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Notation

R real numbers

V' vector space

C ®gr V is the complexification of the R-vector space V'

A’ (V) the skew-symmetric i-form on a vector space V

S* (V) the symmetric i-form on a vector space V

M, N manifolds

f: M — N a smooth map

[T 0% (N) — C= (M)

A% (f*)0(X,Y) is the pullback of the 2-form 0, A% (f*)0(X,Y) =0(fX, fY)
T (M) cotangent space of M at the point x

T, (M) tangent space of M at the point z

T* (M) =JT; (M) the total space of the cotangent bundle
T (M) =T, (M) the total space of the cotangent bundle
75 T* (M) — M the cotangent bundle of M

Ty 2 T (M) — M the tangent bundle of M

A?(7%,) the i-th exterior power of the cotangent bundle of M
A’ (7)) the i-th exterior power of the tangent bundle of M
Q' (M) the module of sections of A’ (7%,)

D' (M) the module of sections of A’ ()



Chapter 1

Introduction

In this thesis we will investigate a system of two non-linear first-order PDE’s of Jacobi

type. The PDE system will have the form:

oh oh Oh Oh Ohy Oh Ohy Oh
a1+bl—1—618—$;—d18—£+€1—2+f1 (—1—2——1—2> =0

or1 o1 Ox1 Oxzo Oz 011 (*)
)
Ohy _ . Ohi _ g Oha Ohg Ohy Ohy _ Ohi Oha |\ _
0,2 + b2 8231 02 8272 d2 8(E2 + 62 (9:21 + f2 <8CE1 83:2 83:2 81‘1) - O

where 1, x5 are the independent variables, hq, hy are the unknown functions and aj, ..., f;
are functions of x1, xo, hy, hs.

The system consists of two quasi-linear first-order PDE’s, together with the two non-
Ohy Ohy _ Ohy Oho

Ox1 Oxa Ox2 Ox1°

The term 5’%3—22 - g—g;g—gi’ is the Jacobian-determinant of h = (hy, hs), with respect

linear terms

to 1, x9, and thereby, the name "system of Jacobi type".

From now on we will refer to the PDE system as the Jacobi PDE system.

By adding the Jacobi terms to the quasi-linear system, we get a class of PDE systems
which is invariant with respect to coordinate transformations. In other words, if we take
a Jacobi PDE system and apply any coordinate transformations, we will still have a
Jacobi PDE system.

To illustrate this, we apply a hodograph transformation to the Cauchy-Riemann sys-

tem.



Let x1, x5 be the independent variables, and hq, hy the unknown functions. Then the

Cauchy-Riemann system is given by:

ohy _ by _
6%1 6%2_
Ohy | Dhy _
3z1+8$2_0

The hodograph transformation ¢ which we will perform, is simply changing one of the

dependant variables with one of the independent variables:
¢
(1’1, T, U1, U’?) = (xla U, T2, u?) .

One can check that after the hodograph transformation ¢, the Cauchy-Riemann system
will have the form:
Ohy Ohy _ Ohy Ohy _ q
0o 01 0z1 02
oh dhy _
05 ~ oz U
Clearly, it is not a quasi-linear PDE system, but a Jacobi PDE system.
As we can see, the class of quasi-linear PDE systems is not closed with respect to
transformation of known and unknown variables.

The logical scheme of this thesis is given by the following diagram:

D=0 = T AT
N 7

AET BT,

Explanation to the figure:

D; (h) = 0 in the diagram is the two PDE’s (i = 1,2) in the Jacobi PDE system.

II C A% (7%;) I is a 2-dimensional subbundle in the bundle of differential 2-forms.

A is a smooth field of operators on M.

1) The top line: I; (h) = 0 <= I C A?(7},), illustrates that the Jacobi PDE system
can equally be represented as a 2-dimensional subbundle in the bundle of differential 2-

forms. This equivalence is described in chapter (2).
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2) The right line: IT C A% (73,) <= A € T)y ® T4, illustrates that the 2-dimensional
subbundle IT in the bundle of differential 2-forms, can equally be represented as a smooth
field A of operators on M. The implication from left to right is described in chapter (4),
while the implication from right to left is described in chapter (5).

3) The left line D; (h) =0 <= A € 7); ® T}, is a direct consequence of 1) and 2).

These relations will enable us to make a pointwise classification of Jacobi PDE sys-
tems. The classification is invariant with respect to coordinate transformations.

The classification is different from the standard classification of elliptic, hyperbolic
and parabolic types, and depends on all of the functions a;, ..., f;.

The main result in this thesis is a necessary and sufficient criterion for when an elliptic
or hyperbolic Jacobi PDE system can be transformed into the Cauchy-Riemann system
or the Wave system.

Not only do we give the criterion, this thesis also provides a constructive way of
finding it for a given Jacobi PDE system.

All the structures dealt with in this thesis are smooth, and if not stated otherwise,

they should be regarded as smooth.



Chapter 2

Jacobi PDE system

2.1 Representation of the Jacobi PDE system by two
differential 2-forms

In this section we will discuss a representation of the Jacobi PDE system. We will show
how to represent the system by a 2-dimensional subbundle in the bundle of differential
2-forms over a 4-dimensional manifold. This description will enable us to make pointwise
classification of the Jacobi PDE system, which is the preface of our analysis of the Jacobi
PDE system. The classification will be described in the next chapter.

Let us consider the arithmetic space R* with coordinates (xq, 7o, u1, us).

Let h be a smooth map from R? to R2, such that:

h:R* — RZ?

(z1,22) = (ha(z1, 22), ho(21, 72)) -
The graph of h determines a two-dimensional submanifold £; in R* :

graph(h) = L; C R* x R?

Ly, = {(z1,22,u1,u1) € R* wy = hy(21,22) and us = hao(z1,22) } .

8



Notation 2.1 In order to simplify the expressions, we will make the following assump-
tions:

r=(x1,22), u=(u,uy) and h = (hy(x1,x3), ho(z1,x2)).

We have the following important observation [Ly2]: any smooth 2-form w € Q2 (R*)
determines the first order non-linear differential operator A, : C* (R?* R?) — Q?(R?),
in the following way:

h— A,(h) = u)|gmph(h)'

To find the coordinate form of this operator, let us assume that w is given by:

w = a(xr,u)dry Adry +b(z,u)duy Ndzy + c(x,u)duy A dxy

+d(z,u)dug A dzy + e(x,u)dus A\ dey + f(z,u)duy A dus .

Then we get:
A, : ha(z, h)dry A dry + b(z, h)%dxl A dzy + c(z, h)%dl’z A dxy
6331 8952
oh oh
+d(x, h)a—xzd:z:g Adxy + e(x, h)a—;dml A dxg
Ohy Ohy  Ohy Ohs
+f (aj’ h) <(9.’L"1 al‘g B (91'2 3:151) d-Tl A dx2‘

We also note that A, is C* (R*)-linear in the w-argument.

In other words, the differential equation:

Ohy Ohy Ohs

D(h) = - -
(h) a+ b@azl 08372 d8x2
Ohs, Ohy Ohy  Ohq Ohsy

ea_xl + <8x1 drs 0o 89:1) =9

+




can be represented by the 2-form w :

w = a(x,u)dr; Ndry + b(x,u)du; Adzy + c(x,u)du; A dxy

+d(z,u)dus A dxy + e(z, u)dus A dro + f(z,u)duy A dus

in the sense that:

D(h) :0<:>w|£h =0.

So, to any system D; (h) = 0, Dy (h) = 0, we may use the correspondence above,
and get two 2-forms w; and ws, such that h satisfies the above equations if and only
if wi|z, = 0 and ws|g, = 0. Clearly, we are allowed to take linear combinations of the
equations (D (h) =0, Dy (h) =0), with coefficients being smooth functions, in a non-

degenerate way, without altering the system.

a1 D (h) + aaDy () =0 W1 = a1iw1 + apow
1D (h) 125 (h) — 1 w1 1202 where ay| € C(RY).
a Dy (k) 4+ azeDy (h) =0 Wo = AW + A22wW2

such that det ||a;;|| # 0.
Hence, for a system D (h) = 0, Dy (h) = 0, one can identify a smooth field of 2-
dimensional subspaces Il : # € M +— II(z) C A?(T;R*), where II(x) is generated

by w1, and wy,. Or, in other words, with a 2-dimensional subbundle II in the bundle
A? (7’@) )

The construction above gives rise to the following definitions:

Definition 2.2 Any smooth field I1 of 2-dimensional planes:

I: M — A(T*M),

z — Il(z) C A(TiM),

on any 4-dimensional manifold M, will be called a Jacobi PDE system on 2-dimensional

submanifold of M.

10



Definition 2.3 A 2-dimensional submanifold L C M, will be called a solution of 11, if:
Welr, =0 for any x € L , and for any w, € II(z).

Definition 2.4 Let 11 be a Jacobi PDE system. Then at a point x, the plane 11 (z) =

(W1, waz) , will be called a Jacobi plane.

Definition 2.5 Let V' be a 4-dimensional vector space. Then a plane I1 will be called a
Jacobi plane.

The plane T1(z) C A*(TF M), we call a Jacobi plane at the point x.

In other words, the Jacobi PDE system is a smooth family of Jacobi planes.
So, we managed to give a description of the Jacobi PDE system, namely to that of a
2-dimensional subbundle in A2 (7%,).

This completes the upper equivalence in the triangle.

2.1.1 Symmetries and conservation laws for the Jacobi PDE

systems

Let IT C A%(7%,) be a Jacobi PDE system.

Definition 2.6 By a symmetry of the Jacobi PDE system, we mean a diffeomorphism
F: M — M, such that A*> (F*) : I — II. That is:

A’F* (w1) = anwr + ajpwa,
A2F* (LUQ) = a21W1 + A92W2,
for some a;; € C* (M), and any basis wy,ws on II.

Proposition 2.7 If F' is a symmetry of 11, and L is a solution of Il, then F (L) is a

solution of 1I.

11



Proof. Since L is a solution, we know that: wi|, =0 and ws|, =0 :
AQF* (wl) |L = A2F* (W1|L) = 0,

and so,

N F* (w1) |, = anwi| () + a12ws| pz) = 0.

Similarly, we get:

A2 F* (wo) |p = A2F* (wq|p) =0

and so,

N F* (w2) |1 = azw1|rr) + aswa|p(r) = 0.
Thus, we conclude that F' (L) is a solution of II, if F' is a symmetry of II. =

Definition 2.8 An infinitesimal symmetry of the Jacobi PDE system I1 = (wy, ws) ,
is a smooth vector field X € D (M), such that:

Lx (w1) = anwi+ ajpwe,

Lx (wy) = agwi + asnws,

for some a;; € C* (M).
Here Ly (w) is the Lie derivative of w along the vector field X.

Remark 2.9 Let F; be a I-parametric group of symmetries, then X = % —0 1S a

infinitesimal symmetry.

Proposition 2.10 Let X € D (M) be an infinitesimal symmetry, and let F; be the cor-

responding 1-parametric group. Then F; is a symmetry of 11, for any t.

Proof. Denote A?F} (wy) = wy; and A*F} (wy) = woy.

Since:

d
EF: (9) |t=to = th (LX (9)) )

12



we get:

% = AQFt* (Low1) = F} (a11) wie + Ff (a12) wa

L1 — Ay (8) wip + Ara (t) way

Lo — Aoy (t) wiy + Asa (t) way

Hence:
dw t

@ A

Wi

where ||A4;; (t) || = A(t) and w; =

Wag

(2.1)

Equation (2.1), is a homogenous two dimensional linear ODE system, with the initial

conditions wiy = wy and wqy = ws.

Let us consider an auxiliary ODE system:

dg_tl = An () 21+ Az () 22

dstZ = AQl (t) T + AQQ (t) )

Denote the fundamental matrix by 7; of the auxiliary ODE system, in the sense that:

x1 (1) 7 x1(0) |
xo (1) x2 (0)
where:
Tt _ BH (t) 312 (t)
B21 (t) B22 (t)
Then:

Wit = Bll (t) W1 + B12 (t) wa

Wot = Bgl (t) W1 + 822 (t) w9

13



is the only solution of (2.1).

Since:

AQFt* (w1) = wi = By (t) wi + Bia (t) wa,

N’F} (w3) = way = Bay () w1 + B (t) wo,

F; is a symmetry for all ¢’s. m

Definition 2.11 By a conservation-law for the Jacobi PDE system Il = (wy,ws), we

mean a differential 1-form 6 € Q' (M), such that:
df = awy + bwa,

for some a,b e C> (M).

Let 6 be a conservation law, and let L be a solution of II. Assume that D C L is a
domain in L, and 0D is the boundary of D.
Then:
df|, = 0.

Due to Stokes theorem, we know that:

[ao=[ o

D oD
/9_0.
oD

and so:

14



2.2 Examples

2.2.1 Cauchy-Riemann system

In this example we will take the Cauchy-Riemann system, and find its corresponding

forms by the method described in section (2.1) :

%_% = 0<= w; =dr Aduy + dxs A dus,
dr;  Oxs
h h
ﬁ Q = O<:>CL)2:dU1/\d(132—dU2/\dl’1.
81’1 aZEQ

Due to definition (2.11) ,we see that 0 = ujdx; + usdry and 0" = uydzs + usdu, are
conservation laws for the Cauchy-Riemann system, since df = w; and df’ = ws.
Among the simplest examples of symmetries F' : M — M of the Cauchy-Riemann

system, we have translations:

F(a,b,c,d
(21, T2, U1, uy) (@.bod) (x1+a,z3+byus + c,ug +d).

One can easily see that:

NF* (w1) = d(u+c)Ad(zy+a)+d(ug+b) Ad(x2+b) = wy,

A’ F*(wy) = d(ui+c)Ad(zg+b) —d(ug+b) Ad (21 + a) = ws.

Note that w; is the standard symplectic structure on a R*.

The Hamiltonian vector field X is derived by:
7 XpW1 = dH.

Hence:

OH 0 O0H 0 O0H 0 O0H 0

Xy = - - .
a 8u1 81‘1 * 81@ 81'2 61’1 8U1 8x2 8u2

Theorem 2.12 The Hamiltonian vector field Xy is an infinitesimal symmetry for the

15



Cauchy-Riemann system if and only if:

0?’H 0*H
= 2.2
8x18x1+89€28x2 0, (2.2)
0?H 0?H
+ = 0,
8”28%2 8u18u1
°H | OH . PH  H
81&281‘1 0x28u1 N 8U18[E2 8x18u2 '
#H _ ®PH _  ®H | OH
(95528@62 8u18x1 N 8’&28332 8x18u1 ’

Proof. Its well known that the Hamiltonian vector fields preserve the standard
symplectic structure, that is:
L XpW1 = 0.

Note that:
oH

3ui ’

ix,du; = and ix, dx; =

Let us calculate:

LXHCLJQ =
= LXH (du1 N deQ — d'LL2 N dl’l)

= LXH (dul) A dﬂfg + du1 N LXH (dl’g) - LXH (dUQ) A diL’l - dUQ VAN LXH (d[L‘l)

al’l 8UQ 81‘2 8161

Hence, if we write:

Lx,ws = awy + bwa,

_ 0*H 0*H _ 9’H 9*H o
we find that a = (8uz8x1 + 8$26u1> and b = <6128u2 Bulaam) , and conditions (2.2) are

satisfied. m

16



2.2.2 The symplectic Monge-Ampeére equations

The symplectic Monge-Ampére equations have the following form:

2 2 2 2 2 2 2 2
apLe_ Lo Ty Po O ﬁs&ﬂc(awaw P 89@)_0’

dr? 0z  Oxy0ry 68:1:18:1:2 +a8x1+a8x2 02 022 01901, 011079
(i)

where a, .., f are smooth functions of x and g—i.

We reduce the symplectic Monge-Ampére equation into a Jacobi PDE system, by
the following substitution: h; = %OT yhe = %‘% and % = g—;‘f as the compatibility
condition.

After the substitution, we get the Jacobi system:

oh o _

axl 8:152 N ’
Ohy Ohy Ohs Ohs Ohy Ohy  Ohy Ohy .

b — —d — =0
@+ oxy cax2 0o + e@xl el <3x1 Oxy  Oxo 3$1) ’ (1)

where a = a + ah, + aho and a, .., b are smooth functions of x, h.

The corresponding 2-forms are:

w1 = d[El N du1 + dIEQ N dUQ,
we = a(x,u)dr; ANdry + b(x,u)du; A dxg
+c(x, u)duy A dzy + d(z, u)dug A day

+e(z,u)dus A dxe + f(x,u)dus A dug .

Theorem 2.13 If we have a Jacobi PDE system with a conservation law 0 € Q' (M),
such that df is a non-degenerated 2-form , then locally it can be written as the symplectic

Monge-Ampére equation (i).

Proof. The non-degenerated 2-form df, determines a symplectic structure on M.

Due to Darboux theorem, locally there exists a canonical coordinate system for df), say

17



(21, T2, U1, uz) , such that:

df = d%’l A dul + Cll'g A dUQ.

Let w’ be a 2-form, such that (w’, df) is a local basis for II. Then w’ has the same form as
we in the example above. Hence the Jacobi PDE system (A, (k) = 0,A4 (h) = 0), can

be written as the symplectic Monge-Ampére equation (i). m

18



Chapter 3

Classification of Jacobi planes

In this chapter we will classify Jacobi planes IT C A% (V*),dim V' = 4 with respect to the

group GL (V') of linear transformations of V.

3.1 Symmetric bilinear form on the Jacobi planes

Let 2 € A*(V*) be a volume form.

Define a symmetric bilinear form ¢ on II by:

q:-IIT®Il — R,

(aaﬁ) — oz/\ﬁzq(oz,ﬂ)ﬂ,

where o, 5 € 11

Let us find a coordinate expression for ¢.

Assume that eq, es, e3,e4 is a basis in V| and let us fix the volume form 2 = e} A el A
ez N\ ej.

Then the quadratic form ¢ is represented by the matrix:

Q _ q(wlawl) Q(wlaWQ)

Q(w27w1> Q(WZaWQ)

19



To find @, we will assume that w; are given as:
w; = a;ef Nes+bies N\es+ ciel Nel + dies N\ et + ee;y Nes+ fiel Nej.

Thus,

2f1a1 — 26161 -+ 2bld1 flaz + dlbg — €1Co + b1d2 — C169 + Cllfg
fias 4 diby — e1ca 4 bidy — ciea + ay fo 2faas — 2e9cy + 2bady

Denote 2fia; — 2e1c; + 2b1dy by A, fias + dibs — e1co + bidy — cres + a1 fo by B,
2 faas — 2e9c9 + 2bads by C and det @) by K.

Note that if we change Q to v€), where v € R, then ) changes to v~ Q. This means
that we know () up to multiplier. We also notice that if we change basis in II, and let P

be the transition matrix, then () will change the following way:

Q — PTQP, then

detQ — detQ (det P)>.

Therefore, signdet () is an invariant of Jacobi planes with respect to GL (V).
Denote sign det @) by ¢ (II) .

3.2 Types of Jacobi planes

3.2.1 Elliptic Jacobi planes

Definition 3.1 We say that IT C A? (V*) is an elliptic plane if q|r is a non-degenerated

determined form.

Definition 3.2 Let II be a Jacobi PDE system. We will say that a Jacobi PDE system
is elliptic at the point x, or simply that x is an elliptic point, if the Jacobi plane Il (z) =

(W14, wa,y) is elliptic.

20



Proposition 3.3 Let |1 be a non-degenerated determined form, then:

signdet @) > 0.

Proof. Due to Sylvester’s theorem, we may assume that the matrix of the bilinear

form ¢ is diagonal, say:

Then ¢ is a non-degenerated determined form, if and only if:

a11Q92 > 0.

Hence,

signdet @) > 0.

Theorem 3.4 The following two statements are equivalent:
1) T = (wy,wy) C A% (V*) is an elliptic plane.

2) There exist a basis (01, 6s) on 11, such that:

01/\02:92/\61:0 andﬁl/\91:02/\027é0.

Proof. Let {w;,ws} be a basis on II, and we use the notation from Section (3.1).

Note that A # 0 and K # 0.

Take:
1
b1 = Zxon,
B
2 = —w1 + %w%

21



in this basis we get that:

Q=

o Al
als ©

Therefore, in the basis {0,602} on II, we have the following relations:

91/\92:92/\91:Oand91/\91:92/\92.

3.2.2 Hyperbolic Jacobi planes

Definition 3.5 We say that II C A*(V*) is a hyperbolic plane if q|n is a mon-

degenerated sign undetermined form.

Definition 3.6 Let I be a Jacobi PDE system. We will say that a Jacobi PDE system
is hyperbolic at the point x, or simply that x is a hyperbolic point, if the Jacobi plane
II(z) = (w14, wa.) is hyperbolic.

In a similar way as for proposition (3.3) and theorem (3.8), we obtain the following:

Proposition 3.7 Let g be a non-degenerated sign undetermined form, then:
signdet ) < 0.

Theorem 3.8 The following two statements are equivalent:
1) T = (wy,wy) C A% (V*) is a hyperbolic plane.

2) There exist a basis (01,02) on 11, such that:

91/\92:92/\91:0 and@l/\91:—92/\927£0.

22



Remark 3.9 For both the elliptic and the hyperbolic plane we may do the following basis

change:
91 = ﬁwl
92 = —%wl + %WQ
Then we get:

GiN0y = 0, (3.1)
HlAﬁlsign(lC) = 92/\92.

From now on we will refer to such a basis as an orthogonal basis.

3.2.3 Parabolic Jacobi planes

Definition 3.10 We say that I C A? (V*) is a parabolic plane if q|i1 is a degenerated

non-zero form.

Definition 3.11 We will say that a Jacobi PDE system is parabolic at the point x, or

simply that = is a parabolic point, if the Jacobi plane I1 (v) = (w14, w2 ) is parabolic.
With a similar analysis as above one can derive the following:

Proposition 3.12 Let q| be a degenerated non-zero form, then:

signdet Q = 0.

Theorem 3.13 The following two statements are equivalent:
1) T = (wy,wy) C A*(V*) is a parabolic plane.
2) There exist a basis (01,0s) on 11, such that:

01/\92:92/\91:0 and91A91:0 and92/\927£0.

23



3.2.4 Degenerated Jacobi planes

Definition 3.14 We say that I1 C A2 (V*) is a degenerated plane if | = 0.

Definition 3.15 We will say that a Jacobi PDE system 1is degenerated at the point x,
or simply that x is a degenerated point, if the Jacobi plane II (v) = (w1 4, ws ) s degen-

erated.

3.3 Classification of elliptic Jacobi planes

In this section, we will classify Jacobi planes with respect to GL (V).
Let (V,) be a 4-dimensional symplectic vector space, where () is the symplectic

structure on V.

Definition 3.16 For any 6 € A*2(V*), we define the Pfaffian, Pf (0) € R, of the form
0 in the following way:
070 =PFO)QAQ.

We call 0 an effective form if:

ONQ=0.

Theorem 3.17 [LRC| : Any effective non-degenerated 2-form 6, on the four dimensional
symplectic vector space V, may be transformed, by means of symplectic transformations,
to one of the following:

elliptic type:

O=NeTNfs—esNf), A=+/Pf(0) and Pf(0) > 0,
hyperbolic type:

O=XNEeJANff—esNfy), A=+ —Pf(0) and Pf(9) <0,
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parabolic type:
O =ei N fy, and Pf(0) = 0.

Let II be an elliptic plane.
Then due to theorem (3.4), there exists a basis {61,602} on II, such that:

61/\9220,

and:

01 A0y = 0z A Oy 0.

Since both #; and #, are non-degenerated, we may choose ¢; to be a symplectic form
on V, and 05 to be an effective form, and Pf (6,) = 1.

Denote 6, by €2 and 6, by 6.

Due to theorem (3.17), there exist a basis {ey, ea, f1, fo} on V, such that:

0 = eaNfy —ea A1,

Q= elNfi+e NS,

since Pf (0) = 1.

Let us call the basis {ej, s, f1, fo} , the canonical basis for V.

We call the forms # and €2 for the normal forms for II.

Let IT and IT" be two elliptic Jacobi planes, then there is a canonical basis {e1, €3, f1, fa}
for II, and a canonical basis {€}, e, f1, f5} for II'.

Thus, the linear operator 7' : V — V | which acts like:

€1 —— €,

fi — !

f2 — £>
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transforms II to IT'.

The results above give rise to the following theorem:

Theorem 3.18 1.

2. Any two elliptic Jacobi planes T C A? (V*), are equivalent with respect to
GL(V).

3. For any elliptic Jacobi plane 11, there exist a canonical basis {e1, eq, f1, fa} on V,

such that:

0 = eaNfy—ea A1,

= elNfi+enfs,

where 6 and ) are the normal forms for I1.

3.4 Classification of hyperbolic Jacobi planes
With a similar analysis as in section (3.3), we get:

Theorem 3.19 1. Any two hyperbolic Jacobi planes ILII' C A? (V*), are equivalent
with respect to GL (V).

2. For any hyperbolic Jacobi plane 11, there exist a canonical basis {ey, e, f1, fa} on

V., such that:

0 = eaNfi—eNfy,

= elNfi+e NS,

where 0 and ) are the normal forms for I1.
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3.5 Classification of parabolic Jacobi planes

With a similar analysis as in section (3.3), we get:

Theorem 3.20 1. Any two parabolic Jacobi planes II,II" C A% (V*), are equivalent
with respect to GL (V).

2. For any parabolic Jacobi plane 11, there exist a canonical basis {e1, es, f1, fa} on'V,

such that:

0 = el Ny,

Q = eaAfi+enf,

where 6 and €2 are the normal forms for II.

3.6 Classification of degenerated Jacobi planes

One can easily show with some linear algebra, that the following holds:

Theorem 3.21 1. Any two degenerated Jacobi planes I1,II' C A2 (V*), are equivalent
with respect to GL (V).

2. For any degenerated Jacobi plane 11, there exist a canonical basis {e1, ez, f1, f2} on

V., such that:

* *
w1 = 61/\f27

* *
W2 = 61/\f17

where wi and wy are the normal forms for II.
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3.6.1 Invariants of elliptic and hyperbolic Jacobi PDE systems

As a result of the classifications, we obtain the following theorems.

Theorem 3.22 1. (1) is the only invariant for non-degenerated Jacobi planes with

respect to GL (V).

2. ¢ (H) = Sign(261€20102 + 261[)162(12 - 4€1b201d2 + 261[)202d1 + 2€2b101d2 - 462b102d1 +2
eabacidy + 2e1a1ca fo — 4erascy fo + 2e1a0ca fi 4 2e2aic1 fo — 4esaica fi + 2e2az2c f1 +
2b1bodydy — 2a1b1ds fo — 2a1bady fo + 4arbads f1 + 4agbidy fo — 2a9b1ds f1 — 2a2bady f1 +

2a1asf1 f2 — 6%05 - e%cf - b%d% - bgd% - a%fg - a%ff)

3.6.2 Application to symmetries

Since we found the orthogonal basis {61,602}, we will review the definitions for symme-
tries.

Assume that Ay, (h) =0, Ay, (h) = 0 is a Jacobi PDE system, and that {60, 05} is an
orthogonal basis. Further on we assume that all of the Jacobi planes IT = (6;,05) , are

either elliptic or hyperbolic.

Proposition 3.23 Let F : M — M be a symmetry for the Jacobi PDE system 11, and

AQF* (91) = CL1191 + a1292,

A2F* (02) = CL2101 + a2202,

for some a;; € C* (M) .

Then:

a3, + e (M) a3y = e (I1) a2, + a2, and ayias; + € (1) arpagy = 0.
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Proof. Since {61,0>} is an orthogonal basis, we know that:
01 N0y =02 N0, =0 and 0; A 61e(IT) = O A 05.
Further on we notice that:
AF* (03 N Oy) = e (TT) A*F* (6, A 6,).
Hence:
a3101 A 01 + e (IT) a301 A 01 = e () (a7, 01 A 01 + e (IT) afy01 A 61)

and therefore:

a3, + e (1) a3, = & (IT) a3y + ad,.

Since 61 A 05, = 0, we get:
A4F* (01 A 92) = 0,

and so:

ay1a2101 A 01 + ar2a9202 A 0y =0,

and:

a11091 + € (H) 12092 = 0.

From the proposition above, we derive the following two corollaries:

Corollary 3.24 If the Jacobi PDE system Il is elliptic, then the matriz ||a;;|| is a con-

formal orthogonal matrixz with respect to the elliptic (standard) metric.

Corollary 3.25 If the Jacobi PDE system 11 is hyperbolic, then the matriz ||a;;|| is a

conformal orthogonal matrixz with respect to the hyperbolic metric.
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Proposition 3.26 Let X € D (M) be an infinitesimal symmetry of the Jacobi PDE

system 11, and:

Lx (61) = anb; + a126s,
Lx (02) = a9101 + axbs,

for some a;; € C (M).

Then:

a1 = 0d22

az = —¢ (1) agy;.
Proof. Since {6, 6-} is an orthogonal basis, we know that:
01 AN Oy =050, =0 and 0; A 61e(IT) = O N\ 05.
Due to the Leibniz-rule, we get:
Lx (01 NOs) = Lx (61) NOs+ 61 A Lx (62) = 0.

Therefore:

0= a1292 VAN 92 + a2191 A 91,

and so:

—& (H) 19 = A91.-

By the linearity of the Lie derivative, we get that:

LX (02 A 02) =& (H) LX (91 VAN 91) .

30



Hence:

a2292 AN 92 =& (H) 0,1191 A 91,

and so:

Q22 = Q11.

3.7 Examples

To show how this works, we will take a few PDE’s, and classify them according to the

definitions above.

3.7.1 Cauchy-Riemann equations

Take the Cauchy-Riemann system:

ohy _oh
83:1 (9.1'2 N ’
Ohy  Ohy
—+=— = 0.
8x1+8:1:2

Comparing this with the Jacobi PDE system (x), we get that: ¢; = 1,e; = 1,by = 1 and
dy = —1.
We calculate :

e (IT) = sign (—4ejc1bady) = sign (4) > 0.

This means that the system is elliptic at any point.
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3.7.2 A hyperbolic PDE system

Let us consider the following PDE system, and analyze it:

ohy  Ohy 1
_ - 0
2 81:1 8"172 + hl — hg ’
oh oh 1
hl 2 2 + _ 0’

8$1 0@ ]’LQ — hl

where h; and hy are the unknown smooth functions of the independent variables x; and
x2. (This system was presented to me by Professor E. Ferapontov during a conference in

Opava in the Autumn 2001.)
e (IT) = sign (— (uz — u1)2) < 0.
Since uy — uy # 0, we conclude that the system is hyperbolic at any point.

3.7.3 The symplectic Monge-Ampeére equations

Now we shall analyze the symplectic Monge-Ampére equations (i) , given in example(2.2.2) .

With the same substitution as in example(2.2.2), we obtain the system:

o _ a0
 Ory Oy
Ohy 0hy Ohs Ohs Ohy Ohy  Ohy Ohs
0 = b= — —d -
@t 8I1 Ca$2 8.132 + 681’1 + f (8x1 8x2 3x2 8m1> ’

where a = a + ah, + ahs, and find:
e () = sign (=4 (af +bd) — (c —e)*) .

Summing up the results above, we get the following proposition:

32



Proposition 3.27 The symplectic Monge-Ampére equations:

Py Po Py Py 0p 0 Ppdp Py Py
R ; _ _
at ox? 03 C@xgaxl +€8$18$2 +a8:v1 a@xg +f <0x% 0r3  Oredxy 8x13x2> 0

have the following classifications:

e clliptic, whenever —4 ((a + ahy + ahs) f + bd) > (¢ —e)?,

2

Y

e hyperbolic, whenever —4 ((a + ahy + ahy) f + bd) < (¢ — €)

e parabolic, whenever —4 ((a + @hy + ahsy) f + bd) = (c —e)*.

Second order quasi-linear equation

As the last example, we will analyze a second order quasi-linear equation with ¢ as the

unknown function. The equation is given by:

02 (9290 0% dp Oy
_— 2 _— _— = _—
a (w1, 72) z? + 20 (21, 72) 011075 (@, 72) 013 € (xl’x27 0z’ 8:(:2) ’

where a,b, ¢ are smooth functions of the independent variables x1,z, and e is a

smooth function of 1, x», g—i, 37“”2. This is a special case of the symplectic Monge-Ampére

equation classified above, and therefore we derive the following corollary:

Corollary 3.28 The second order quasi-linear equations given above, have the classifi-

cations:
e elliptic, if ac — b? > 0,
e hyperbolic, if ac — b* < 0,

e parabolic, if ac — b* = 0.
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Chapter 4

Operator representation of Jacobi

planes

In this chapter we will find another description of the Jacobi planes. From now on we

will only consider elliptic and hyperbolic planes.

4.1 Preliminaries

Let V be a vector space, and w € A*(V*) a 2-form. Then w determines a linear operator

W : V — V* in the following way:
X — w(X, *).

If w is a non-degenerated form, then @ is a linear isomorphism.

Let {wy,ws}, w; € A%(V*) be an oriented basis, and w; be a non-degenerated 2-form.

Denote the oriented basis {wi,ws} by b, and the basis {ws,w;} with the opposite
orientation is denoted by b°.

We define the operator 4, : V — V, by:
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oA
<
4

Due to the diagram, it is clear that:

Ab = Wi ! e} C:}Q.
Alternatively, A, : V' — V is an operator such that:
WQ(Xa Y) = wl(Abxa Y)7

holds for all X,Y € V.

Note that if w; and ws both are non-degenerated 2-forms, then:

Ap = Ayt =05 oy (4.1)

4.2 Operator representation for elliptic Jacobi planes

Let IT C A% (V*) be an elliptic Jacobi plane.

Hence, we know from previous analysis that there exist an orthogonal basis {61, 65}
on II, and both #; and A, are non-degenerated.

Further on we may choose #; to be a symplectic form on V, and 65 to be an effective
form, such that:

6’1/\92:02/\91:0and01/\91:92/\92.
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Let (V,) be a 4-dimensional symplectic vector space, where € is the symplectic

structure on V.

Assume that 0’ = {Q,0} .

Theorem 4.1 [Lyl] : For any effective non-degenerated 2-form 6 on the four dimen-

stonal symplectic vector space V, the following holds:
A% = —Pf(0).

Hence, for an ordered orthogonal basis b = {0,605}, we get:

if II is elliptic.
Note that:

Hence, for the basis b° with the opposite orientation, we get that:
Ap = —Ap and Ago =—1.

Let T': V — V be a linear operator on the vector space V' .

The pair (V,T), is called a complex structure, if T" satisfies the condition 72 = —1.

Definition 4.2 We will call a transformation from the orthogonal basis {91, @2} to an

orthogonal basis {01,605}, an elliptic similitude, if there exist t and ¢, such that:

~

01 = tcos(p)hy — tsin(¢)b,,

0y = tsin(p)dy + tcos(d)bs.

Theorem 4.3 Let V be a real vector space and I C A? (V*) be an oriented Jacobi elliptic
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plane with an ordered orthogonal basis b = {01,605} . The operator Ay, does not depend on

the choice of ordered orthogonal basis in II.

Proof. Let /All; be a complex structure to the corresponding orthogonal basis {91, 92} ,
and Ay, the complex structure corresponding to the orthogonal basis {61, 6>}, and <91, 92> =
(01,02) = I1. We must then show that if we do an elliptic similitude to the basis {61,605} ,
the complex structure A, is equal to the complex structure 1213.

The complex structure A, is defined by:
QQ(X, Y) = gl(AbX, Y)

Note that:

A

02(X,Y) = 01(A; X, Y) <= 0,(X,Y) = (A, X, Y).

Let the elliptic similitude be given by:

A

0, = tcos(p)dy — tsin(¢)b,,
0, = tsin(¢)0; + tcos(d)bs.

Inserting this into 02(X,Y) = 0;(4,X,Y), we get:

sin(¢)01(X,Y) + cos(0)0x(X,Y) = cos(¢)01(A,X,Y) — sin(¢)05(A,X,Y)

~

01((sin(¢) — cos(¢)Ay) X,Y) = —05((cos(@) + sin(¢)4,) X, Y).

Substitution:

A

X = (sin(¢) + cos(¢)Ap) X.
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Further on we notice that:

(cos() + sin(¢p) Ap) (sin(¢) + cos(¢p)A) = A, and
(sin(¢p) — cos(p)Ap) (sin(¢) + cos(p)Ap) = 1.

Thus, we get:
61(X,Y) = —05(AX.Y).

What we noticed early on in the proof is that:
01(X,Y) = —65(A, X, Y).

Therefore:

Since A, does not depend on the choice of oriented orthogonal basis in II, we will

denote the operator A, by Ar.

Theorem 4.4 Any oriented elliptic Jacobi plane 11, determines a complex structure

(V, AH)

4.2.1 Elliptic Jacobi PDE systems represented by smooth fields

of operators

Finally, we sum up all of the results in the previous section to make the link from a
smooth field of two-dimensional planes II (z) in A%(T* M), to a smooth field of operators
A, on T, M. This is done in the theorem below.

A smooth field of endomorphisms A, : T,M — T, M on a manifold M is called an

almost product complex structure on M, if A2 = —1 for all z € M.
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Theorem 4.5 Let II be an elliptic Jacobi PDE system with fixed orientation of all the
Jacobi planes 11 (x). Then the smooth field of two-dimensional planes 1 (z) in A*(T* M),

determines an almost complex structure on M.

4.3 Operator representation for hyperbolic Jacobi
planes

Let IT C A? (V*) be a hyperbolic Jacobi plane.
Hence we know from previous analysis that there exists an orthogonal basis {61, 05}
on II, and both 6; and 65 are non-degenerated. Further on we may choose 6; to be a

symplectic form on V| and 6, to be an effective form, such that:
01/\92 262/\61 =0 and 61/\€1 = —92/\02.

Then due to theorem (4.1), we get that for an oriented orthogonal basis b = {61, 65 }:

if II is hyperbolic.
Let B:V — V be a linear operator on the vector space V.

The pair (V, B), is a product structure, if B satisfy the condition B% = 1.

Definition 4.6 We will call a transformation from the orthogonal basis {91, @2} to an

orthogonal basis {01,052}, a hyperbolic similitude, if there exist t and ¢, such that:

0, = tcosh(¢)f, + tsinh(¢)bs,
0, = tsinh(¢)fy + tcosh(¢)0s.

Theorem 4.7 LetV be a real vector space, and I C A* (V*) be a hyperbolic Jacobi plane
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with a orthogonal basis b = {01,02} . The operator A, does not depend on the choice of

orthogonal basis in 11, and orientation of I1.

Proof. Let 1215 be a product structure corresponding to the oriented orthogonal basis
{91, 92} , and Ay the product structure corresponding to the oriented orthogonal basis
{61,605}, and <91, 92> = (61, 05) = II. We will show that if we do a hyperbolic similitude
to the basis {6,605}, then A, is equal A;.

The product structure Ay, is defined by:

QQ(X, Y) = gl(AbX, Y)

Note that:
02(X,Y) = 01(A; X, Y) <= 0(A;X,Y) = 6,(X,Y).

Let the hyperbolic similitude be given by:

01 = t cosh(¢)0; + ¢ sinh ()6,
0, = tsinh(¢)6; + t cosh(¢)fy '

Inserting this into 05(X,Y) = 01(A,X,Y), we get:

(tsinh(¢>é1+tcosh(¢>é2) (X,Y) = <tcosh(¢)91+tsinh(qb)§2> (A,X,Y)

A ~

01((sinh(¢) — cosh(¢)Ap) X,Y) = 65((— cosh(¢) + sinh(¢)A4) X,Y).

Substitution:

X = (cosh(¢) 4 sinh(¢)A,) X, and we notice that:

(sinh(¢) — cosh(¢)Ap) (cosh(¢) + sinh(p)A,) = Ay,
(— cosh(¢) + sinh(¢)Ap) (cosh(¢) + sinh(¢)4,) = 1.
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Thus, we get that:

él(AbXay) = 62(X7Y)7
0L (AX,Y) = B(X,Y).

Hence:

Ay = Aj.

The operator A, does not depend on the choice of orientation of II, since:
Ay = A, and A1 = Ay,

therefore:

Ap = Ay,

Since A, does not depend on the choice of basis in II, we will denote the operator A,
by AH-
In section (5.1), we will prove that dimker(1 4+ Ay) = 2 for hyperbolic Jacobi planes.

This motivates the following definition:

Definition 4.8 Let B : V. — V be a linear operator on the vector space V. The pair
(V, B) , will be called a symmetric product structure if B satisfy the condition B* = 1,
and dimker(1 — B) = dimker(1 + B).

Therefore, we sum up the results in this section by the following theorem:

Theorem 4.9 Any hyperbolic Jacobi plane Il , determines a symmetric product structure

(V, An).
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4.3.1 Hyperbolic Jacobi PDE systems represented by smooth

fields of operators

Due to the results in the previous section, we make the link from a smooth field of two-
dimensional planes II (x) in A?(T* M), to a smooth field of operators A, on T, M. This
is done in the theorem below.

A smooth field of endomorphisms B, : T,M — T, M on a manifold M, is called a
symmetric almost product structure on M, if B2 =1 for all z € M, and dim ker(1 —

B,) = dimker(1 + B,).

Theorem 4.10 Let I1 be a hyperbolic Jacobi PDE system. Then the smooth field of two-
dimensional planes I (x) in A*2(T*M), determines a symmetric almost product structure

A, T, M — T, M on M.

4.4 Matrix representation for operators Ay

Theorem 4.11 Let IT be a Jacobi PDE system:

Ohy _ . Ohi _ g Ohy Ohy Ohy Ohy _ Ohy Ohy |\ _
ap + bl o1 €1 Oza dl Oza te oz + fl <8$1 Oxa Oza 8$1> =0

)
Ohy _ , Oh1 __ g Oho Ohy Ohy Ohy _ Ohy Ohy |\ _
as + b2 ox1 C2 Oxo d2 Oxo + 628961 + f2 <611 Oxo Oxo 8x1) =0

that are either elliptic or hyperbolic. The matriz ||A.|| of the operator field A in the

standard basis ( 0 0 0 0 ) , 18 given as:

917 dxz? du1’ duz

| Ay 2eb1 — 2e1by 2baf1 — 2b1fy 2eaf1 — 2e1f2 |
1A = VIK] | 2e2d1 = 2¢1dy Ay 2c1fa —2¢of1 2dyfa — 2da f ()
K| 2a9dy — 2a1dy 2e105 — 26504 As 2eydy — 2e1dy
2a1¢o — 2a9¢1  2a1ba — 2a9b;  2bice — 2bycy Ay
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where:

Ay = eycr —e1cy + bidy — bady — ay fo + ax fi,

Ay = ejep —eger — bidy + bady — ay fo + aa fi,

Az = eyc; —ercg — bidy + bady + ay fo — aa fi,

Ay = ey —egcr + bidy — bady + ay fo — az fi,
K = detQ.

Proof. Let II (z) = (w14, W) -
Then:

and we find the matrix of the operator A, denoted by ||A.||, if we find Hél_i,H and |[0s..]|,
since:

~71 ~
[ Ael] = 110121 - 110211,

where Hél_iH and ||f2.|| are the matrix representations of the operators 9;1 and 65 .

The easiest way to find, say ||02.,|], is to use the following relation:
92(X7 Y) = XTHéQ,;BHY

As we know from the orthogonalization, 0, , is equal to —%wm + %wm, and we derive

the following table:

92,a:(l7 —>) €1 €2 €3 €4
e 0 (.A(lz —Bal) —(ACg —Bcl) — (.Ad2 —Bdl)
1 K K K
—(Aaz—Ba1) —(Aba—Bb1) —(Aea—Ber)
€2 K 0 K K
e (ACQ-BCl) (.Abz —Bbl) 0 (-Af2 —Bfl)
3 K K K
o (Ado—Bdy) (Aea—Be1)  —(Afe—Bf1) 0
4 K K K
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From this table we can now construct ||fy..]| :

0 g —Co —d2 0 a; —C —d1
~ A —ay 0 —b2 —€9 B —an 0 —bl —€1
[Paall = 2 - =
ca by 0 f2 c1 b 0 Ji
I dy e —fy O | I d e —fi 0 |

With the same procedure as above we are able to find the matrix representation |[0; ||

of the operator él,x.

0 a; —C —dl
- 1 —a; 0 —=b —e
101]| = —==
’ IC | C1 b1 O f1
| doer —fi 0]

To make calculations more visible, we do the following substitution:
01, = a1et Aes+bies Aeb+ el et +dies A et + érel A el + frel Ael,
O, = aGgel Nej+ boel A €5+ Goel A € + daels A et + sl A €5+ fael A el
fi (Aaz—Bai) f— AR-BH)

where a4 :ﬁ,..,ﬁ:m and a, = s f2 = =
With these substitutions, we get that:

0 a —¢ —d 0 Gy —Cy —do
B 4y 0 —b —éy 3 —dy 0 —by —éy
01l =1| . X and ||| = | | R
¢ b f1 Co by f2
i d1 €1 —f1 ] i Ozz ey —fo i

Thus, we find the expression for ||A,|| :
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~—1 ~
14zl = [101z]1 - 12, =

asf1 — €1C2 + bidy
1 dyCy — C1dy
dyas — aydsy

a1Cy — €10

biéy — €1by
asf1 — €2C1 + bady
€10z — 4162

a1by — 14y

fiby — b1 fo
irfa— fiéa
C~Llfz — €162 + BQCzl

biéy — C1by

fiéa —é1fs
difa — fida
diéy — é1ds

&1f2 — €2C1 + ElCz2

where Ao = dlfl — élél + dlbl. |

4.5 Examples

We will illustrate how to find the matrices for some types of Jacobi PDE’s, with a few
examples.

In all of the examples, we have given the matrixes in the basis ai’ 0 0 0 )
Xr1 8.%2 8’!1,1’ Bug

4.5.1 The symplectic Monge-Ampére equations

Let us take the symplectic Monge-Ampeére equations which we classified in example

(3.7.3):

[l
02

82<p_c 0 . 0
0r3  Oxedxy 011019

_O0p
8513'1 +aa$2

i+ 4 Lade

(PP Pe Fe
022 0x3  Owydxy 01015 )

With the same substitutions as in example (3.7.3), we obtain the system:

o _ OO
N 8:51 8372 ’
ohy 0hy Ohs Ohs Ohy Ohy  Ohy Ohs
— b — —d _
0 @t 8x1 C@xg E)xQ + eaZL‘l f ((%1 8[E2 81’2 8x1> ’

where a = a + ahy + ahs.
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Comparing this with the Jacobi PDE system (x), we get that:

ci=1,e,=1,a3=a,bs =b,co =c,dy =d,eo =c and fy = f.

With this information we can find det (Q)), which is equal K :

K =—4(af 4+bd) — (c—e)”.

Thus, we get the matrices of A,, by inserting the information into the formula (xx) :

e—c —2b 0 —2f
V] K | —2d c—e 2f 0
|| Ag|| = K
0 20 e—c —2d
—2a 0 —-2b c—e

To verify the calculations, we calculate ||A2||, and get that:
|1 AZ]| = —sign (K) 1,

which is what we could expect, since the symplectic Monge-Ampére equations are:
e clliptic, if £ >0 then ||A2]| = —1,

e hyperbolic, if £ < 0 then ||A2|| = 1.

Laplace equation

Let us consider the Laplace equation:

0? 0?
Yo g
Oxy  0x3

and find its matrices ||A,||-
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This is clearly a special case of the symplectic Monge-Ampére equations above.

Thus, by inspection we get that:

b=1,d=—1and £ =4.

Hence: ~ _
0 -1 0 O
1 0 0 0
|[Azl| =
0 0 0 1
0 0 -1 0

Wave equation

Let us, as a second special case of the symplectic Monge-Ampére equations, analyze the
Wave equation:

Py Po

ox? 03
By inspection we get that:

b=1,d=1and £ = —4.

Thus: ~ _
01 00
1 0 00
[ Azl| =
00 01
0010

Von Karman equation

Von Karman equation in the transonic approximation of gas dynamics, has the form:

dp Pp Py
8m1 anl 821’2

=0,

where ¢ = @ (21, x9) is the velocity potential.
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By inspection we get that:

_9p

h—
8:1:1

=wu;,d=1and K = —4uy,

and so we will have to assume that u; # 0, in order to have IC # 0.

The Von Karman equation has the following classification:
e elliptic, if u; <0,
e hyperbolic, if u; > 0.

Thus, we get the matrix ||A,]| :

0w 0 0
[ [\ |1 0 0 0

14:|l = :
U 00 01
0 0 w 0

and ||A%|| = sign (u;) 1.

4.5.2 A hyperbolic PDE system

Let us consider the system of Example (3.7.2) :

ohy Oy 1
I : h — =0
2 81’1 8$2 * hl — hg ’
Ohy  Ohsy 1
I : h — =0.
! 81’1 8372 + hg — hl

As we remember, this system was hyperbolic at any point, since:
K= —(Ug —Ul)z.

A little problem occurs when we calculate ). It turns out that A4 = 0, so we can
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not apply our results directly. We have assumed that A # 0 when we constructed the
orthogonal basis from which we make the operator A,. The solution to this problem, is
simply to consider the system {/ + II,I}.

Hence we get:

—1
by =hy,c1=1,di =11 =uj, a0 = ———, by =us ,cp = 1,
Uz — U1

and:
Z(Ug —Ul) U9 — Uy

Q=

U — Uy 0

Clearly A # 0, and with comparison with (xx), we get:

—Ugy — Uy —2U1U2 0 0
| IC ’ 2 Ug + U 0 0
g =X= 0 ,
U2 —Ul U —Ul Uz —uy 0
2 2
T — U232m 0 Uy — Uz |
and ||A2%|| = 1.
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Chapter 5

From operators to Jacobi planes

To complete the triangle from the introduction, we show that if we start off with a complex
structure or a symmetric product structure, we are able to find its corresponding elliptic
or hyperbolic two-dimensional plane II in A?(V*).

For simplicity, we make the following changes in our notation 0, = w , 6; = €.

We introduce the operator A% (A*) on A? (V*):

AP (A) A2 (V) — AR (V)
O(x, %) —— O(Ax, Ax).

Proposition 5.1 The two 2-forms Q and w, are eigenvectors of the operator A? (A*),

that is:

A (A)(Q) = (DG,
A (A (W) = e(Mw.

Proof. Since:

W(X,Y) = QAX,Y),
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and we deduce that:

A (A" (D(AX,)Y) = Q(A2X, AY) = Q(e (T) X, AY)
— () X, AY) = —¢ (II) Q(AY, X)
= —(MwY,X)=c(Mw(X,Y)=c()QAX,Y).

Hence:
A2 (A%)(Q) = e (IT) Q.
In a similar way, we get:
A (A" (W)(AX)Y) = w(A’X,AY) =¢ () w(X, AY)

= £ (I) QAX, AY) = —& (IT) Q(AY, AX)
= e (I) QAY, AX) = — (I) w(Y, AX) = & (I w(AX, V).

Therefore:

A (AY) (w) = e () w.

5.1 Symmetric product structures

Let (V, A) be a symmetric product structure, and V' a four-dimensional symplectic vector
space.
Note that:
A? = 1@%(1—A)%(1+A) = 0.

Moreover 5(1+A) and 1 (1—A) are projectors in V, and denote the projector 1(1+A)
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by P,, and the projector %(1 —A)by P_,and im P, =V, ,im P_ = V_, that is:

Let X be a vector from V| sincel = P, + P_, then X = P, X + P_X, and we will
denote P, X by X, and P_X by X_.
Clearly:
P.(Y)=P (AY) and P_(X) = P_(—AX),

for Y ¢ V_ and X ¢ V.

Proposition 5.2 The product structure (V, A), produces a splitting of the four dimen-

stonal vector space V into V. @ V_.
Proof. The projectors P, and P_ produce a splitting of V' into V. & V_, since:
i) imPy =V, andimP_=V_,
ii) 1=P, + P_,

ZZZ) P+OP_:P_OP+:0.

Proposition 5.3 The vector space V. is skew-orthogonal on V_ with respect to ) and
w. That is:
QX_,Y,)=0and w(X_,Y,)=0.

Proof. First we see that:

W(X,Y) = QAX,Y) <= w(AX,Y) = Q(X,Y).
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Since Y and AY go to the same element in V, ; and X and —AX go to the same

element in V_, we derive that:
QX_,Y) =Q(-AX_ AY,) = —w(A?X_,AY,) = w(AY,, X ) = —Q(X_,Y,).

Hence:

Q(X,, Y+) - 0

And similarly for w(X_,Y}) :
CU(X,,Y+) - CU(—AX,,AY;,) - —W<AX,,AY+) = —Q(X,,AY;,) - —W<X,,Y+)7

SO:

CU(X77 Y+) = 0.

Proposition 5.4 Any hyperbolic Jacobi plane 11, determines a symmetric product struc-

ture (V, A).

Proof. We have already shown that it determines a product structure (V, A), so we
shall only show that:
dim(V,) = dim(V_).

The only two cases we will have to investigate are when, dim(V;) = 1,dim(V_) = 3,
and dim(V,) = 0,dim(V_) = 4.

Assume that dim(V;) =1 and dim(V_) = 3.

Then, due to proposition (5.3), we know that Q(V,,V_) = 0 and Q(V,,V,) = 0,
since V, is one-dimensional. This implies that 2 is a degenerated form, which is a
contradiction.

Assume that dim(V,) = 0 and dim(V_) = 4, then A has to be equal —1.
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Since w(X,Y) = Q(AX,Y), we get that w = —Q, which is a contradiction, since w
and ) do not generate a plane.
So:
dim(Vy) = dim(V_) = 2.

Note that Q| and |y, are non-degenerated, and w|y. and w|y, are non-degenerated.
We will show that there exists a basis on V' = (ej es, f1, f2), such that the forms

Q,w € A?(V*) can be written as:
Q=elNfi+esNfiandw=¢e] N f—e5N f5.

Choose e; € V,. Since (X, Y)|y, is non-degenerated, there exists an fi1 € V., such
that Q(el, fl) 7& 0.

Then we choose f; = ﬁ, and get that:

Q(61, fl) = 1.

We apply the similar procedure for V_.
Choose e; € V_ . Since (X, Y)|y._ is non-degenerated, there exists an fo € V_, such

that Q(es, f2) # 0. Then we choose fo = Q(fﬁ) , and get that:

Qe2, f2) = 1.
From this we derive the following:
Qer, f1) = 1
= Q(Ael, fl) since e1 € V+
= wlen, f1)
wle, f1) = 1.
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And similarly:

Qea, f2) = 1
— Q(—Aeg, f) since es € V.
= —wl(ez, f2)

wles, fo) = —1.

The result of this procedure is:

0 = eTANfl+e NS,

w = e NN,

and:

A: V. — V

€ > €

(&) [ — —€q -
i — N
fo — —f

Therefore, if we know the decomposition of V' =V, & V_, then we can construct €2, w
and A on the form above.

Let B : V — V be an operator. We introduce the operator ¢z as an inner derivation
on A% (V*) | by:
ip: AN2(V*) — A2(V¥),
O(x,%) +—— O(Bx,*)+ 0(x, Bx).

Proposition 5.5 Let (V, A) be the symmetric product structure derived from a hyperbolic
Jacobi plane 11 = (w, Q), then:

AW = 29,
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and:

1402 = 2w.
Proof. When we compute isw(X,Y), we get that:
iAw(X,Y) = w(AX,Y) + w(X, AY) = Q(A2X,Y) — Q(A%Y, X) = 2Q(X,Y).
And for i4Q(X,Y), we get that:
iaQ(X,Y)=QAX)Y) + Q(X, AY) =w(X,Y) —w(Y, X) = 2w(X,Y).

Theorem 5.6 The image of ia on the space A2(V*) is the plane 11 = (w, Q) C A%2(V*).
The spectrum of ia is {—2,0,0,0,0,2} . Moreover, Q4+ w is an eigenvector for the eigen-

value 2, and §2 — w is an eigenvector for the eigenvalue —2.

Proof. Take {ej A fi,e5 A fi es Nei, fa ANel, f N ff,es A f3} as a basis for A2(V*) :

ia: A2(V*) — AXV¥)
AN 20N
esNfr — 0
esNe; — 0
faney — 0
fsnfi — 0
Nfs = 2N f5

Let €2, w be the normal forms given by:

Q=elANfl+esNfyandw=el Aff —esAf5.

Clearly {Q+w,Q —w, e A fi,es Ael, f3 ANet, f5 A fi} is also a basis for A2(V*).
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Due to the proposition (5.5), we know that i4(2) = 2w and i4(w) = 2€2. So we get:

iA(Q+w) = 2(Q+w),
ia(Q—w) = =2(2—-w).

5.2 Complex structures

Let V be a real vector space. The tensor product V¢ = V @ C is a complex vector space
called the complexification of V.

Every element in the complex vector space VC can be written uniquely as a sum
v+ v’ with v,0" € V.

Using the real direct sum decomposition, we get the following canonical isomorphism:
VerC=VaiV,

since V@r C = (v®r 1,v Qg 1) .
Let V be a real vector space with a linear operator A : V. — V, then A® (the

complexification of A) is a C-linear operator on VC, and it acts like:

AC L VE— VS

A(C (U ®R )\) = A(U) ®R )\,

where \ € C.
Let (A, V) be a complex structure and A? = —1.
When we make the complexification A,V and of A2 = —1, we get:

(A(C,VC) and (A(C)2 =—1.
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Since V is a four dimensional real vector space, then VC is a four-dimensional complex

vector space.

Note that:

(A%2:—1¢¢%mfwA%%u+uﬂ)zo

Moreover, %(1 +iA%) and %(1 —iA®) are projectors in V°, and denote the projector

(1 +iA%) by P, and the projector 1(1 —iA%) by P_ and im Py = V¥, im P_ = VE,

that is:

P+:VC—>V+(C, P,2VC—>V,C,
and .
(Py)? = Py, (P-)*=P_.

Let X be a vector from VC, and since:
1 = P+ + P,,

then X = P, X + P_X, and we will denote P, X by X, and P_X by X_.

Proposition 5.7 The complex structure (V, A), produces a splitting of complexification
of VC :

VeE=vEa Vvt

Proof. We will prove this in the same way as we did for the hyperbolic case.

The projectors P, and P_ produces a splitting of V' into Vf ® VE, since:
i) im P, = V{ and im P_ = V&,
ii) 1=P, + P_,

iii) PyoP_=P_oP, =0.
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We also note that:

A°X_. = iX_,
since:

(49)

(4%)

1 1
(1+iA%) = 5(—@ + A%) = —i§(1 +3A%),

N — DN —

(1—iA%) = %(i + A% = i%u —iA").

Proposition 5.8 For any non-zero vectors Y ¢ Vf and X ¢ VE, we have that:

Ve = (P_(Y),P (A%Y)),
VE = (P4 (X), P (ATX)).

Proof. All we need to show, is that P, (X) # Py (A®X) and P_ (Y) # P- (A®Y).
Proof by contradiction:

Assume that:

P_(A%Y) = P_(Y)
iP_(Y) = P_(Y).

Let P_(Y') be equal to v ®g (x + iy) , hence:

i(v@rr+iy) = (VRrx+iy)

VRr (—y+xi) = vQg(x+iy).

Therefore x = —y and x = y, which is a contradiction unless x = y = 0.

In a similar way we can show that P, (X) # Py (AX). =
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Let € A?(V*) be a real valued 2-form. We define the complexification of 6§ by
0¢ e A2(VC) .

. vEx Vvt — C,

0“(v@ra,u®rf) = 0(v,u)ap.

In a similar way as we did for the symmetric product structure, we derive the following:

Proposition 5.9 The vector space Vf is skew-orthogonal on VC, with respect to Q¢ and
w®. That is:

QY(X_,Y,) =0 and w“(X_,Y,) = 0.

Note that Q€| and QF|,c are non-degenerated, and w®|,c and w®|,c are non-
- ¥ = ¥

degenerated.

Theorem 5.10 There exists a basis on VC = (ey ez, f1, f2) , such that the forms QF W€ €

A? (V(C*) can be written as:
QF =eX A fr+es A fy and W =ies A fi —iel A S,

and we will call them the normal forms for the plane TI¢ = <Qc,wc> .

Proof. Choose e; € Vf. Since QC|Vf is non-degenerated, there exists an f; € Vf,

such that QC(eq, f1) # 0.

Therefore we choose f; = ﬁ, and QC(eq, f1) =1

Choose e; € V. Since Q°|VC is non-degenerated, there exists an fo € VE, such that

Qc(em f2) # 0.

Therefore we choose f = ﬁ, and Q%(es, f2) = 1.

As we have shown —i X, = A®X, ,iX_ = A®X_ and:

QYX,Y) = b (A%X,Y).
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Hence:

Q(C(ehfﬂ = 1
= —w"(Aey, f1) since e, € V,

= iwc(el, f1)-
Which means that:
w(c(ela fl) = —1.

In a similar way we get:

WC(€27 f2) =i.

The result of this is:

0° = NSNS

WSE = ey A S5 —iel A ST,

and:
AC. vy — y¢C

e; +——  —iep
ey +—— 1€y
fi —if1

fa s if

Therefore, if we know the decomposition of V& = VI @ VE, then we can construct
0F w® and A® on the form above.

Let B : V — V be an R-linear operator, and § € A? (V*) a 2-form. We introduce
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the operator igc as an inner derivation on A? (VC*) , by:

ige: A2 (VC*) —s A? (VC*),
0%k, ) O°(B, %) + 0%(x, Bo)

where B is the complexification of B, and 6 is the complexification of 6.

Proposition 5.11 Let (V, A) be the complex structure derived from an elliptic Jacobi
plane 11 = (w, Q), then:

igew® = —20°,

and:

i 4c0° = 20C.

Proof. When we compute i4cw®(X,Y), we get that:

iac(X,Y) = WCACX,Y) +wC(X, ACY) = Q°((A%)* X, Y) — QF((A%)*Y, X)
= —20%(X,Y).

And for i4,cQ%(X,Y), we get that:

icQ5(X,Y) = QFAXY) + Q(X, A%Y) = 05(X,Y) — & (Y, X) = 205(X,Y).

Theorem 5.12 The image of the operator isc on the space A2(V*), is the plane II° =
<wc, QC>. The spectrum of isc is {—2i,0,0,0,0,2i}, and (Q° + iw®) is the eigenvector
corresponding to the eigenvalue —2i, and (QF — iw®) is the eigenvector corresponding to

the eigenvalue 2i.

Proof. Take {QT/\ff‘i‘e;/\f;,@;/\f; _QT /\fl*aez/\ffaez/\e;f;/\e*faf;/\ff} as
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a basis for A2(VC) :

TC : AQ(VC*) N AQ(VC*)
EENfEHeESNfE — el A ff — 2iet A ff = 2wC
es N IT — 0
es N\ ej .0
f3 Nep — 0
ENAVE — 0

EENFE—eENFE s 2iet A FE A+ 2iek A fr = 2iQC

Therefore:

iac(QC %) = 2% —i20° = —2i(Q° + iw"),

iac(QF —iw®) = 20" 420 = 2i(QF —iw®).

Lemma 5.13 Let B : V. — W be a R-linear operator from the vector space V' to the
vector space W, and let B€ : V€ — WC be the complezification. Then, the image of B

complezified is equal to the image of B, that is:
(Im B)® = Im B¢,

Proof. Let us show that (Im B)® D Im BC.
Assume that: x + iy € (Im B)C, where =,y € Im B, and that © = Buvg,y = Buy.

Hence:

r+1y = Buvy+iBu

= B (v +iv;) € Im B®.
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Let us then show that Im B€ > (Im B)®.

Let z + iy € Im B, then there exists vy + iv;, where vy, v, € V, such that:

z+iy = B (vy+ivy)

= BUO —I— ’iBUl,

hence x = Buy, and y = Bvy, and so = + iy € (Im B)°. m

Due to the lemma above, we deduce that:

Im(iAC> = ([m (ZA))(C )

I° = ((w,Q)=1I)".

Therefore, we sum up the results in this section by:

Theorem 5.14 Let (A, V) be a complexr structure, then the image of ia on the space

A2(V*), is the elliptic plane IT = (w, Q) .

So we found an operator, namely i4 : A*(V*) — A?(V*), such that, if we start
with a complex structure or a symmetric product structure, we are able to find the

corresponding elliptic or hyperbolic two-dimensional plane by im (i4) = II.
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Chapter 6

Local classification of the Jacobi

PDE system

The classification problem

We say that two Jacobi PDE systems IT and II' on M are locally equivalent at the point
x € M, if there exist a local diffeomorphism ¢ : U, — V., ¢ () = z, such that:

©* (W) eI,

for all ' € IT'.
This means that the two Jacobi PDE systems have an isomorphic (by ¢) space of

solutions. That is, if L is the solution of II, then ¢ (L) is a solution of I, and vice versa.

6.1 Local classification of hyperbolic Jacobi PDE’s

In this section we will investigate when a hyperbolic Jacobi PDE system is locally equiv-
alent to the wave system.

Let II be a hyperbolic Jacobi PDE system. Then this system determines a symmetric
almost product structure A, : T,M — T, M on M.
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The symmetric almost product structure, determines a splitting of T,M = C, ,®C_,

, where C,and C_ are 2-dimensional distributions on M.

Consider for example the Wave system:

on ohy _
(9x2 8x1 n ’
Ohy  Oh
2= =,
812 01’1
and obtain the matrix representation:
-1 0 0 O
0 1 0 O
1Al = :
0 0 -1 0
0 0 0 1

in the basis (i o 0 i).

ox1’ %’ Ouy’ Ous

For convenience, we make the following coordinate change:

(21, T2, ur, U2, ) — (Ug = q1, T2 1= @2, Uy = D1, T1 1= P2) .

0 9 9 0N (0 0 9 9
(9131’ 8x2’ 3u1’ Ous 8q1’ 86]2’ 8191’ Opa 7

and so the matrix will look like:

Hence:

10 0 0
01 0 0

1Al = :
00 -1 0
00 0 -1

. (o o o 0
in the ba51s< Bar’ 93" Do 8p2).
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Then C, is generated by -2 Bar and a ,and C_ is generated by -2 o1 and 6%2.
We see that both C, and C_ are completely integrable distributions.

Theorem 6.1 Let I1 be a hyperbolic Jacobi PDE system, such that C, and C_ are com-
pletely integrable distributions. Then 11 is locally equivalent to the Wave system.

Proof. Let p; and p, be first integrals for C,, and ¢; and ¢, be first integrals for C_.
Note that ‘9 and a are tangent to C, because - (pl) ( ») = 0, and that ;2
and 5 are tangent to C because 3 - (ql) am ( 2) = 0.

In these coordinates one has:

0 0
A
0g; — aqz"
0 0
A — )
dq; — Op;

And so it coincides with the Wave system above. =

We now want to make use of the operator representation for the hyperbolic Jacobi
PDE systems, to find a criterion for when C, and C_ are completely integrable.

To do this we will need the Nijenhuis tensor.

The Nijenhuis tensor |[B, B]| is equal to:

where B € Q'(M) @ D(M) and X,Y € D(M).
Theorem 6.2 (Main theorem 1) Let II be a hyperbolic Jacobi PDE system. Then I1
18 locally equivalent to the Wave system if and only if:

A, Al =

Proof. If II is the Wave equation on the form described above, then due to (6.1),
we have that |[A4, A]| = 0.
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On the other hand if |[4, A]| = 0, will prove that the distributions Cy and C_ are
completely integrable.

Assume that X, Y are smooth vector fields from C,, then:

0 = [[44](X)Y)
= [AX,AY] - A[AX,Y] — A[X, AY] + [X,Y].

Since AY =Y in C,, we get that:
0= [XaY] _A[X>Y] _A[XaY] + [X,Y],

or

(1-A)[X,Y]=0.

Therefore, [ X, Y] belongs to C,, and Cy is completely integrable.

In a similar way we may prove that C_ is completely integrable. m

6.2 Local classification of elliptic Jacobi PDE’s

The classification problem we will solve in this section is when an elliptic Jacobi PDE
system is locally equivalent to the Cauchy-Riemann system.

Let us first consider the Cauchy-Riemann system:

o _om
O0ry  Oxy ’
oo
Oxry Oxsy ’
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As we have seen, the matrix of the operator A is:

Al =

oS O = O
o O
o o O

S = O O

inthebasis(a o 0 a).

Ozx1’ Oz2’ Bui’ Bug

Theorem 6.3 (Main theorem 2) Let II be an elliptic Jacobi PDE system. Then II is

locally equivalent to the Cauchy-Riemann system if and only if:
|[A, Al = 0.

Proof. If the Cauchy-Riemann system is on the form described above, then, due to
(6.2), we have that |[A, A]| = 0.

On the other hand if |[A, A]| = 0, then due to Newlander-Nirenberg theorem [NN],
we have that there exist local complex coordinates, say, z; = s; + tt; and 25 = so + ito,

in some neighbourhood of a € M, such that:

0 10 0

1 0 0 0
Al = :

00 0 —1

00 1 0

8s17 Bty Dsz? Oty

inthebasis(8 o 0 6).

If we do the following coordinate transformation:

(Sl,tl,SQ,tQ,) L E— (817t17t2a 82) )

we transform the standard structure on C? to the almost complex structure (6.2) of
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