg,) = 0}, and we suppose that

the intersection {o((r,) = 0} N{o({g;) = 0} has codimension r + s.

Then if k; = ord(F;), I; = ord(G;), the compatibility conditions are

{Fi, F3}Gy = 0 mod Ji, 14,41, -1(E), F{Gj, Gr.} = 0 mod Jy, 41, 41,-1(E).

Let us now consider vector systems of PDEs on u = (u',...,u™).

Definition 2. A system & C J*(n) of r PDEs Fjlu] = 0 is called a
generalized complete intersection if
(1) m<r<n+m-—1, where n = dim M, m = rank(w);
(2) The complex projective characteristic variety Char®(£) c PCT*
has codimension r —m + 1;
(3) The characteristic sheaf K over Char®(€) has fibers of dimen-

siton 1 everywhere.

Let us introduce a multi-bracket of linear (scalar) differential opera-
tors V; € Diff(m - 1,1) by the formula

m+1 ‘
(Tire, Tah = Yo (-1 Nt [VI] 55 9
k=1

where Ndet is a version of non-commutative determinant. For non-
linear differential operators F; € diff (7, 1) the multi-bracket writes as

{Fl, e 7Fm+1} -

1 o
% Z (—1) (—1)/8 ga(l)(Fﬁ(l)) 0...0 ga(m)<FB(m)) (FB(erl)) )

C.MESmWBGSerl

The we define the reduced bracket
[Fiu T 7Em+1]5 = {Eu T Fim+1} mod jki1+"'+k —1(F)'

Theorem 4 ([KLy|). A system of generalized complete intersection
type

im+1

EcCJ¥m) ={F[u=0,..., Fu =0}
1s formally integrable iff all the multi-brackets vanish due to the system:

IR I A M
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2. SYMMETRIES AND COMPATIBILITY

Consider a compatible system & = {F} = 0,...,F, = 0}. Let G be
a subalgebra of the algebra sym(€) of classical or higher symmetries
[KLV], written as another PDE system {S; =0, ..., Sy = 0}.

Consider at first the scalar case, when w is a single function. Denoting
ki = ord(F;), I; = ord(S;), the symmetry condition writes

{Fi, S;} = 0 mod Ji,41,-1(E), (2)
In addition we have from the symmetry condition that
{Si7 SJ} = 0 mod *-7li+lj*1(g)' (3)

Theorem 5. Assume that the joint system €+ G: {F; =0,5; =0} is
a complete intersection, i.e. its characteristic variety has codimension
r+k <n. Then this system is compatible.

For k =1 this result coincides with Theorem 17 from [KL;].

Proof. Since the system is a complete intersection, Theorem 2 implies
compatibility provided that the Mayer brackets (on the joint system
€ + G) vanish. Compatibility of £ yields

{Ev F‘J} = 0 mod jki"!‘kj_l(g)'
Vanishing of the other brackets is given by (2) and (3). O

The condition of complete intersection is important, as the follow-
ing example shows. KdV equation u; = uwu, + g, has symmetries:
Ty = wy, T1 = u,, S = 3tuy + xu, + 2u, I' = tu, + 1. There are no
nontrivial invariant solutions for the following two-dimensional subal-
gebras of symmetries: 1) Ty, S; 2) Ty, S; 3) T1,1; 4) I, S (only zero in
the cases 1 & 2 and nothing at all in 3 & 4).

Now let us discuss the general case, when the unknown w is a vector-
function. Consider at first the following example of matrix linear dif-
ferential operators:

~( D.D, O _ (D,D,+D, 0
A= (Dny - D, Dz) and B = ( D,D, Dx) '

They commute [A, B] = 0 and so do the inhomogeneous operators

F:A-(ﬁ)-(é), G:B-(Z) =  {FG}=0.

In other words G € sym(F'). However the operators are incompatible.
We shall show that for two generic nonlinear differential operators
the condition G € sym(F') implies compatibility of the joint system,
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and so existence of invariant solutions (in the amount given by the
usual formal calculus of dimensions [Cs)]).

This result was noticed by S.Igonin and A.Verbovetsky and a proof
using a different method will appear in [IV]. We would like to give an
explicit criterion for this compatibility. At first we notice the following

Lemma . Consider a system £ of r > m differential equations on m
unknown functions. Its characteristic variety Charc(é’) has codimen-
ston <r—m-+ 1.

Notice that codimension cannot exceed n since we adapt the conven-
tion dim @ = —1 and the ambient space satisfied dim P*T* =n — 1.

Proof. The symbol of the system is a » x m matrix P with polynomial
entries, and the characteristic variety is

{€ € P°T* : rank(P(£)) < m}.

Denote by A;, ;. the determinant of the m X m minor generated by
TOWS 1, ..., lm. Charc(c‘f) is given by the conditions A;, ; () =0 for
all i1 < --- <'i,,, but this collection is excessive.

We can suppose that A;_,,, #Z 0 (if all the minors are degenerate
there is nothing to prove). For j > m let us denote by P; the upper-
row submatrix of P of size j x m. By induction we can suppose that the
set X; = {&€ € PCT* : rank(P;(¢)) < m} has codimension < j —m + 1.
Consider the subset ¥ where the above rank is < m — 1.

If 32 has a component in X;, then addition of a row to P; does not
increase the rank over m — 1, and the codimension of ¥;,; containing
this component is the same as for ¥;.

Otherwise ¥ C 3J; has codimension at least 1 and in the complement
the matrix P;(§) has rank (m — 1). Near every point £ we can choose
(m — 1) x m subminor of maximal rank. Adding to it the row number
(7 + 1) we get a m x m matrix whose determinant we write as AjH.
Then the defining relation for 3;;; C 3; outside ¥ is Aj, =0,
whence the relative codimension is 1.

Thus codimension of X;,; in the complex projective variety is at
most j —m and this gives the induction step. U

In particular, for » = 2m the codimension is at most m+ 1. We wish
to refine this in the case the system £ is a PDE with its symmetry.

Consider the PDE system F = G = 0, where F,G € diff(r, ) are
nonlinear differential operators on a rank n bundle 7 and G € sym(F).
Denote the symbols of these operators by P = o({r), Q = 0({g). The
symmetry condition {F,G} = 0 mod F' implies the following relation



SYMMETRY, COMPATIBILITY AND EXACT SOLUTIONS 9

with some polynomial matrix K
PQ = KP. (4)

Proposition 6. For m > 1 let P and ) be two homogeneous polyno-
mial m X m matrices satisfying (4). Then the characteristic variety

Char® = {f eCP" . rank[gég} < m}

(characteristic variety of £ : {F = G = 0}) has codimension < m.

Proof. Denoting by R;(A) the row of matrix A, we have from the sym-
metry condition:

S paBi(Q) € (Ri(P),...,Ru(P)) Vi=1,...m.  (5)

We can suppose that det P(§) # 0 (otherwise the claim follows from
the Lemma), so that the equation det P(£) = 0 determines a subvariety
¥ C PCT* of codimension 1.

Let ¥g C X be given by the equation P(§) = 0. First let us study
the points £ € X\ ¥g. At such ¢ there exists an entry p;, # 0. Then we
write the conditions R;(Q) € (R1(P),..., R, (P)) for j # k. These are
no more than m — 1 equations and so they specify a subvariety I C X
in a neighborhood of £ on which also Ri(Q) € (Ri(P), ..., Rn(P)) by
(5). Thus this K is a part of Char® of codimension < m.

Now let us consider 4. If it has codimension > m, it is negligible
or is a part of Char® by the above argument. But if its codimension
is < m, then we must add the condition det Q(§) = 0 specifying a
subvariety Ky C X of codimension < 1. Since P(§) = 0 for £ € g the

rank of the matrix [ ggg} is < m. Thus this Ky is a part of Char® of

codimension < m. O

This Proposition is important, so we would like to indicate an idea
behind an alternative proof. It will be shown later that condition (4)
can be changed to [P, Q] = 0 without loss of generality, so we adapt
this condition.

By Gerstenhaber theorem [Ge] every pair of numeric (complex) com-
muting matrices P, () is contained in a commutative algebra (with 1)
of dimension m. If one of them has simple spectrum, say P, then by
Cayley-Hamilton theorem this algebra is generated by {P*}7 ! [Z].

This being generalized to matrices with polynomial entries, would
imply existence of polynomial matrices Zy, Z1, ..., Z,,_1 and the scalar
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polynomials a;, b; such that
P=ayZo+a1Z1+ - +am-1Zm-1, Q="0bZo+b1Z1++by_1Zp_1.

Therefore one of the strata of the characteristic variety is given by
the condition that the vector (aq, ..., a,,_1) is parallel to (b, ..., by_1)
(m—1 equations) plus one equation det P = 0 (or det Q = 0), implying
codim Char® < m.

Let us demonstrate this in the case m = 2. Since identity matrices
commute with everything, we can subtract a multiple of them to make
Doz = @22 = 0. Then commutativity [P, Q] = 0 yields:

[ P11 P12 i1 412 ] —0 Pun P12 P21
) - =5 — = —= —
pa1 O @1 0 qi1 12 421
which means that these matrices are proportional to some polynomial
matrix. Indeed, the first equality gives p;; = r181, q11 = 7152, P12 =
r9S1, Q1o = raSo for some polynomials r;, s;.
Substituting this into the second equality we get refining: s; = w1,
So = UqVUg, Pa1 = UoV1, (o1 = UV, Whence the claim P = agl + a1 7,

Q=1byl + b2

Let us return to sufficient conditions for compatibility of symmetries.
From what was shown above it follows that in non-scalar case £ =
{F = G = 0} is never a generalized complete intersection (so com-
patibility cannot be deduced on the basis of Theorem 4). This is a
consequence of non-commutativity of the matrix algebra (another man-
ifestation is that generically ord{F, G} = ord(F) + ord(G) for m > 1).

Theorem 7. Let F' = 0 be a determined PDE and G = 0 its symmetry
(both m xm systems). If for the joint system £: F = G = 0 the variety
Char®(€) has codimension m, then & is compatible.

Proof. Since F' = 0 is determined (det P is not identically zero), we
can make an invertible transformation to write it in the 1st order evo-
lutionary form. We keep the same letters F' and G for the differential
operators. This transformation can change m but it does not affect
symmetry or compatibility properties, and it preserves Char®().

Thus Flu] = uy — Fol[u], where Fy does not involve D, derivatives (u
is a vector function with m components). We can substitute u; = Fj
into G = 0 and get a PDE that is free of u; terms. We continue to
write GG for this new operator.

Denoting the symbols of F' and G by P and () the symmetry condi-
tion is PQ) = K P for some polynomial matrix K. Since P = 71 + P,
where 7 stands for the symbol of D; differentiation and P, (as well as
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Q) is free of T, we conclude that K = @ so that the symmetry condition
writes [P, Q] = 0.

We claim that this G is determined, i.e. det @ # 0. Otherwise the
characteristic equation is given by m — 1 equations at generic point.
Indeed, the proof of Lemma/Proposition 6 can be rewritten to start
with equation det ) = 0, which is identically true and so the number

of defining relations for the variety {¢ : rank[ggg} < m} is by 1 less

than in the general case. This yields codim Char®(£) < m and so
contradicts the assumptions.

Thus G = 0 is compatible as well as F' = 0. There are no syzygies
between them due to evolutionary form. So the claim follows from
Theorem 1. U

As we see from the above proof it is not necessary to require that
codim Char®(£) = m. What we want to achieve is that the operator G,
when F'is written in evolutionary form and D, derivatives are removed
from G, is determined. This is clearly a generic property.

Let us now give a sufficient condition in a special case when the
symbol P = o(F) (m x m matrix with polynomial entries) can be
diagonalized via an invertible transformation over polynomials. As
will be seen from the proof, codim Char®(£) = 2 and so this case does
not follow from the above theorem (if m > 2).

In the proof we will calculate the Mat,,x,, (ST)-module

Syz(P, Q) = {(A, B) € Mat,x0,(ST) : AP + BQ = 0}.

It encodes all syzygies which are the symbols of differential syzygies,
and the latter are the compatibility conditions by Theorem 1.

Theorem 8. Assume that P = o({f) is diagonalizable over the algebra
ST. Assume also that the characteristic variety of F' = 0 is irreducible,
has codimension 1 (i.e. F' is determined) and no multiple components.

Let G € sym(F) be a symmetry (both F,G are m xm PDE systems).
If for the joint system £ : ' = G = 0 the characteristic variety has
codimension > 1, then & is compatible.

Proof. We can assume from the beginning that P is diagonal P =
diag(ps,...,p,) for some polynomials on T7*: p;, € ST. Denote the
symbol of the symmetry G by (). This is also a matrix with polynomial
entries, Q = [¢ijlmxm-

The symmetry condition gives the following matrix syzygy:

PQ =KP & ¢;p; = kijp; (no summation).
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Because the characteristic variety is irreducible (without multiple com-
ponents) we conclude from here g;; = r;p;, kij = r;;p; for i # j. This
means that Q = RP + D and K = PR + D for some diagonal matrix
D. Since codim Char®(£) > 2, p; and ¢;; have no common factors.
Then the syzygy AP+ BQ = 0is (A+ BR)P+ BD = 0, which yields
B=—LPand A= LD — BR = LK. Consequently the Mat,,,(ST)-
module Syz(P, @) is 1-dimensional and generated by (K,—P). The
result follows from Theorem 1. U

Remark 1. Basing on the generators of the syzygy module Syz(P, Q)

one can check that multi-brackets of the rows of the 2m x m matrix

F

G} vanish as a consequence of the symmetry con-

differential operator [
dition.

A similar argument shows that an analog of Theorem 5 holds for
vector nonlinear differential operators, provided the characteristic va-
riety is generic (this implies that n shall be sufficiently big compared
to the dimensions of G, amount of equations in £ and m > 1).

3. EXACT SOLVABILITY OF DIFFERENTIAL EQUATIONS

Solutions to a compatible system of differential equations £ are for-
mally parametrized by p functions of g arguments (and some functions
with fewer arguments), where g = dim¢ Char®(£) + 1 is the dimen-
sion of the affine characteristic variety and p = deg Char(c(é' ) its degree
[BCG?, KL;|. Denote the abstract space of such functions by &9.

Closed form solutions refer to parametrization of the generic stratum
of the solutions space by a differential operator S : & = Sol(€).
According to Cartan [Cy] for underdetermined ODEs (g = 1) this is
tantamount'® to internal equivalence of the equation equipped with the
contact distribution (&, C¢) to some mixed jet space J7 (R, RP) equipped
with the canonical distribution. Here o = (i1, ...,4,) is a multi-index
characterizing the orders of the dependent variables.

Example 1. Consider the equation for null curves in Lorentzian
space of 1 + 2 dimensions

7t +yt) =1 & dt* —dr* —dy* =0.
An obvious solution involves one arbitrary function and the quadrature:

x = [cosp(t)dt, y = [sinp(t)dt. But it can also be integrated in the

n loc.cited only the case p = 1 — the classical Monge case of 1 equation on 2
unknowns — was treated, but the general case is similar.
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closed form:

t=0"(1) —o(r), x=0"(r)cosT+o'(7)sinT,
y=—0c"(7)sinT + o'(7) cos 7.

This equation in 1 + n dimensions cannot be solved in closed form
for n > 2. Indeed internally

E=R" x " ={(t,z,...,wp, 2, 2l) Y (2) =1}
i=1

The Cartan distribution on & is generated by D; = 0; + > | }0,, and
the subspace II = T'S™ ™ = (0, ..., 0w, | > 20, = 0): Ce = RDy + 11

Let A; = C¢ and Ay = [Ay, A4] be its derived distribution. Then
dim A; = n, dim Ay = 2n — 1 and we have Ay = Ay + (2]0,; — 250,,).
The next derived distribution is Ag = [Ay, Ay] = TE.

Thus by dimensional reasons the only possible corresponding jet-
space is J°(R,R"1), o0 = (1,...,1,2), with coordinates ¢, uy, ..., U, 1,

/ "

f S
uy, ..., u,_q,un 4. Its Cartan distribution is

n—1

A, = (D, Oty Oy, Our_ ), where Dy = 8t+z WO, A1y Ot
i=1

The derived distribution is equal to Ay = Ay + (D, ..., O ., Our )

and Ag =1TJ°.

Though the dimensions coincide, the distributions on £ and J? are
not equivalent. The reason is that II, which is the maximal involutive
space of the bracket A2A; — Ay /A4, is not the Cauchy characteristic
space for Ay. But in the second case II = (Ouys s 0w, Our_ ), which
is the maximal involutive space of the bracket Azﬁl — AQ / Al, is the
Cauchy characteristic space for A,.

Example 2. Consider the Monge equation w'(z) = (2'(x))% The
general solution depends on 1 function of 1 variable and the form via
quadrature is obvious, but here is the closed form solution:

r=0"(1), w=1%0"(7) = 270/ (1) + 20(7), 2 = 70" (1) — /(7).
The explanation behind this is the Engel normal form for rank 2 dis-
tributions in R*. However the next candidate — the Hilbert-Cartan
equation
W' = (Y (0
is no longer integrable in closed form (without quadratures) as was
demonstrated in 1912 by D.Hilbert. In 1914 E.Cartan gave a criterion
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for resolution of underdetermined ODEs in closed form [Cs], which we
referred to above.

Already in 1910 Cartan found that the symmetry group of (6) is G
(though it was not written like this in [C;], he surely knew this) and
proved that it is the most symmetric equation among such Monge equa-
tions with finite-dimensional symmetry groups (linearizable equations
have infinite-dimensional group of symmetries).

The more general problem when a PDE is integrable in closed form
via solutions of a simpler equation (usually ODE) is known as the
method of Darboux (that is we allow for the operator S above to in-
volve quadratures and some other nonlocalities). For instance, Liouville

equation
2f'(x)g'(y)
(f(z) +9(y))?

is Darboux integrable, while sin-Gordon u,, = sinu is not.
Example 3: The following overdetermined system of PDE on R?
appeared in [C;] (A is a parameter to be excluded):

Upy = SA°, Upy = SN%, Uy = A (7)

It is a compatible involutive system. The general solution is parametrized
by 1 function of 1 argument

Uy =€" = u=log

r=uz, y=2"(1)+ T,

u=xz(t)+2'(1)2"(7) = tw(r) — 372" (7)* — 372 2" (1) — 7727,

where w'(7) = (2”(7))?. In fact, this system has a common character-
istic d, — AJy, which lifts to the Cauchy characteristic of the Cartan
distribution (of rank 3). The quotient by the Cauchy characteristic is
a 5-dimensional manifold with rank 2 distribution equivalent to (6).

By a Lie-Bécklund type theorem [C;] the contact symmetry group
of (7) coincides with the internal symmetry group of (6), and so is Go.

According to Goursat [Gou] the general form of overdetermined invo-
lutive (in this case: compatible with a common characteristic) system
of 2nd order PDE on the plane is

P4 2AS+ Nt =20, s+ M=y, t =1y, (8)

where we use the classical notations r = Uz, 5 = Usy, t = Uy, and
suppose ¥y # 0 (nonlinearity). System (7) corresponds? to 1) = \3/3!

Removing the last equation from this system we obtain a determined
parabolic PDE & of the 2nd order. It has the largest contact symme-
try group (among non-linear equations) for ¢ = A\3/3! in which case

20ne also need to change y — —y to match the sign.
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excluding A we obtain the Goursat equation
4(2s — t?)® + (3r — 6st + 2t*)% = 0. (9)

This equation has the same symmetry group G5 and it can be parame-
trized as the 2D tangent cone p(A\) + p p'(A) to the twisted cubic p(\):

T:%A3+>\2M, S:%AQ_F)\”y t:>\+ﬂ'

Excluding A and p we get equation (9).

It has the following geometric reduction to (6), giving exact solutions

for (9). The double characteristic d, — AJ, lifts to

§ =D, — ADy = 0, — NIy + (p — A\Q)Du — £A°0, — £X%0,,

which together with 9, = A\20, + A\ds + 0, forms the integrable charac-
teristic rank 2 distribution Il C C¢. Quotient by it maps the Cartan
distribution C¢ (of rank 4) to a rank 3 distribution A on a 5-dimensional
manifold M?. This rank 3 distribution is the derivative distribution of
the unique rank 2 distribution A which maps to zero under restriction
of the natural bracket A2A — TM/A.

If we identify M® with R®(y,u, p, ¢, A), then A = (9, + 0, + 1\?0, +
A0y, 0y) and A = A+(9,+A,). Thus we see that (M5, A) is equivalent
to Hilbert-Cartan equation (6).

The following deformation &, of the Goursat equation was studied in

[T]:
(44 €)(2s — t7)° + (3r — 6st + 2t°)* = 0. (10)
Here ¢ > 0 and for every such number (10) is hyperbolic® and it has
maximal symmetry algebra of dimension 9 among all hyperbolic 2nd
order PDEs on the plane, which are neither of Monge-Ampere nor of
Goursat type (see [T] for details). The Lie algebra of symmetries is of
the type g = sly Xt (radical ¢ is 6-dimensional).
Except for this family there is one more hyperbolic equation with
9-dimensional symmetry algebra (g has the same type but different t)

3rtd +1=0. (11)

All these equations are Darboux integrable. The last one was studied
in Goursat [Gou]. Here is one intermediate integral of order 2:

st+1=0. (12)

The system (11)+(12) is involutive and so allows reduction to a rank 2
distribution. Indeed this system can be re-written in the form similar
to (7) — using Goursat representation (8) with 1) = —4X%? we get?

Upy = %)\3/2, Ugy = /2 Uyy = A2 (13)

30utside the submanifold in & given by Cartan equation (7)!
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This system is compatible (compatibility writes formally as A, = A\,
but this relation expresses the prolongation) and the characteristic field
is { = D, — AD,, which is also the Cauchy characteristic field for the
Cartan distribution Cg on the equation [K,].

Quotient of this rank 3 distribution Cg by £ gives a rank 2 distribution
on 5-manifold M?®, which corresponds to the Monge equation

W = (2/1)1/3' (14)

This latter is equivalent to (6) and has Lie(G2) algebra of symmetries.
Thus by Cartan’s version of Lie-Bécklund theorem [C;] the contact
symmetry algebra of the involutive system (11)+(12) is the same as
for (14) — it’s one more representation of Gj.

Remark 2. These all are realizations of non-compact (split) form of G
as the mazimal symmetric model. The compact form of Go is realized by
the automorphism group of the Calabi almost complex structure (S, J).
By [Ks] this is the mazimal symmetric model that acts on non-linear
overdetermined non-integrable* Cauchy-Riemann equations

CZ = @(z,w,(’), Cu? = \I’(Z,w,C)

Higher Monge equations were studied in [AK], and all maximal sym-
metric models were identified as the following underdetermined ODEs:
y™(x) = (2" (x))? (these again cannot be solved without quadratures
according to Cartan’s criterion).

The symmetries here can be thought of as internal or external — they
coincide by a version of Lie-Backlund theorem from [AK].

There are also PDE models for these according to [K4]. We will
demonstrate some in examples, which also indicate a relation to the
projective geometry of curves (the tool from [DZ]) — in our case (most
symmetric models) these are the rational normal curves.

Example 4: The following system is involutive®

__ 1,4 _ 1143 _ 112 —
Uggy = Z)\ y Uzzy = §)\ y Ugyy = 5)‘ s Uyyy = A (15)

It has type 3Fj3 in notations of [K3]. Quotient by Cauchy characteristic
§ = D, —AD, yields a rank 2 distribution on a manifold of dimension 8.
The weak growth vector of this distribution (we refer for the definition
and properties to [AK]) is (2,1,2,3) and the corresponding Monge
system is

y// — %(2”/)2, w/ — %(Z///)Zi. (16)

4This means the corresponding Nijenhuis tensor N is non-degenerate.
5Tt has Lie class w = 1, i.e. the solutions depend upon 1 function of 1 argument.
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The corresponding graded nilpotent (Carnot-Tanaka) Lie algebra is
free truncated of length 4 with 2-dimensional fundamental space g_;.
Similarly we reduce 4F,

__ 1145 __ 1,4 _ 1,3 _ 1,2 _
Ugzze = g)\ 7ua:a:xy - Z)‘ aumyy - §)\ 7uxyyy - 5)\ 7uyyyy =A

to a rank 2 distribution with growth (2, 1,2, 3,4) and the Monge equa-
tion ' ' '
y/// — %(ZW)Q, U” — %(Zw)fi’ w/ — i(sz)AL‘
We can modify the symmetric models without destroying the sym-

metry algebra. For the above 3F3 we get its tangent 2D cone
Ugre = %L)\Ll + )‘Blua Ugzy = %A3 + )‘2#7
Ugyy = %AZ + AU, Uyyy = A+ L.

This type 2E35 system is compatible (the prolongation obeys A, = A\,),
and its general solution depends on w = 2 functions of 1 argument.

The characteristic is still D, — AD,, (with multiplicity two) and the
contact symmetry algebra is the same as the contact external algebra
for (15) and the same as the internal algebra for (16): it has dimension
12 and Levi decomposition g = sly xt (radical v is 9-dimensional and
it consists of 1-dimensional center and 8-dimensional nil-radical).

Further modification gives the 3D tangent cone of the normal curve,
which is a strictly parabolic 3rd order determined PDE with the same
12-dimensional symmetry algebra g. Denoting by «, 3,7,0 the 3rd
derivatives Ugzq, Ugay, Uzyy, Uyyy We can write this system of equations
parametrically

a= i)\4+)\3u+3)\2y, v = %)\2+)\LL+V,
B=2XN+Xu+2\v, d=\+yu,
or in the implicit form
8a% 1802 (435+8v*—1278*+36%)+27a B (18y—6%)+4a 376 (362 —107)
+ 8a? (37 — 6%) + 273%(27376 — 836 — 18+ + 6720°) = 2187 3*/8.

Its solution space depends on w = 3 functions of 1 argument and is
intrinsically related to the Monge system (16).
Higher analogs of the above are valid on the basis of works [AK, K4].

4. CONCLUSION

In this paper we discussed compatible overdetermined as well as
underdetermined systems &£ of differential equations. We indicated that
symmetries generically produce particular automodel’ solutions to £.
But if symmetries are few, they do not allow complete integration.
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On the other hand abundance of symmetries is a sign of integrability.
In Section 3 we briefly indicated via examples how large algebras of
symmetries make models unique. These symmetries often do not live
on the equation-manifold, and a covering is required to see them. In
this way Darboux integrability [D, F| was recast into the language of
group quotients in [AFV] and new examples were integrated, see [AF].

Integration in closed form is too restrictive in the context of PDEs,
and instead one considers reductions to ODEs. These latter are not
arbitrary in the maximal symmetric cases, as they also possess sym-
metries. This restricts the models (like those Monge equations from
[AK]) and gives a method to understand integrability.
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