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Abstract. In this paper we prove that only pseudoholomorphic curves appear as J -in-
variant submanifolds of generic almost complex manifolds (M, J ). We also prove there
exist no non-trivial automorphisms or submersions of such manifolds. On the other hand
we show that abundance of 1-jets of PH-submanifolds, automorphisms or submersions
implies integrability of the almost complex structure.

Introduction

Let a manifoldM2m be equipped with an almost complex structure J ∈ End(TM),
J 2 = −1. A submanifold L ⊂ M is called pseudoholomorphic (PH-submani-
fold) if T L ⊂ TM is J -invariant. Existence of local PH-submanifolds of complex
dimension one was first proved by Nijenhuis and Woolf [NW]. The theory has
been revolutionized by the paper of Gromov [Gr], where many global results for
PH-curves were established and applied to symplectic geometry (see further results
in [MS]).

It was believed there are no higher dimensional PH-submanifolds for generic
J . This was stated without proof by Gromov [Gr] and even more indirectly by
Donaldson [D] (“one does not expect to find any solutions”). However though an
overdetermined system with generic coefficients is usually non-integrable, it may
be solvable. This paper is devoted to a clarification of the question.

Denote by J (M) the space of almost complex structures on a manifold M2m.

Theorem. There exists an open dense in Cr -topology subset J ′ ⊂ J such that
an almost complex manifold (M, J ) with J ∈ J ′ has no local (even formal)

− PH-submanifolds of dimension 2n, 2 ≤ n ≤ m− 1. Here r = max{2, 6− n}.
− PH-submanifolds of dimension 2n, 2 ≤ n ≤ m − 1, through a generic point.

Here r = max{1, 5− n}.
− PH-automorphisms f ∈ Autloc(M, J ) different from idM . In this case r =

max{1, 5−m}.
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− local PH-submersions onto an almost complex manifold of dimension 2n, 0 <
n < m. Here r = 2 for (m, n) = (2, 1) and r = 1 else.

To prove the claim we consider the set of NJ -invariant 2n-planes and show
that it contains generically no integrable sub-distributions. The real analog for
n = 2 is integrable in the Cω-category: if A is a (2, 1)-tensor onMm, the equation
A(T L, T L) ⊂ T L on a surfaceL2 ⊂ M is determined and is in Cauchy-Kovalevs-
kaya form. In the presence of J we get an overdetermined equation and we should
find enough compatibility conditions to obstruct any solution.

A similar statement takes place in Riemannian geometry too, where one should
change PH-maps to isometries and PH-submanifolds L2n ⊂ (M2m, J ) to totally
geodesic Ln ⊂ (Mm, g), n > 1. The arguments are similar. However the author
has found neither a proof nor even the statement in the literature.

An almost complex manifold (M, J ) has no more local PH-submanifolds (usu-
ally none) than a complex one, with the only exception of PH-curves. Moreover if it
has as many PH-submanifolds as in the integrable situation, then the structure J is
actually integrable. See the precise statement and the comparison to an analogous
result of McKay [M] in the conclusion (Theorem 15 in §3.1).

The non-existence theorem for PH-submanifolds suggests examining some oth-
er analogs, which were actually established in [D]. Namely Donaldson introduced
and applied the approximate PH-submanifolds. At the end of the paper we give
another approach to his concept, arising from quantization theories.

1. Linear approximation

1.1. Preliminaries on the Nijenhuis tensor

The Nijenhuis tensor of an almost complex structure J is given by the following
formula:

NJ (X, Y ) = [JX, JY ]− J [X, JY ]− J [JX, Y ]− [X, Y ].

This is a skew-symmetric and J -antilinear in each argument (2, 1)-tensor.

Definition 1. Define the space of linear Nijenhuis tensors on a complex vector
space (V , J ) by

N (V , J ) = {N ∈ �2V ∗ ⊗ V |N(JX, Y ) = −JN(X, Y )}.
Due to [Kr1] every such a linear tensor on V = TxM can be realized as the

Nijenhuis tensor of some almost complex structure in a neighborhood of x ∈ M .

Definition 2. For a (2, 1)-tensor N on a vector space V a subspace W ⊂ V is
called N -invariant if N(W,W) ⊂ W .

Proposition 1. Let L ⊂ (M, J ) be an almost complex submanifold, i.e. TxL is
J -invariant for every x ∈ L. Then every TxL is also NJ -invariant. ��
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Motivated by this obvious characterization of tangent spaces to PH-submani-
folds we introduce the following notion.

Definition 3. Let N ∈ N (V , J ). The N -Grassmannian of type 2n is:

Gr2n(V , J,N) = {�2n ⊂ V | J� = �, N(�,�) ⊂ �}
⊂ GrC

n (V ) = Gr2n(V , J ).

Thus to each almost complex manifold (M, J ) we can associate the “bundle”
(M, J )Gr2n(M, J,NJ ) = ∪x Gr2n(TxM, J,NJ ) (the “fibers” over different
x ∈ M could be non-isomorphic).
Example. Consider the unit sphere S6 ⊂ R

7. Its well-known almost complex struc-
ture J is defined as follows: Identify R

7 with the purely imaginary octonions. The
imaginary part of the octonion multiplication gives the vector product× on R

7. We
define J : TxS6 → TxS

6 by η �→ x × η, where η ∈ R
7 and η⊥x.

Because J on S6 is homogeneous, the tensor NJ is the same at all points.
Identify the octonions with H[1, l], where H is the space of quaternions R

4 

R[1, i, j, k], k = ij . Choose the point x = i ∈ S6. The tangent plane is TxS6 =
〈j, k, l, il, j l, kl〉. Let us fix a real 3-space L3 = 〈X1, X2, X3〉 with X1 = 1

2k,
X2 = 1

2 il, X3 = 1
2kl. Then the Nijenhuis tensor is given by the following table:

NJ (↑,←) X1 X2 X3 JX1 JX2 JX3

X1 0 X3 −X2 0 −JX3 JX2

X2 −X3 0 X1 JX3 0 −JX1

X3 X2 −X1 0 −JX2 JX1 0

JX1 0 −JX3 JX2 0 −X3 X2

JX2 JX3 0 −JX1 X3 0 −X1

JX3 −JX2 JX1 0 −X2 X1 0

Note thatNJ -multiplication coincides with the standard vector product onL3 
 R
3.

Thus Gr4(S
6, J,NJ ) = ∅ and (S6, J ) contains no 4-dimensional PH-submani-

folds. However there are plenty of PH-spheres S2 ⊂ S6.

Remark. The example we considered is exceptional for two reasons. First, the
Nijenhuis tensor is obtained as the complexification of some real (2, 1)-tensor on
a totally real subspace L: TxM = L⊗ C and N is extended by anti-linearity. The
tensors possessing such a realification are exceptional for m > 2. And second, as
we shall see, under certain restrictions the NJ -Grassmannian is not empty.

1.2. Study of the N -Grassmannians

Proposition 2. For generic N ∈ N (V , J ) the Grassmannian Gr2n(V , J,N) ⊂
GrC

n (V ) is a smooth submanifold of dimension 2(m− 2) for n = 2, is discrete for
n = 3 and is empty for n ≥ 4.
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Proof. Let π be the bundle over GrC
n (V ) with the fiber π−1(�) at � ∈ GrC

n (V )

equal Hom
C̄
(�2

C
�, ν). Here Hom

C̄
denotes the set of anti-holomorphic mor-

phisms, ν = V/� is the normal bundle and�2
C
� is the exterior power over C, i.e.

the quotient of�2� by the equivalence JX ∧ Y = X ∧ JY . If Xi (1 ≤ i ≤ n) is a
C-basis of�, thenXi ∧Xj is a C-basis of�2

C
�. Define the section �N ∈ C∞(π)

in the following way:

�N(�)(Xi ∧Xj) = N(Xi,Xj )mod�, � ∈ GrC
n (V ).

Lemma 3. For genericN ∈ N (V , J ) the canonical section�N ∈ C∞(π) is trans-
versal to the zero section.

Proof. We will actually prove more, namely that the set of non-generic N is a
stratified submanifold of the vector space N (V , J ) of positive codimension. Since
GrC

n (V ) has a finite atlas, it suffices to prove the statement in a chart.
Let V = � ⊕ ν be a complex decomposition with bases X1, . . . , Xn and

Xn+1, . . . , Xm respectively. It produces the chart U(�, ν) ⊂ GrC
n (V ) represented

by elements σ ∈ HomC(�, ν). Let σ(Xi) =
∑m
j=n+1 b

j
i Xj . Then we associate

the subspace Lσ = graph(σ ) = C〈ξ1, . . . , ξn〉 to σ , where ξi = Xi + σ(Xi).
Let us write the above direct sum asw = w�+wν . The projectionPσ : V → ν

along Lσ is given by the formula Pσ (w) = wν − σ(w�). So if we specify the
Nijenhuis tensor by N(Xi,Xj ) =

∑m
r=1 a

r
ijXr , 1 ≤ i < j ≤ n, the canonical

section of π is given by

�N : ξi∧ξj �→
[
(arij+b̄si arsj+b̄tj arit+b̄si b̄tj arst )−brq(aqij+b̄si aqsj+b̄tj aqit+b̄si b̄tj aqst )

]
Xr.

Here we assume summation by repeated n+ 1 ≤ r, s, t ≤ m and 1 ≤ q ≤ n.
Intersection of�N with the zero section is given by the cubic system c(a, b)rij =

0. The free term arij does not enter other places, so that γ (a, b)rij := arij − c(a, b)rij
does not depend on it. By the Sard theorem generic arij is a regular value of γ (a, b)rij ,
so that for the corresponding tensor N we get the required transversality. ��

Now we finish the proof of the proposition. Let N be generic as in the lemma.
The rank of the bundle π is n(n − 1)(m − n) and the dimension of the base is
2n(m− n), whence the claim (a generic section has no zeros if the fiber dimension
is larger than that of the base). ��
Remark. The following modification of the proof was suggested by the referee.
One pulls back the bundle π to N (V , J ) × GrC

n (V ). The new bundle π̂ has the
canonical section �̂ : (N,�) �→ �N(�). By the calculation in a chart this section
is transversal to the zero section. Thus we obtain the real algebraic set �̂−1(0) =
�N∈N (V ,J ) Gr2n(V , J,N). The conclusion follows by application of the Sard the-
orem to the projection of �̂−1(0) to N (V , J ).

So for n ≥ 3 the Gr2n(TM, J,NJ ) is locally a finite collection of rank 2n
distributions. Integrability of them is an additional restriction on NJ , which is not
fulfilled for a generic J . On the other hand the case n = 2 provides families of
sections and it is not clear why there’s none integrable among them.
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1.3. Complex linear algebra

To understand N -Grassmannians let us study the operators N(X, ·), X ∈ V .

Proposition 4.. Let (V , J )be a complex linear space,J 2 = −1, and letA : V → V

be a J -antilinear operator. Then there exists a decomposition V = V1 ⊕ V2 such
that AVi ⊂ Vi and JVi = Vi+1, i ∈ Z (mod 2).

Proof. Spectrum of the operator is Sp(A) = �+ ∪ �− ∪ �0, where �ε =
{λ ∈ Sp(A) | sgn(Re λ) = ε}. Let V = V+ ⊕ V− ⊕ V0 be the correspond-
ing splitting. Then JV± = V∓ and JV0 = V0. So it is enough to consider
�0 = {0,±iλ1, . . . ,±iλs}. We consider only one summand of the resulting split-
ting.

Consider at first λj �= 0. Let V̂ be an A, J -invariant subspace with Sp(A) =
{±iλj }. Suppose A is semisimple. Denote I = λ−1

j A and K = IJ . Then one eas-
ily checks that the operators (1, I, J,K) determine a quaternion representation on
V̂ . Thus V̂ = ⊕V̂l , each summand being invariant and of dimension 4. Choosing
ξ ∈ V̂l \ {0} we get a decomposition V̂l = 〈ξ, Iξ〉 ⊕ 〈Jξ,Kξ〉, whence the claim.
If A is not semisimple, we get the Jordan filtration V̂0 ⊂ V̂1 ⊂ · · · ⊂ V̂ and the
proof is achieved similarly with the adjoint grading.

For the zero eigenvalue λ = 0 the operator A vanishes on the lowest filtration
term V̂0, which can be decomposed as specified. Thus by climbing the Jordan tower
we successively construct the required decomposition. ��
Corollary 5. If dim V ∈ 4Z + 2, then A has an invariant line in every summand
V1,2. Therefore V contains a 2-dimensional plane that is A, J -invariant. ��
Corollary 6. Let N ∈ N (V , J ) be some linear Nijenhuis tensor. If dim V ∈ 4Z,
then there exists a J,N -invariant 4-dimensional subspace W ⊂ V .

Proof. Take X ∈ V \ {0}. Let L2 = 〈X, JX〉 and� be a J -invariant complement,
V = �⊕L2. Denote byπ : V → � the projection alongL and defineA : �→ �

as the composition π ◦N(X, ·).N ∈ N (V , J ) impliesAJ +JA = 0. So the claim
follows from the previous corollary. ��

Thus for even m the “bundle” Gr4(M, J,NJ ) is always non-empty.

1.4. Classification of low-dimensional Nijenhuis tensors

If m = dimC V = 2, any non-zero linear Nijenhuis tensor is given by relations
N(zX1, wX2) = z̄w̄X1, where (x + iy)X = xX + yJX.

We present a classification in the case m = 3. Let us call a Nijenhuis ten-
sor N non-degenerate if N(X, Y ) = 0 implies C〈X〉 = C〈Y 〉. Note that in this
case N : �2

C
V → V is an anti-isomorphism of 3-dimensional complex spaces.

Since every element of�2
C
V is represented by a decomposable bivector, the image

� = N(�2
C
V ) is a complex vector subspace of V . Denote the non-degenerate case

by NDG and the case when dim Im(N) = 4 (resp. 2) by DG1 (resp. DG2).
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In the statement below we presentN via some complex basis of V 
 C
n using

the anti-linear ruleN(zX,wY) = z̄w̄N(X, Y ). Variables λ > 0, ϕ, ψ are supposed
to be real.

Theorem 7. Any linear non-zero Nijenhuis tensor N can be carried to one of the
forms:

NDG: 1. N(X1, X2) = X2, N(X1, X3) = λX3, N(X2, X3) = eiϕX1,
2. N(X1, X2) = X2, N(X1, X3) = X3 +X2, N(X2, X3) = eiϕX1,
3. N(X1, X2) = cosψX2 + sinψX3,
N(X1, X3) = − sinψX2 + cosψX3, N(X2, X3) = eiϕX1,

4. N(X1, X2) = X1, N(X1, X3) = X2, N(X2, X3) = X2 +X3,
DG1: 1. N(X1, X2) = X2, N(X1, X3) = λX3, N(X2, X3) = 0,

2. N(X1, X2) = X2, N(X1, X3) = X3 +X2, N(X2, X3) = 0,
3. N(X1, X2) = cosψX2 + sinψX3,
N(X1, X3) = − sinψX2 + cosψX3, N(X2, X3) = 0,

4. N(X1, X2) = X1, N(X1, X3) = X2, N(X2, X3) = 0,
5. N(X1, X2) = X2, N(X1, X3) = X1, N(X2, X3) = 0.

DG2: 1. N(X1, X2) = X1, N(X1, X3) = 0, N(X2, X3) = 0,
2. N(X1, X2) = X3, N(X1, X3) = 0, N(X2, X3) = 0.

The above forms are pairwise non-equivalent save for some exceptional values
of parameters.

Proof. NDG. Consider the map �1 : CP 2 → GrC
2 (3) 
 CP 2 given by C〈X〉 �→

ImN(X, ·). Let �2 : GrC
2 (3)→ CP 2 be the mapping C

2〈Y,Z〉 �→ C〈N(Y,Z)〉.
By the non-degeneracy assumption both are correctly defined and are diffeomor-
phisms. So � = �2 ◦�1 is a diffeomorphism of CP 2.

Its Lefschetz number is l(�) = t0 + t2 + t4, where

ti = tr(�∗) : Hi
dR(CP

2)→ Hi
dR(CP

2).

Thus t0 = 1, t2 = ±1 and t4 = 1 since � preserves orientation. So l(�) �= 0 and
there is a fixed point, i.e. for some C-invariant subspaces L2,�4 ⊂ V 6 we have
�1(L

2) = �4, �2(�
4) = L2. We choose L2 = C〈X1〉.

There are two possibilities: either L2 ∩�4 = {0} or L2 ⊂ �4. In the first case

we study the operatorNX1

def= N(X1, ·) : �4 → �4. We note that sinceNX1 is real,
the spectrum Sp(NX1) is conjugacy-invariant. But due to anti-linearity of NX1 , it
is also invariant under multiplication by −1. Moreover if a two-dimensional space
in�4 is J,NX1 -invariant, it corresponds to real eigenvalues {±λ} (because NX1 is
orientation-reversing on this 2-plane). Finally R-scaling of X1 results in real-scal-
ing of Sp(NX1) and S1-scaling preserves the spectrum. Thus by Proposition 4 we
get the normal forms (1–3).

The second possibility corresponds toN -invariant space�4, so we use classifi-
cation in dimension 2m = 4 and choose a transversal vectorX3:N(X1, X2) = X1,
N(X1, X3) = X2,N(X2, X3) = aX3+bX2+cX1. The transformation X̃1 = σX1,
X̃2 = σ̄

σ
X2 + κX1, X̃3 = 1

σ̄
X3 + κ̄

σ
X2 + µX1 changes coefficients: ã = a,

b̃ = 1
σ̄

[κ̄(1− a)+ σ
σ̄
b], c̃ = |σ |−2[|κ|2a− κ σ

σ̄
b+ c− (µσ̄a+ µ̄σ )]. Thus |a| �= 1
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reduces to b = c = 0 and so is the form (1). The case a = e2iϕ , 0 < ϕ < π ,
reduces to b = 0, c = iλeiϕ , with λ = 0, 1, which corresponds to the forms (1) and
(2) respectively. Finally the case a = 1 reduces to b = 0, 1, c = 0 and for b = 1
we get the new form (4).

DG1. We suppose N(X2, X3) = 0 for C-independent X2, X3. Then denote
�4 = C

2〈N(X1, X2), N(X1, X3)〉. If N(�4,�4) = 0, then �4 = C
2〈X2, X3〉

and we study the operator N(X1, ·) : �4 → �4 to get forms (1–3). Otherwise
N(�4,�4) = L2 and there are two possibilities. If L2 ∩ C

2〈X2, X3〉 = {0}
we choose L2 = C〈X1〉, 〈X2, X3〉 ∩ �4 = C〈X2〉 and get the case (4). And if
L2 ⊂ C

2〈X2, X3〉 we choose X2 ∈ L2, X1 ∈ �4 \ L2 and get the form (5).
DG2. Here �2 = ImN ⊂ V 6. We define X3 ∈ L2 = KerN ⊂ V 6. Then the

two forms (1–2) correspond to the cases L2 ∩�2 = {0} and L2 = �2.
Now degenerate cases are obviously pairwise non-isomorphic. So we prove

non-equivalence of the cases NDG(1-4). In case (1) with λ �= 1 the map � has 3
fixed points L2 ⊂ V on CP 2, but 2 of them satisfy L2 ⊂ �1(L

2). In case (2) pro-
vided ϕ �= ±π

2 there are 2 fixed points (one degenerate). For (3) withψ �= ±π
2 ±ϕ

or ψ �= πk
2 we have 3 fixed points, but none satisfies L2 ⊂ �1(L

2). In the last case
(4) � has a unique fixed point. For all the exceptional cases indicated above the
number of fixed points is infinite. ��

We show one adjacent result. Fix a type of the Nijenhuis tensor NDG(1–4) with
varying parameters. Call it non-exceptional if no parameter is exceptional.

Proposition 8. S6 has no almost complex structure of non-exceptional type.

Proof. Otherwise T S6 has a proper subbundle – a fixed point of �. ��
The standard structure (§1.1) is of exceptional type: NJ ∈ NDG(3)ϕ=0,ψ= π

2
.

1.5. Structure of Gr4(V , J,N)

In this subsection we re-prove Proposition 2 for n = 2 and consider in details the
case m = 3.

Proposition 9. For a generic tensorN ∈ N (V , J ), the set Gr4(V , J,N) is a strat-
ified submanifold of GrC

2 (V ) of real dimension 2(m− 2).

Proof. Note that Gr4(V , J,N) = Gr0
4 ∪Gr1

4, where

Grk4 = {�4 ∈ Gr4(V , J,N) | dimCN(�
2�) = k}.

Denote the linear map N(X, ·) : V → V by NX and its characteristic polynomial
by PX(λ) = det(NX − λ1). Since NX(C〈X〉) = 0, we have PX(0) = P ′X(0) = 0.
The condition X ∈ � ∈ Gr0

4 means ∃Y /∈ C〈X〉 such that NX(C〈Y 〉) = 0. Thus
for such X we have P ′′X(0) = P ′′′X (0) = 0 and these equations define a strati-
fied submanifold in CP(V ) of dim ≤ 2(m − 2). Moreover rotation in the plane
C

2〈X, Y 〉 reduces dimension and so Gr0
4 ⊂ GrC

2 (V ) is a stratified submanifold of
real dimension ≤ 2(m− 3).
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If �4 ∈ Gr1
4, L2 = N(�,�) and X ∈ � \ L2, then NX : L2 → L2 and

eigenvalues are non-zero real numbers {±λ}. Let

U =
m−1⊔

k=1

Uk, Uk = {C〈X〉 | ∃ k blocks of real eigenvalues {±λ �= 0} in Sp(NX)}.

Decompose Uk = U ′k ∪ U ′′k with U ′′k corresponding to multiple eigenvalues. For a
generic tensor N the set U ′k is open and dense in Uk . Each C〈X〉 ∈ U ′k determines
exactly k complex planes C

2〈X, Y 〉, where Y is an eigenvector corresponding to a
real eigenvalue of NX (there are families over points of U ′′k of dimension equal to
the codimension of the corresponding U ′′k -stratum in Uk).

Generically the set U is open in CP(V ) with dimC U = m− 1. Since C〈X〉 is
defined up to transformation X �→ X + aY , a ∈ C, the statement is proved. ��
Proposition 10. Form = 3 and genericN the Grassmannian Gr4(V , J,N) is one
of the manifolds ∅, S2, T 2.

Proof. Let’s identify V 
 C
3. We define a complex linear map × : �2

C
V → V

as the complexification of the standard vector product on R
3. Using this isomor-

phism we define a complex map N̂ : V → V as the composition of N ◦ (×−1)

and the conjugation. Now the condition �4 = ×−1(C〈X〉) ∈ Gr4(V , J,N) reads
(X, N̂X) = 0. This is a real quadric in CP 2 of codimension 2. We assume the
identification as well as the conjugation and the Hermitian metric are given by the
basis from Proposition 7 and use in calculations those normal forms.

NDG(1). Supposeλ �= ±1. If�4 = C
2〈X1+zX3, X2+wX3〉 ∈ Gr4(V , J,N),

we have w = |z|2
(

cosϕ

1− λ + i
sin ϕ

1+ λ
)

. At infinity CP 1 ⊂ CP 2 only one point

C
2〈X1, X3〉 is added and so Gr4(V , J,N) 
 S2.

NDG(2). In this case with the above notations |w|2 = |z|2 cosϕ, Imw =
1
2 |z|2 sin ϕ. Let cosϕ sin ϕ �= 0. For cosϕ < 0 the Grassmannian is empty. For

cosϕ > 0 it corresponds to the graph over a domain |z| ≤ 2
√

cosϕ

| sin ϕ| given by w =
1
2 |z|

(
±

√
4 cosϕ − |z|2 sin2 ϕ + i|z| sin ϕ

)
. Thus it is an immersed S2 ⊂ CP 2

with one singularity at (z, w) = (0, 0) of the type of the standard cone in R
3. No-

tice though that this singularity does not contradict the statement of Proposition 2,
because the Jordan box case is not generic.

NDG(3). The corresponding equation |z|2eiϕ = cosψ(w−w̄)−sinψ(1+|w|2)
has no solutions if cosϕ/ sinψ > 0 or | cosϕ| < | sinψ |. For the opposite inequal-
ities the Grassmannian Gr4(V , J,N) is a torus T 2 projected to the annulus

ρ1 ≤ |z|2 ≤ ρ2, where ρ1,2 = −2 cosϕ cos2 ψ

sin2 ϕ sinψ

(

1∓
√

1− tan2 ϕ tan2 ψ

)

.

NDG(4). The Grassmannian is defined by the equation 2 Re z+|w|2 = wz̄. The
solution 2w = z(1 ±

√
|z− 4|2 − 42/|z|) is defined outside the disk B2(4) ⊂ C

and has a one point compactification at infinity. So we get S2. ��
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For non-generic Nijenhuis tensors, the dimension of the Grassmannian can
increase. For example for N of the type NDG(1) with the parameter λ = 1 the
dimension of Gr4(V , J,N) is 3. But it is always less than 4 if N �= 0.

2. Differential equations approach

2.1. General scheme of PDEs investigation

Here we briefly review the geometric theory of (systems of) PDEs. The reader is
asked to consult [KLV], [Sp], [Gu] and [Ly] for details.

From the geometric point of view a PDE of order k is a submanifold Ek in the
jet space J k(π) (of some bundle π ) equipped with the canonical Cartan distribu-
tion Ck . The last is defined as follows: Let πk,k−1 : Ek → Ek−1 be the forgetful
projection (one can assume Ek−1 = J k−1(π) for simplicity). If xk = [s]kx is the
k-jet of a section s at a point x, we have πk,k−1(xk) = xk−1 = [s]k−1

x . Denote
by L(xk) = Txk−1jk−1(s) the tangent space to the jet section. Then we define

Uk : TxkEk
(πk,k−1)∗−→ Txk−1Ek−1 → Txk−1Ek−1/L(xk) and Ck = KerUk .

At every point xk ∈ Ek the Cartan subspace can be decomposed Ck = H ⊕ gk ,
where gk(xk) = Ker(πk,k−1)∗ is the symbol of Ek and H is some additional hori-
zontal subspace that projects isomorphically by πk : Ek → M to TxM .

We consider equations modelled on the trivial bundle π : M×N → M . In this
case the symbol gk ⊂ Skτ ∗⊗υ, where τ = TxM , υ = TyN and (x, y) = πk,0(xk).
Differentiation of the equations corresponds to the prolongation of the system
Ek+1 = E (1)k ⊂ J k+1(π). Prolongation over a point xk ∈ Ek exists if it belongs to
the image of the projection πk+1,k(Ek+1). A PDE E all the points of which have
infinite prolongations and the fibers behave regularly is called formally integrable.

The machinery to study prolongations is the Spencer δ-cohomology. The al-
gebraic prolongations of the symbol are defined inductively as gl+1 = g

(1)
l =

Ker(δ : gl ⊗ τ ∗ → gl−1⊗�2τ ∗), l ≥ k, where the operator δ is the symbol of the
de Rham differential. They can be also calculated by the formula gl = g

(l−k)
k =

Sl−kτ ∗⊗gk∩Slτ ∗⊗υ. Spencer groupHi,j (g) is the cohomology of the following
δ-complex:

· · · → gi+1 ⊗�j−1τ ∗ δ→ gi ⊗�jτ ∗ δ→ gi−1 ⊗�j+1τ ∗ → . . .

It was known since Quillen and Goldschmidt that the groups Hi,2 obstruct to pro-
longations ([Sp]). Obstructions Wk(xk) ∈ Hk−1,2(Ek, xk), introduced in [Ly] (see
also [KL]), are called Weyl tensors and have the following definition.

Let �k = dUk|KerUk : �2Ck → gk−1 be the metasymplectic structure. Its
restriction to a horizontal subspace �k|H ∈ �2H ∗ ⊗ gk−1 
 gk−1 ⊗ �2τ ∗ is
δ-closed. Another choice of horizontal space H ⊂ Ck results in a change of �k|H
by a δ-exact form. So the δ-cohomology class Wk = [�k|H ] is well-defined. If E
is a defining equation for a G-structure, then one can show that the Weyl tensor is
the well-known structure function ([Gu], [St]).
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The set of once-prolongable points xk ∈ Ek has the equationWk(xk) = 0. If the
equation holds identically we prolong once and study Ek+1. Otherwise we get a new
equation Ẽk ⊂ Ek determined by the conditionWk = 0. We apply the machinery to
this equation and so on. Moreover it can happen that the projection πk,k−1 restricted
to Ẽk is not epi. Then we get a system of smaller order, which we study etc.

Thus we obtain prolongation-projection method for our investigation. The
Cartan-Kuranishi theorem says the procedure stops in a finite number of steps
(for regular points). Using a well-known phrase of E. Cartan “after a finite number
of prolongations the system becomes involutive or contradicting”. We will apply
this technique to get a contradiction (non-existence) in two steps.

Remark. An alternative approach to PDEs is the Cartan’s theory of exterior differ-
ential systems ([C]). See the modern exposition in [BCG].

2.2. Equation on PH-submanifolds

Let (M, J ) be an almost complex manifold of dimension 2m ≥ 6. To study local
pseudoholomorphic submanifolds of dimension 4 we consider

E = {(x, y,�) ∈ J 1(R4,M) | x ∈ R
4, y ∈ M,� ∈ T ∗x R

4 ⊗ TyM,
J Im� = Im�}.

Although it is not necessary we will restrict to the regular part of the above equation
specified by the condition rk(�) = 4 (the irregular part corresponds to singulari-
ties). We use the same letter E for this smaller equation. The symbol of the equation
at a point x1 = (x, y,�) is

g1(x1) = {φ ∈ T ∗x R
4 ⊗ TyM | Jφ − φJ̃ ∈ Im�},

where J̃ is an almost complex structure on TxR4 depending on x1. In what follows,
we write τ = TxR4, ζ = TyM , � = Im�. We have:

gk(x1)={φ ∈ Skτ ∗⊗ζ | Jφ(ξ1, . . . , ξi , . . . , ξk)−φ(ξ1, . . . , J̃ ξi , . . . , ξk) ∈ �∀i},
where J̃ is the same as for x1. Denoting g�k = Skτ ∗ ⊗ � ⊂ gk , we get gνk :=
gk/g

�
k = Skτ ∗ ⊗C ν – the set of J̃ -J linear maps Skτ → ν, where ν = ζ/�. In

particular, gk �= {0} and E is an equation of infinite type.
The symbolic system {gk} is involutive: Hi,j = 0 for i > 0. In fact both the

systems g�k and gνk are involutive by the Poincaré lemma: one for the de Rham and
the other for the Dolbeault differentials. The only non-zero second cohomology
group occurs at the last term of the Spencer sequence

0 → g2
δ2→ g1 ⊗ τ ∗ δ1→ �2τ ∗ ⊗ ζ → 0. (1)

The space H 0,2(E, x1) consists of all J̃ -J anti-linear (2, 1)-tensors modulo �. In
fact we can identify g2 = Ker δ1 with the preimage of S2τ ∗ ⊗C ν under the pro-
jection S2τ ∗ ⊗ ζ → S2τ ∗ ⊗ ν. Then the cokernel of δ1 in sequence (1) is the space
H 0,2(E) 
 �2τ ∗ ⊗

C̄
ν of dimension 2(m− 2).
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Proposition 11.. The Weyl tensor W1 at a point x1 = (x, y,�) with Im� = � is
given by

ξ1 ∧ ξ2 �→ 1

4
NJ (�ξ1,�ξ2) mod�, ξ1, ξ2 ∈ τ.

Proof. Let [ξ ] ∈ ν be the projection ξ mod�. The projection �2τ ∗ ⊗ ζ →
CoKer δ1 = H 0,2 associates to every skew-symmetric (2,1)-tensor P its anti-lin-
ear (−,−) part mod�. Since � : τ

∼→ � is an isomorphism, we can identify
P ∈ �2�∗ ⊗ ζ . Then the (−,−) part of [P ] ∈ �2�∗ ⊗ ν is:

[P−−](ξ, η) = [
(P (ξ, η)−P(Jξ, Jη)+JP (J ξ, η)+JP (ξ, Jη))/4]

, ξ, η ∈ �.

The metasymplectic structure �1 equals the curvature of the Cartan distribution
C1 = Ker(dy − �dx). Thus the restriction �1|H is equal to the torsion T∇ of a
linear connection ∇ on M determining the horizontal distribution H : In fact the
curvature of an affine connection is the sum of the curvature and the torsion of
the corresponding linear connection [KN], but in the calculation of �1 [Ly] the
curvature part is cancelled.

The distribution H is a Cartan connection (tangent to the equation, H ⊂ C1)
iff it is generated by a linear connection ∇ preserving the almost complex struc-
ture: ∇J = 0. But the (−−) part of any almost complex connection is canonical
T −−∇ = 1

4NJ ([Li]). Since the Weyl tensor W1 = [�1|H ] is the [(−−)] part of T∇ ,
we are done. ��

Let us give another indication of the fact that the equalityW1 = 0 is equivalent
toNJ (�,�) ⊂ �. It is obvious that whenever we have a 2-jet of a pseudoholomor-
phic mapping of (R4, x, J̃ ) into (M, y, J ), the 1-jet of it preserves the Nijenhuis
tensor: ϕ∗ ◦NJ̃ = NJ ◦�2ϕ∗.

On the other hand suppose we have 1-jet of a map, i.e. a linear map� : TxR4 →
TyM with image � = Im� that is J,NJ -invariant. Induce the complex structure
and Nijenhuis tensor on TxR4 by �. Extend the complex structure to an almost
complex structure J̃ in a neighborhood of x so that the Nijenhuis tensor N

J̃
at x

coincides with the prescribed NJ . Then by Theorem 1 of [Kr1] the map can be
changed so that its 2-jet maps (R4, x, J̃ ) into (M, y, J ).

2.3. First prolongation-projection

Not all points of E have prolongations. Those that do form a new equation Ẽ =
π2,1(E (1)). Due to the above calculations it is described as follows:

Ẽ = {(x, y,�) |� = Im� satisfies J� = �,NJ (�,�) ⊂ �}.

In other words, the fiber Ẽx,y consists of all possible parametrizations � of the
Grassmannian Gr4(TyM, J,NJ ).
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By Proposition 9 the dimension of Ẽx,y is 42 + 2(m − 2) for generic J and
(x, y), which certainly coincides with dim g1 − dimH 0,2. The symbol at a point
x1 = (x, y,�) can be described as follows:

g̃1(x1) = {φ ∈ τ ∗ ⊗ ζ | [Jφ] = [φJ̃ ], [NJ (φ,�)]+ [NJ (�, φ)] = [φN
J̃

]},
(2)

where J̃ ,N
J̃

are induced by� and [·] denotes the class mod�. SinceNJ preserves
�, there is an induced map Nν

J : � × ν → ν. Let us fix a totally real subbundle
of (ν, J ), defining a conjugation. Then N̄ν

J ∈ HomC(�,AutC(ν)). So introducing
ϕ = [φ ◦�−1] ∈ HomC(�, ν) we rewrite the second condition of (2) as

N̄ν
J ∧ ϕ = ϕ̄(NJ ).

Note that TrC(N̄ν
J ) is a well-defined C-valued 1-form on �. In general posi-

tion it is non-zero on �0 = NJ (�,�) and so this (complex) line is transversal
to the line �1 = Ker TrC(N̄ν

J ). Thus �0 ⊕ �1 = �. The restricted Nijenhuis
tensor NJ |� ∈ �2�∗ ⊗ � is fixed by a complex basis X, Y ∈ �, subject to
condition NJ (X, Y ) = X ∈ �0, Y ∈ �1 (§1.4). This basis is defined up to a
change X �→ λeitX, Y �→ e−2it Y . We fix non-uniqueness by the requirement
TrC N̄ν

J (X) = 1. Using this basis we rewrite the above condition:

ϕ̄(X) = N̄ν
J (X)ϕ(Y )− N̄ν

J (Y )ϕ(X). (3)

Let us add non-degeneracy of N̄ν
J (X) ∈ AutC(ν) to the genericity assumptions for

the structure J .
The equation Ẽ is of infinite type: g̃k �= {0} ∀k. In fact g̃k ⊃ g̃�k = Skτ ∗ ⊗�.

Moreover, the quotient g̃νk = g̃k/g̃�k has dimension 2(m− 2) for k = 1 and is zero
for k ≥ 2. In fact for k = 1 this follows directly from (3) and if ϕ2 ∈ S2�∗ ⊗C ν

is an element of g̃ν2 , then for any ξ ∈ � we have:

ϕ2(ξ,X) = Nν
J (X)ϕ2(ξ, Y )−Nν

J (Y )ϕ2(ξ,X)

= JNν
J (X)ϕ2(J ξ, Y )− JNν

J (Y )ϕ2(J ξ,X)

= Jϕ2(J ξ,X) = −ϕ2(ξ,X),

implying ϕ2 ≡ 0. Thus g̃k = (g̃2)
(k−2) = (g̃�2 )(k−2) = g̃�k ∀k ≥ 2 and g̃νk = 0.

The system g̃k ⊂ Skτ ∗ ⊗ ζ has the same cohomology as g̃νk ⊂ Sk�∗ ⊗ ν and
dimH 0,2(Ẽ) = 4(m − 2). Thus we get 2(m − 2) new conditions, which single
out the prolongable jets from Ẽ . These new conditions are elements of the group
H 0,2
ν := H 0,2(Ẽ)/H 0,2(E), whereH 0,2 ⊂ H̃ 0,2 due to the inclusion g̃ν1 ⊂ g1. This

group can be identified with �2
C
�∗ ⊗C ν (and also with �2�∗0 ⊗ ν). Denote by

� : �2�∗ ⊗ ν → H 0,2
ν the projection along (�2

C
�∗ ⊗

C̄
ν)⊕ δ(�∗ ⊗ g̃1).

Let’s call �x ∈ Gr4(M, J,NJ ) regular if the Grassmannian is a smooth mani-
fold at�x and the projection toM is non-degenerate. By a semi-connection on π :
Gr4(M, J,NJ ) → M we understand a distribution H ⊂ T Gr4(M, J,NJ ) with
π∗ : H�

∼→ �. Its curvature is a 2-form�H ∈ �2H ∗⊗(T Gr4(M, J,NJ )/H) de-
fined by �H(ξ, η) = [ξ, η] mod H . So at a regular point � of the Grassmannian
we obtain the tensor π∗�H(�) ∈ �2�∗ ⊗ ν.

The following result is obtained by a calculation as in Proposition 11:
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Proposition 12.. The Weyl tensor W̃1 of PDE Ẽ for a generic structure J at a regular
generic point x1 = (x, y,�) is given by the formula:

ξ1 ∧ ξ2 �→ �(π∗�H(�))(�ξ,�η), ξ1, ξ2 ∈ τ. ��

2.4. Second prolongation-projection

The points of Ẽ having prolongations determine the next equationπ2,1(Ẽ (1)), which
provided the almost complex structure is generic is given by

Ê = {(x, y,�) |� = Im� ∈ Gr4(TxM, J,NJ ), �(π∗�H(�)) = 0}.
The symbol of this equation is ĝ1 = τ ∗⊗� and its prolongations are ĝk = Skτ ∗⊗�.
Thus the fiber Êx,y modulo the reparametrizations group is discrete (ĝν1 = 0) and
is locally presented at regular points by a finite number of distributions – sections
of Gr4(TM, J,NJ ). The following statement is now obvious:

Proposition 13.. The Spencer group H 0,2(Ê) = �2�∗ ⊗ ν. The Weyl tensor
W1(Ê; x1) is the curvature of the corresponding distribution through� = Im� ∈
Gr4(TxM, J,NJ ) determined by the point x1. ��

Thus for a generic almost complex structure J the equation Ê has prolongations
only at finite number of points (where Ŵ1 = 0) among the open dense subset of
regular points. Thus there pass no local PH-submanifolds L2n through any regular
point.

Remark. The tensor invariants algebra of an almost complex structure J does
not simplify the proof. Due to [Kr1] it begins with A∞J = 〈J,NJ ,N(2)

J , . . . 〉,
N
(2)
J ∈ �2(�2T ∗x M) ⊗ TxM . For every invariant λ we associate its quotient

[λ] ∈ ⊗k�∗ ⊗ ν, ν = TM/�. Thus the zeros of [J ], [NJ ] is the NJ -Grass-
mannian, but if NJ (�,�) ⊂ � and dim� = 4, then [N(2)

J ] ∈ �2
C
(�2

C
�∗) ⊗ ν

that is zero.

2.5. Non-existence of submanifolds

So far we have been considering only regular points. The set of non-regular points
form a stratified submanifold� ⊂ M of positive codimension for a generic almost
complex structure J . This submanifold carries a non-holonomic almost complex
structure (D = T�∩JT�, J |D) (defined only separately for each stratum), which
is generic for aCr -generic structureJ . Note that adding a standard integrability con-
dition toJ we get the well-known CR-structure (non-holonomic complex structure).

Now the non-existence of higher-dimensional PH-submanifolds follows from
any of the following non-existence statements:

– The only integral submanifolds of a generic distribution D on � are curves.
– A generic non-holonomic almost complex structure contains no PH-curves (i.e.

surfaces tangent to D and J -invariant).
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– A generic non-holonomic almost complex structure contains no PH-submani-
folds of dimension 2n ∈ [4, rk(D)].

The proofs are obtained by the above approach. We will indicate the proof of the
simplest last statement, since it requires the weakest C1-topology, independently
for each stratum.

Consider a stratum of dimension s, which we denote by�s . Let the distribution
D ⊂ T�s have rank 2t < s. Define the Levi formLD,J ∈ S2D∗⊗T�s/D of a non-
holonomic almost complex structure (�s,D2t , J ) by LD,J (ξ, η) = �D(ξ, Jη)+
�D(η, J ξ), where �D ∈ �2D∗ ⊗ T�s/D is the curvature of the distribution D.

At a generic point the vector valued quadric LD,J is non-degenerate (the struc-
ture is pseudoconvex), whence no PH-curves passes through it. Searching for 2n-
dimensional PH-submanifolds, we require that LD,J has a 2n-dimensional null-
subspace V ⊂ D. Generically this specifies a stratified submanifold �r ⊂ �s of
codimension n(2n+1)(s−2t) and dimension r = s−n(2n+1)(s−2t). There is
no more than q-dimensional family of 2n-dimensional LD,J -null subspaces at the
points of the stratum �rq ⊂ �r of dimension r − q. For each such subspace V the
J -invariance condition JV = V gives 2n(t − n) additional equations.

One easily checks that 2n(t − n) > r − q + q = r for s > 2t > 2n > 3.
This implies non-existence of 2n-dimensional local PH-submanifolds in�rq for all
q, r, s in generic situation and thus finishes the proof of the embedding part of the
main theorem.

2.6. Non-existence of automorphisms

To study the group of PH-automorphisms Aut(M, J ) one considers PDE E =
{(x, y,�) |� ∈ T ∗x M ⊗ TyM,�J = J�, rk� = 2m}. Its 1st prolongation-pro-
jection Ẽ = π2,1E (1) consists of maps preserving both structures J and NJ .

In the case m ≥ 4 with C1-generic J this equation has only one solution idM
because the dimension of the orbit space of the Nijenhuis tensors [N (V , J ) =
�2

C
V ∗ ⊗

C̄
V ]/GlC(V ) is greater than dim V = 2m.

In the case m = 3 as follows from Theorem 7 the dimension of the orbit
space is 2. So the 6-dimensional space is fibered by 4-dimensional varieties�α on
each of which the type of the Nijenhuis tensor is fixed. For C1-generic structure
J there exists an open dense subset �′ ⊂ � with the following properties. On
�′ we have two 2-dimensional and transversal distributions Z2

α = T�α ∩ JT�α
and Y 2

α = T�α ∩ �1(Z
2) (with �1 from §1.4). The first of these distributions is

J -invariant and the second is not. Moreover X2
α := NJ (Y 2

α , Z
2
α) ⊂ Y 2

α + JY 2
α has

zero intersection with both Y 2
α and JY 2

α .
Let us define the map ψ : Y 2

α → Y 2
α , η �→ (η + Jη′ ∈ X2

α) �→ η′. Consider
for simplicity only the case when its spectrum is real and simple. Then we have
two eigenvectors η1, η2 ∈ Y 2

α . There are canonical vectors ζ1, ζ2 ∈ Z2
α such that

prY ◦NJ (ζi, ηi) = ηi , where prY is the projection of X2
α ⊂ Y 2

α ⊕ JY 2
α to the first

component. For a C2-generic J the obtained frame on �′ (defined up to rescaling
of ηi and permutation of the indices 1, 2) is rigid, i.e. it admits no automorphisms
save for idM .
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In the case m = 2 and C2-generic almost complex structure J a canonical {e}-
structure (absolute parallelism) onM4 was constructed in [Kr2]. Recall briefly the
construction (yielding a solution to the classification problem). We define two dis-
tributions onM4:�2 = ImNJ and its derivative�3 = [�2,�2]. We construct the
frame ξ1 ∈ �2, ξ2 = Jξ1 ∈ �2, ξ3 = [ξ1, ξ2] ∈ �3/�2 and ξ4 = Jξ3 ∈ TM/�3

by the requirement NJ (ξ1, ξ3) = ξ1. The pair (ξ1, ξ2) is defined up to a sign and
the pair (ξ3, ξ4) is canonical. For a C3-generic structure J the frame {ξ1, ξ2, ξ3, ξ4}
is rigid.

Thus we proved the second part of the main theorem.

2.7. Non-existence of submersions

Let us call a linear Nijenhuis tensorN on V projectible ifN(V,W) ⊂ W for some
proper W ⊂ V . Because π∗NJ (ξ, η) = NJ (π∗ξ, π∗η) we have (cf. [Kr2]):

Lemma 14. Let π : (M2m, J )→ (L2n, J̃ ) be a PH-submersion and 0 < n < m.
Then the Nijenhuis tensor NJ on TxM is projectible with Wx = Ker π∗(x). ��

A generic Nijenhuis tensor is not projectible for m > 2. In the case m ≥ 4
this follows from dimensional reasons and for m = 3 from non-degeneracy of
generic N (§1.4). Consider the casem = 2. The only non-zero Nijenhuis tensor N
is projectible and W 2 = N(V, V ). But for a C2-generic structure J the canonical
distribution�2 = Im(NJ ) onM4 is non-integrable contrary toW 2 = Ker π∗. This
finishes the proof of the main theorem.

Note that for m ≥ n + 2 the third statement of the theorem follows from the
first, but the topology becomes finer.

3. Other results

3.1. Comparison Theorems

2n-dimensional PH-submanifolds are absent for generic J , 1 < n < m. On the
contrary, abundance of such submanifolds implies the integrability of the structure
J . A similar thing happens to the automorphisms and submersions:

Theorem 15. (M, J ) is a complex manifold iff it satisfies one of the conditions:

1. Gr2n(M, J,NJ ) = GrC
n (M, J ), i.e. in every complex direction a 1-jet of 2n-

dimensional PH-submanifold passes, 1 < n < m.
2. The stabilizer of Autloc(M, J ) has dimension 2m2 at each x ∈ M and therefore

is equal to GlC(TxM).
3. The set of 1-jets of PH-submersions with the kernels of dimC = n equals

GrC
n (M, J ).
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Proof. Condition 1 means the canonical section of Proposition 2 vanishes. It is
enough to require vanishing of �N on an open subset, since then the coordinate
expression shows NJ = 0 and thus the structure J is integrable.

For any �4 ∈ Gr4(TxM, J,NJ ) the orbit of the isotropy subgroup Stx · �4

is open in GrC
2 (TxM) and the arguments of part 1) apply. The complexification of

Gr4(TxM, J,NJ ) is always non-empty and statement 2) follows. The third state-
ment follows from the first. ��

Part (2) of the above theorem is similar to the following combination of state-
ments from [KO]:

Theorem 16. Let D2m � (D′, J ) be a compactly embedded almost complex ball
and (D′, J ) be tamed by a symplectic structure. Then dim Aut(D, J ) ≤ 2m+m2

and the equality holds iff the almost complex structure J is integrable and (D, J )
is biholomorphic to (B2m, J0). ��

Remark. A similar result to the 1st statement of Theorem 15 is proved in [M]. We
formulate it in the language of PDEs as in §2.1: Let E ⊂ J 1(L,M) be an equa-
tion with the symbols as for the Cauchy-Riemann equation (for the complex maps
between L and M). Suppose the first prolongation exists for all points of E and is
regular. In addition suppose that n = 1

2 dimL > 1 and if m = 1
2 dimM = 1 we

impose an additional topological condition. Then the equation is equivalent to the
Cauchy-Riemann equation by a transformation induced from J 0(L,M) (i.e. by a
change of independent and dependent variables).

The idea is as follows (the approach of [M] is different): At first we notice that
since the Cauchy-Riemann symbolic system is involutive and the only obstruction
to prolongation vanishes, the system is formally integrable. In fact E is smoothly
integrable because it is elliptic (another way is to introduce an almost complex
structure on the equation and to use the integrability criterion). This gives an equiv-
alence of equations, that should boil down to J 0(L,M) in the case n,m > 1:
Because the equations are normal (in the terminology of [KLV]), they are rigid. For
m = 1 there are C-contact Lie transformations and to exclude them one introduces
a topological condition.

The paper [M] is based on a completely different approach than ours (it uses the
theory of exterior differential systems). The equation on PH-submanifolds, which
we considered, is quasilinear contrary to a more general setting of McKay. The
quasi-linearity is obtained as a corollary of the hypotheses.

Then the equation E can be seen as an equation for PH-submanifolds and our
geometric approach works as the following formal trick shows (invented by Gromov
for PH-curves [Gr]): Let ∂̄JL,JM f = 1

2 (df + JM(f ) ◦ df ◦ JL) be the non-linear
Cauchy-Riemann operator corresponding to almost complex structures JL on L
and JM on M , f ∈ C∞(L,M). Consider a section g ∈ C∞(T ∗L⊗

C̄
TM). Then

the non-homogeneous equation ∂̄JL,JM f = g is equivalent to the fact that the map
idL×f : (L, JL) → (L ×M,Jg) is pseudoholomorphic, where the new almost
complex structure is defined by Jg(ξ, η) = (JLξ, JMη + 2gξ).
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3.2. Remark on a result of Donaldson

We can view locally an almost complex structure onM as a fiberwise deformation
J ∈ End(TM) of a complex structure i. For two such structures JL and JM a
PH-morphism ϕ between them, i.e. a map whose differential ϕ∗ commutes with
J -multiplication, can, as we have proved, cease to exist. However the quantization
theories predict the existence of a deformed commutativity:

T L
QL−−−−→ T L

ϕ∗−−−−→ TM


�JL



�JM

T L
ϕ∗−−−−→ TM

QM−−−−→ TM

(4)

for some bundle morphism QL over 1L close to 1T L and similarly for QM .

Theorem 17. Let ϕ0 be a PH-map that is an embedding or a submersion. For
every map ϕ C1-close to ϕ0 there exist two morphismsQL = QL(ϕ) over idL and
QM = QM(ϕ) over idM , each close to the identity morphism of the corresponding
tangent bundle, such that diagram (4) commutes.

Proof. Since we deal with bundle morphisms the Theorem follows from the fol-
lowing linear algebra statement:

Lemma 18. For every linear map � : V → W close to a complex linear map
�0 : V → W there exist automorphisms QV : V → V , QW : W → W such that
QW�JV = JW�QV . One can achieve rkQV = rkQW = rk�0. If in addition
�0 is into or onto, the maps QV , QW can be chosen close to the identities.

Fix J -invariant splittingsV = V1⊕V2,W = W1⊕W2 such that�0(X1, X2) =
(X1, 0), dim V1 = dimW1 = rk�0. Let W ′

1 = �(V1), W ′′
1 = JW ′

1. Denote by
�̃ the composition proj ◦� : V → W = W ′

1 ⊕ W2 → W ′
1. Let V ′2 = Ker �̃,

V ′′2 = JV ′2. By our assumption V ′2, V ′′2 are close to V2 and W ′
1, W ′′

1 are close to
W1. So the restriction of �̃ is an isomorphism �̂ : V1 → W ′

1. Now we have the
commutative diagram (� does not preserve grading):

V1 ⊕ V ′′2
QV−−−−→ V1 ⊕ V ′2

�−−−−→ W ′
1 ⊕W2



�JV



�JW

V1 ⊕ V ′2
�−−−−→ W ′

1 ⊕W2
QW−−−−→ W ′′

2 ⊕W2.

In the general case we define QV = qV ⊕ 0, QW = PW ⊕ 0. Here PW :
W ′

1 → W ′′
1 is the projection along W2 and qV ∈ Gl(V1) is given by −qV (ξ) =

�̂−1JWPW�̂JV (ξ). The commutativity follows.
Whenever �0 is into, we have V2 = 0, QV = qV and the commutativity is

achieved with QW = PW ⊕ 1. If �0 is onto, W2 = 0, QW = 1 and we let
QV = qV ⊕ PV , where PV : V ′′2 → V ′2 is the projection along V1. ��
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Now we define a map � to be approximately pseudoholomorphic if it satis-
fies the diagram (4) with close to the identities Q: ρL(QL), ρM(QM) < �, where
ρU = d(1T U , ·) are distances to the identity morphisms.

Such maps perfectly exist as was shown by Donaldson in [D] for embeddings
(our definition of approximately pseudoholomorphic is equivalent to his). More-
over if the almost complex structure JM is compatible with a symplectic structure
onM then an approximately PH-submanifold ϕ(L) is necessarily symplectic. The
derivatives of QM provide a (2, 1)-tensor related to the Nijenhuis tensor NJM and
this suggests investigation of approximate NJ -Grassmannian whose solutions are
symplectic submanifolds for any compatible symplectic structure.

Acknowledgements. I thank the referee for his detailed and valuable remarks.
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